Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smatlem Structured version   Visualization version   GIF version

Theorem smatlem 29863
Description: Lemma for the next theorems. (Contributed by Thierry Arnoux, 19-Aug-2020.)
Hypotheses
Ref Expression
smat.s 𝑆 = (𝐾(subMat1‘𝐴)𝐿)
smat.m (𝜑𝑀 ∈ ℕ)
smat.n (𝜑𝑁 ∈ ℕ)
smat.k (𝜑𝐾 ∈ (1...𝑀))
smat.l (𝜑𝐿 ∈ (1...𝑁))
smat.a (𝜑𝐴 ∈ (𝐵𝑚 ((1...𝑀) × (1...𝑁))))
smatlem.i (𝜑𝐼 ∈ ℕ)
smatlem.j (𝜑𝐽 ∈ ℕ)
smatlem.1 (𝜑 → if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)) = 𝑋)
smatlem.2 (𝜑 → if(𝐽 < 𝐿, 𝐽, (𝐽 + 1)) = 𝑌)
Assertion
Ref Expression
smatlem (𝜑 → (𝐼𝑆𝐽) = (𝑋𝐴𝑌))

Proof of Theorem smatlem
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smat.s . . . . . 6 𝑆 = (𝐾(subMat1‘𝐴)𝐿)
2 fz1ssnn 12372 . . . . . . . 8 (1...𝑀) ⊆ ℕ
3 smat.k . . . . . . . 8 (𝜑𝐾 ∈ (1...𝑀))
42, 3sseldi 3601 . . . . . . 7 (𝜑𝐾 ∈ ℕ)
5 fz1ssnn 12372 . . . . . . . 8 (1...𝑁) ⊆ ℕ
6 smat.l . . . . . . . 8 (𝜑𝐿 ∈ (1...𝑁))
75, 6sseldi 3601 . . . . . . 7 (𝜑𝐿 ∈ ℕ)
8 smat.a . . . . . . 7 (𝜑𝐴 ∈ (𝐵𝑚 ((1...𝑀) × (1...𝑁))))
9 smatfval 29861 . . . . . . 7 ((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝐴 ∈ (𝐵𝑚 ((1...𝑀) × (1...𝑁)))) → (𝐾(subMat1‘𝐴)𝐿) = (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)))
104, 7, 8, 9syl3anc 1326 . . . . . 6 (𝜑 → (𝐾(subMat1‘𝐴)𝐿) = (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)))
111, 10syl5eq 2668 . . . . 5 (𝜑𝑆 = (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)))
1211oveqd 6667 . . . 4 (𝜑 → (𝐼𝑆𝐽) = (𝐼(𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩))𝐽))
13 df-ov 6653 . . . 4 (𝐼(𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩))𝐽) = ((𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩))‘⟨𝐼, 𝐽⟩)
1412, 13syl6eq 2672 . . 3 (𝜑 → (𝐼𝑆𝐽) = ((𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩))‘⟨𝐼, 𝐽⟩))
15 smatlem.i . . . . . . 7 (𝜑𝐼 ∈ ℕ)
16 smatlem.j . . . . . . 7 (𝜑𝐽 ∈ ℕ)
1715, 16jca 554 . . . . . 6 (𝜑 → (𝐼 ∈ ℕ ∧ 𝐽 ∈ ℕ))
18 opelxp 5146 . . . . . 6 (⟨𝐼, 𝐽⟩ ∈ (ℕ × ℕ) ↔ (𝐼 ∈ ℕ ∧ 𝐽 ∈ ℕ))
1917, 18sylibr 224 . . . . 5 (𝜑 → ⟨𝐼, 𝐽⟩ ∈ (ℕ × ℕ))
20 eqid 2622 . . . . . 6 (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) = (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)
21 opex 4932 . . . . . 6 ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩ ∈ V
2220, 21dmmpt2 7240 . . . . 5 dom (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) = (ℕ × ℕ)
2319, 22syl6eleqr 2712 . . . 4 (𝜑 → ⟨𝐼, 𝐽⟩ ∈ dom (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩))
2420mpt2fun 6762 . . . . 5 Fun (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)
25 fvco 6274 . . . . 5 ((Fun (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) ∧ ⟨𝐼, 𝐽⟩ ∈ dom (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)) → ((𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩))‘⟨𝐼, 𝐽⟩) = (𝐴‘((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘⟨𝐼, 𝐽⟩)))
2624, 25mpan 706 . . . 4 (⟨𝐼, 𝐽⟩ ∈ dom (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) → ((𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩))‘⟨𝐼, 𝐽⟩) = (𝐴‘((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘⟨𝐼, 𝐽⟩)))
