Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prodtp Structured version   Visualization version   GIF version

Theorem prodtp 29573
Description: A product over a triple is the product of the elements. (Contributed by Thierry Arnoux, 1-Jan-2022.)
Hypotheses
Ref Expression
prodpr.1 (𝑘 = 𝐴𝐷 = 𝐸)
prodpr.2 (𝑘 = 𝐵𝐷 = 𝐹)
prodpr.a (𝜑𝐴𝑉)
prodpr.b (𝜑𝐵𝑊)
prodpr.e (𝜑𝐸 ∈ ℂ)
prodpr.f (𝜑𝐹 ∈ ℂ)
prodpr.3 (𝜑𝐴𝐵)
prodtp.1 (𝑘 = 𝐶𝐷 = 𝐺)
prodtp.c (𝜑𝐶𝑋)
prodtp.g (𝜑𝐺 ∈ ℂ)
prodtp.2 (𝜑𝐴𝐶)
prodtp.3 (𝜑𝐵𝐶)
Assertion
Ref Expression
prodtp (𝜑 → ∏𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 = ((𝐸 · 𝐹) · 𝐺))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝐶,𝑘   𝑘,𝐸   𝑘,𝐹   𝑘,𝐺   𝑘,𝑉   𝑘,𝑊   𝑘,𝑋   𝜑,𝑘
Allowed substitution hint:   𝐷(𝑘)

Proof of Theorem prodtp
StepHypRef Expression
1 prodtp.2 . . . 4 (𝜑𝐴𝐶)
2 prodtp.3 . . . 4 (𝜑𝐵𝐶)
3 disjprsn 4250 . . . 4 ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵} ∩ {𝐶}) = ∅)
41, 2, 3syl2anc 693 . . 3 (𝜑 → ({𝐴, 𝐵} ∩ {𝐶}) = ∅)
5 df-tp 4182 . . . 4 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
65a1i 11 . . 3 (𝜑 → {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}))
7 tpfi 8236 . . . 4 {𝐴, 𝐵, 𝐶} ∈ Fin
87a1i 11 . . 3 (𝜑 → {𝐴, 𝐵, 𝐶} ∈ Fin)
9 vex 3203 . . . . 5 𝑘 ∈ V
109eltp 4230 . . . 4 (𝑘 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝑘 = 𝐴𝑘 = 𝐵𝑘 = 𝐶))
11 prodpr.1 . . . . . . . 8 (𝑘 = 𝐴𝐷 = 𝐸)
1211adantl 482 . . . . . . 7 ((𝜑𝑘 = 𝐴) → 𝐷 = 𝐸)
13 prodpr.e . . . . . . . 8 (𝜑𝐸 ∈ ℂ)
1413adantr 481 . . . . . . 7 ((𝜑𝑘 = 𝐴) → 𝐸 ∈ ℂ)
1512, 14eqeltrd 2701 . . . . . 6 ((𝜑𝑘 = 𝐴) → 𝐷 ∈ ℂ)
1615adantlr 751 . . . . 5 (((𝜑 ∧ (𝑘 = 𝐴𝑘 = 𝐵𝑘 = 𝐶)) ∧ 𝑘 = 𝐴) → 𝐷 ∈ ℂ)
17 prodpr.2 . . . . . . . 8 (𝑘 = 𝐵𝐷 = 𝐹)
1817adantl 482 . . . . . . 7 ((𝜑𝑘 = 𝐵) → 𝐷 = 𝐹)
19 prodpr.f . . . . . . . 8 (𝜑𝐹 ∈ ℂ)
2019adantr 481 . . . . . . 7 ((𝜑𝑘 = 𝐵) → 𝐹 ∈ ℂ)
2118, 20eqeltrd 2701 . . . . . 6 ((𝜑𝑘 = 𝐵) → 𝐷 ∈ ℂ)
2221adantlr 751 . . . . 5 (((𝜑 ∧ (𝑘 = 𝐴𝑘 = 𝐵𝑘 = 𝐶)) ∧ 𝑘 = 𝐵) → 𝐷 ∈ ℂ)
23 prodtp.1 . . . . . . . 8 (𝑘 = 𝐶𝐷 = 𝐺)
2423adantl 482 . . . . . . 7 ((𝜑𝑘 = 𝐶) → 𝐷 = 𝐺)
25 prodtp.g . . . . . . . 8 (𝜑𝐺 ∈ ℂ)
2625adantr 481 . . . . . . 7 ((𝜑𝑘 = 𝐶) → 𝐺 ∈ ℂ)
2724, 26eqeltrd 2701 . . . . . 6 ((𝜑𝑘 = 𝐶) → 𝐷 ∈ ℂ)
2827adantlr 751 . . . . 5 (((𝜑 ∧ (𝑘 = 𝐴𝑘 = 𝐵𝑘 = 𝐶)) ∧ 𝑘 = 𝐶) → 𝐷 ∈ ℂ)
29 simpr 477 . . . . 5 ((𝜑 ∧ (𝑘 = 𝐴𝑘 = 𝐵𝑘 = 𝐶)) → (𝑘 = 𝐴𝑘 = 𝐵𝑘 = 𝐶))
3016, 22, 28, 29mpjao3dan 1395 . . . 4 ((𝜑 ∧ (𝑘 = 𝐴𝑘 = 𝐵𝑘 = 𝐶)) → 𝐷 ∈ ℂ)
3110, 30sylan2b 492 . . 3 ((𝜑𝑘 ∈ {𝐴, 𝐵, 𝐶}) → 𝐷 ∈ ℂ)
324, 6, 8, 31fprodsplit 14696 . 2 (𝜑 → ∏𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 = (∏𝑘 ∈ {𝐴, 𝐵}𝐷 · ∏𝑘 ∈ {𝐶}𝐷))
33 prodpr.a . . . 4 (𝜑𝐴𝑉)
34 prodpr.b . . . 4 (𝜑𝐵𝑊)
35 prodpr.3 . . . 4 (𝜑𝐴𝐵)
3611, 17, 33, 34, 13, 19, 35prodpr 29572 . . 3 (𝜑 → ∏𝑘 ∈ {𝐴, 𝐵}𝐷 = (𝐸 · 𝐹))
37 prodtp.c . . . 4 (𝜑𝐶𝑋)
3823prodsn 14692 . . . 4 ((𝐶𝑋𝐺 ∈ ℂ) → ∏𝑘 ∈ {𝐶}𝐷 = 𝐺)
3937, 25, 38syl2anc 693 . . 3 (𝜑 → ∏𝑘 ∈ {𝐶}𝐷 = 𝐺)
4036, 39oveq12d 6668 . 2 (𝜑 → (∏𝑘 ∈ {𝐴, 𝐵}𝐷 · ∏𝑘 ∈ {𝐶}𝐷) = ((𝐸 · 𝐹) · 𝐺))
4132, 40eqtrd 2656 1 (𝜑 → ∏𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 = ((𝐸 · 𝐹) · 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3o 1036   = wceq 1483  wcel 1990  wne 2794  cun 3572  cin 3573  c0 3915  {csn 4177  {cpr 4179  {ctp 4181  (class class class)co 6650  Fincfn 7955  cc 9934   · cmul 9941  cprod 14635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-prod 14636
This theorem is referenced by:  hgt750lemg  30732
  Copyright terms: Public domain W3C validator