MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnext Structured version   Visualization version   GIF version

Theorem lnext 25462
Description: Extend a line with a missing point. Theorem 4.14 of [Schwabhauser] p. 37. (Contributed by Thierry Arnoux, 27-Apr-2019.)
Hypotheses
Ref Expression
tglngval.p 𝑃 = (Base‘𝐺)
tglngval.l 𝐿 = (LineG‘𝐺)
tglngval.i 𝐼 = (Itv‘𝐺)
tglngval.g (𝜑𝐺 ∈ TarskiG)
tglngval.x (𝜑𝑋𝑃)
tglngval.y (𝜑𝑌𝑃)
tgcolg.z (𝜑𝑍𝑃)
lnxfr.r = (cgrG‘𝐺)
lnxfr.a (𝜑𝐴𝑃)
lnxfr.b (𝜑𝐵𝑃)
lnxfr.d = (dist‘𝐺)
lnext.1 (𝜑 → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍))
lnext.2 (𝜑 → (𝑋 𝑌) = (𝐴 𝐵))
Assertion
Ref Expression
lnext (𝜑 → ∃𝑐𝑃 ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩)
Distinct variable groups:   ,𝑐   ,𝑐   𝐴,𝑐   𝐵,𝑐   𝐼,𝑐   𝑃,𝑐   𝑋,𝑐   𝑌,𝑐   𝑍,𝑐   𝜑,𝑐
Allowed substitution hints:   𝐺(𝑐)   𝐿(𝑐)

Proof of Theorem lnext
StepHypRef Expression
1 tglngval.p . . . . 5 𝑃 = (Base‘𝐺)
2 lnxfr.d . . . . 5 = (dist‘𝐺)
3 tglngval.i . . . . 5 𝐼 = (Itv‘𝐺)
4 tglngval.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
5 lnxfr.a . . . . 5 (𝜑𝐴𝑃)
6 lnxfr.b . . . . 5 (𝜑𝐵𝑃)
7 tglngval.y . . . . 5 (𝜑𝑌𝑃)
8 tgcolg.z . . . . 5 (𝜑𝑍𝑃)
91, 2, 3, 4, 5, 6, 7, 8axtgsegcon 25363 . . . 4 (𝜑 → ∃𝑐𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍)))
109adantr 481 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → ∃𝑐𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍)))
11 lnxfr.r . . . . . 6 = (cgrG‘𝐺)
124ad3antrrr 766 . . . . . 6 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → 𝐺 ∈ TarskiG)
13 tglngval.x . . . . . . 7 (𝜑𝑋𝑃)
1413ad3antrrr 766 . . . . . 6 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → 𝑋𝑃)
157ad3antrrr 766 . . . . . 6 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → 𝑌𝑃)
168ad3antrrr 766 . . . . . 6 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → 𝑍𝑃)
175ad3antrrr 766 . . . . . 6 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → 𝐴𝑃)
186ad3antrrr 766 . . . . . 6 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → 𝐵𝑃)
19 simplr 792 . . . . . 6 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → 𝑐𝑃)
20 lnext.2 . . . . . . 7 (𝜑 → (𝑋 𝑌) = (𝐴 𝐵))
2120ad3antrrr 766 . . . . . 6 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → (𝑋 𝑌) = (𝐴 𝐵))
22 simprr 796 . . . . . . 7 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → (𝐵 𝑐) = (𝑌 𝑍))
2322eqcomd 2628 . . . . . 6 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → (𝑌 𝑍) = (𝐵 𝑐))
24 simpllr 799 . . . . . . . 8 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → 𝑌 ∈ (𝑋𝐼𝑍))
25 simprl 794 . . . . . . . 8 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → 𝐵 ∈ (𝐴𝐼𝑐))
261, 2, 3, 12, 14, 15, 16, 17, 18, 19, 24, 25, 21, 23tgcgrextend 25380 . . . . . . 7 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → (𝑋 𝑍) = (𝐴 𝑐))
271, 2, 3, 12, 14, 16, 17, 19, 26tgcgrcomlr 25375 . . . . . 6 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → (𝑍 𝑋) = (𝑐 𝐴))
281, 2, 11, 12, 14, 15, 16, 17, 18, 19, 21, 23, 27trgcgr 25411 . . . . 5 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩)
2928ex 450 . . . 4 (((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) → ((𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍)) → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩))
3029reximdva 3017 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → (∃𝑐𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍)) → ∃𝑐𝑃 ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩))
3110, 30mpd 15 . 2 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → ∃𝑐𝑃 ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩)
321, 2, 3, 4, 6, 5, 13, 8axtgsegcon 25363 . . . 4 (𝜑 → ∃𝑐𝑃 (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍)))
3332adantr 481 . . 3 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → ∃𝑐𝑃 (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍)))
344ad3antrrr 766 . . . . . 6 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → 𝐺 ∈ TarskiG)
3513ad3antrrr 766 . . . . . 6 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → 𝑋𝑃)
367ad3antrrr 766 . . . . . 6 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → 𝑌𝑃)
378ad3antrrr 766 . . . . . 6 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → 𝑍𝑃)
385ad3antrrr 766 . . . . . 6 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → 𝐴𝑃)
396ad3antrrr 766 . . . . . 6 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → 𝐵𝑃)
40 simplr 792 . . . . . 6 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → 𝑐𝑃)
4120ad3antrrr 766 . . . . . 6 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → (𝑋 𝑌) = (𝐴 𝐵))
42 simpllr 799 . . . . . . 7 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → 𝑋 ∈ (𝑌𝐼𝑍))
43 simprl 794 . . . . . . 7 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → 𝐴 ∈ (𝐵𝐼𝑐))