2723, 26syl 17 . . 3 (𝜑 → ((𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩))‘⟨𝐼, 𝐽⟩) = (𝐴‘((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘⟨𝐼, 𝐽⟩)))
2814, 27eqtrd 2656 . 2 (𝜑 → (𝐼𝑆𝐽) = (𝐴‘((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘⟨𝐼, 𝐽⟩)))
29 df-ov 6653 . . . . 5 (𝐼(𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)𝐽) = ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘⟨𝐼, 𝐽⟩)
30 breq1 4656 . . . . . . . . . 10 (𝑖 = 𝐼 → (𝑖 < 𝐾𝐼 < 𝐾))
31 id 22 . . . . . . . . . 10 (𝑖 = 𝐼𝑖 = 𝐼)
32 oveq1 6657 . . . . . . . . . 10 (𝑖 = 𝐼 → (𝑖 + 1) = (𝐼 + 1))
3330, 31, 32ifbieq12d 4113 . . . . . . . . 9 (𝑖 = 𝐼 → if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)) = if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)))
3433opeq1d 4408 . . . . . . . 8 (𝑖 = 𝐼 → ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩ = ⟨if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)
35 breq1 4656 . . . . . . . . . 10 (𝑗 = 𝐽 → (𝑗 < 𝐿𝐽 < 𝐿))
36 id 22 . . . . . . . . . 10 (𝑗 = 𝐽𝑗 = 𝐽)
37 oveq1 6657 . . . . . . . . . 10 (𝑗 = 𝐽 → (𝑗 + 1) = (𝐽 + 1))
3835, 36, 37ifbieq12d 4113 . . . . . . . . 9 (𝑗 = 𝐽 → if(𝑗 < 𝐿, 𝑗, (𝑗 + 1)) = if(𝐽 < 𝐿, 𝐽, (𝐽 + 1)))
3938opeq2d 4409 . . . . . . . 8 (𝑗 = 𝐽 → ⟨if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩ = ⟨if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)), if(𝐽 < 𝐿, 𝐽, (𝐽 + 1))⟩)
40 opex 4932 . . . . . . . 8 ⟨if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)), if(𝐽 < 𝐿, 𝐽, (𝐽 + 1))⟩ ∈ V
4134, 39, 20, 40ovmpt2 6796 . . . . . . 7 ((𝐼 ∈ ℕ ∧ 𝐽 ∈ ℕ) → (𝐼(𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)𝐽) = ⟨if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)), if(𝐽 < 𝐿, 𝐽, (𝐽 + 1))⟩)
4217, 41syl 17 . . . . . 6 (𝜑 → (𝐼(𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)𝐽) = ⟨if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)), if(𝐽 < 𝐿, 𝐽, (𝐽 + 1))⟩)
43 smatlem.1 . . . . . . 7 (𝜑 → if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)) = 𝑋)
44 smatlem.2 . . . . . . 7 (𝜑 → if(𝐽 < 𝐿, 𝐽, (𝐽 + 1)) = 𝑌)
4543, 44opeq12d 4410 . . . . . 6 (𝜑 → ⟨if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)), if(𝐽 < 𝐿, 𝐽, (𝐽 + 1))⟩ = ⟨𝑋, 𝑌⟩)
4642, 45eqtrd 2656 . . . . 5 (𝜑 → (𝐼(𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)𝐽) = ⟨𝑋, 𝑌⟩)
4729, 46syl5eqr 2670 . . . 4 (𝜑 → ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘⟨𝐼, 𝐽⟩) = ⟨𝑋, 𝑌⟩)
4847fveq2d 6195 . . 3 (𝜑 → (𝐴‘((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘⟨𝐼, 𝐽⟩)) = (𝐴‘⟨𝑋, 𝑌⟩))
49 df-ov 6653 . . 3 (𝑋𝐴𝑌) = (𝐴‘⟨𝑋, 𝑌⟩)
5048, 49syl6eqr 2674 . 2 (𝜑 → (𝐴‘((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘⟨𝐼, 𝐽⟩)) = (𝑋𝐴𝑌))
5128, 50eqtrd 2656 1 (𝜑 → (𝐼𝑆𝐽) = (𝑋𝐴𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  ifcif 4086  cop 4183   class class class wbr 4653   × cxp 5112  dom cdm 5114  ccom 5118  Fun wfun 5882  cfv 5888  (class class class)co 6650  cmpt2 6652  𝑚 cmap 7857  1c1 9937   + caddc 9939   < clt 10074  cn 11020  ...cfz 12326  subMat1csmat 29859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-z 11378  df-uz 11688  df-fz 12327  df-smat 29860
This theorem is referenced by:  smattl  29864  smattr  29865  smatbl  29866  smatbr  29867  1smat1  29870  madjusmdetlem3  29895
  Copyright terms: Public domain W3C validator