441, 2, 3, 34, 35, 36, 38, 39, 41tgcgrcomlr 25375 . . . . . . 7 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → (𝑌 𝑋) = (𝐵 𝐴))
45 simprr 796 . . . . . . . 8 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → (𝐴 𝑐) = (𝑋 𝑍))
4645eqcomd 2628 . . . . . . 7 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → (𝑋 𝑍) = (𝐴 𝑐))
471, 2, 3, 34, 36, 35, 37, 39, 38, 40, 42, 43, 44, 46tgcgrextend 25380 . . . . . 6 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → (𝑌 𝑍) = (𝐵 𝑐))
481, 2, 3, 34, 35, 37, 38, 40, 46tgcgrcomlr 25375 . . . . . 6 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → (𝑍 𝑋) = (𝑐 𝐴))
491, 2, 11, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48trgcgr 25411 . . . . 5 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩)
5049ex 450 . . . 4 (((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) → ((𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍)) → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩))
5150reximdva 3017 . . 3 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → (∃𝑐𝑃 (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍)) → ∃𝑐𝑃 ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩))
5233, 51mpd 15 . 2 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → ∃𝑐𝑃 ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩)
534adantr 481 . . . 4 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝐺 ∈ TarskiG)
5413adantr 481 . . . 4 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝑋𝑃)
558adantr 481 . . . 4 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝑍𝑃)
567adantr 481 . . . 4 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝑌𝑃)
575adantr 481 . . . 4 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝐴𝑃)
586adantr 481 . . . 4 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝐵𝑃)
59 simpr 477 . . . 4 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝑍 ∈ (𝑋𝐼𝑌))
6020adantr 481 . . . 4 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → (𝑋 𝑌) = (𝐴 𝐵))
611, 2, 3, 11, 53, 54, 55, 56, 57, 58, 59, 60tgcgrxfr 25413 . . 3 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → ∃𝑐𝑃 (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩))
624ad3antrrr 766 . . . . . 6 ((((𝜑𝑍 ∈ (𝑋𝐼𝑌)) ∧ 𝑐𝑃) ∧ (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩)) → 𝐺 ∈ TarskiG)
6313ad3antrrr 766 . . . . . 6 ((((𝜑𝑍 ∈ (𝑋𝐼𝑌)) ∧ 𝑐𝑃) ∧ (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩)) → 𝑋𝑃)
648ad3antrrr 766 . . . . . 6 ((((𝜑𝑍 ∈ (𝑋𝐼𝑌)) ∧ 𝑐𝑃) ∧ (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩)) → 𝑍𝑃)
657ad3antrrr 766 . . . . . 6 ((((𝜑𝑍 ∈ (𝑋𝐼𝑌)) ∧ 𝑐𝑃) ∧ (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩)) → 𝑌𝑃)
665ad3antrrr 766 . . . . . 6 ((((𝜑𝑍 ∈ (𝑋𝐼𝑌)) ∧ 𝑐𝑃) ∧ (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩)) → 𝐴𝑃)
67 simplr 792 . . . . . 6 ((((𝜑𝑍 ∈ (𝑋𝐼𝑌)) ∧ 𝑐𝑃) ∧ (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩)) → 𝑐𝑃)
686ad3antrrr 766 . . . . . 6 ((((𝜑𝑍 ∈ (𝑋𝐼𝑌)) ∧ 𝑐𝑃) ∧ (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩)) → 𝐵𝑃)
69 simprr 796 . . . . . 6 ((((𝜑𝑍 ∈ (𝑋𝐼𝑌)) ∧ 𝑐𝑃) ∧ (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩)) → ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩)
701, 2, 3, 11, 62, 63, 64, 65, 66, 67, 68, 69cgr3swap23 25419 . . . . 5 ((((𝜑𝑍 ∈ (𝑋𝐼𝑌)) ∧ 𝑐𝑃) ∧ (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩)) → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩)
7170ex 450 . . . 4 (((𝜑𝑍 ∈ (𝑋𝐼𝑌)) ∧ 𝑐𝑃) → ((𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩) → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩))
7271reximdva 3017 . . 3 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → (∃𝑐𝑃 (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩) → ∃𝑐𝑃 ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩))
7361, 72mpd 15 . 2 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → ∃𝑐𝑃 ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩)
74 lnext.1 . . 3 (𝜑 → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍))
75 tglngval.l . . . 4 𝐿 = (LineG‘𝐺)
761, 75, 3, 4, 13, 8, 7tgcolg 25449 . . 3 (𝜑 → ((𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍) ↔ (𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑋 ∈ (𝑌𝐼𝑍) ∨ 𝑍 ∈ (𝑋𝐼𝑌))))
7774, 76mpbid 222 . 2 (𝜑 → (𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑋 ∈ (𝑌𝐼𝑍) ∨ 𝑍 ∈ (𝑋𝐼𝑌)))
7831, 52, 73, 77mpjao3dan 1395 1 (𝜑 → ∃𝑐𝑃 ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384  w3o 1036   = wceq 1483  wcel 1990  wrex 2913   class class class wbr 4653  cfv 5888  (class class class)co 6650  ⟨“cs3 13587  Basecbs 15857  distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336  cgrGccgrg 25405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkg 25352  df-cgrg 25406
This theorem is referenced by:  legov  25480  legov2  25481  legtrd  25484  symquadlem  25584  trgcopy  25696  cgrg3col4  25734
  Copyright terms: Public domain W3C validator