| Step | Hyp | Ref
| Expression |
| 1 | | stoweidlem20.2 |
. 2
⊢ 𝐹 = (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡)) |
| 2 | | stoweidlem20.3 |
. . 3
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 3 | 2 | nnred 11035 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 4 | 3 | leidd 10594 |
. . . 4
⊢ (𝜑 → 𝑀 ≤ 𝑀) |
| 5 | 4 | ancli 574 |
. . 3
⊢ (𝜑 → (𝜑 ∧ 𝑀 ≤ 𝑀)) |
| 6 | | eleq1 2689 |
. . . . 5
⊢ (𝑛 = 𝑀 → (𝑛 ∈ ℕ ↔ 𝑀 ∈ ℕ)) |
| 7 | | breq1 4656 |
. . . . . . 7
⊢ (𝑛 = 𝑀 → (𝑛 ≤ 𝑀 ↔ 𝑀 ≤ 𝑀)) |
| 8 | 7 | anbi2d 740 |
. . . . . 6
⊢ (𝑛 = 𝑀 → ((𝜑 ∧ 𝑛 ≤ 𝑀) ↔ (𝜑 ∧ 𝑀 ≤ 𝑀))) |
| 9 | | oveq2 6658 |
. . . . . . . . 9
⊢ (𝑛 = 𝑀 → (1...𝑛) = (1...𝑀)) |
| 10 | 9 | sumeq1d 14431 |
. . . . . . . 8
⊢ (𝑛 = 𝑀 → Σ𝑖 ∈ (1...𝑛)((𝐺‘𝑖)‘𝑡) = Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡)) |
| 11 | 10 | mpteq2dv 4745 |
. . . . . . 7
⊢ (𝑛 = 𝑀 → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑛)((𝐺‘𝑖)‘𝑡)) = (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡))) |
| 12 | 11 | eleq1d 2686 |
. . . . . 6
⊢ (𝑛 = 𝑀 → ((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑛)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴 ↔ (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴)) |
| 13 | 8, 12 | imbi12d 334 |
. . . . 5
⊢ (𝑛 = 𝑀 → (((𝜑 ∧ 𝑛 ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑛)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴) ↔ ((𝜑 ∧ 𝑀 ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴))) |
| 14 | 6, 13 | imbi12d 334 |
. . . 4
⊢ (𝑛 = 𝑀 → ((𝑛 ∈ ℕ → ((𝜑 ∧ 𝑛 ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑛)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴)) ↔ (𝑀 ∈ ℕ → ((𝜑 ∧ 𝑀 ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴)))) |
| 15 | | breq1 4656 |
. . . . . . 7
⊢ (𝑥 = 1 → (𝑥 ≤ 𝑀 ↔ 1 ≤ 𝑀)) |
| 16 | 15 | anbi2d 740 |
. . . . . 6
⊢ (𝑥 = 1 → ((𝜑 ∧ 𝑥 ≤ 𝑀) ↔ (𝜑 ∧ 1 ≤ 𝑀))) |
| 17 | | oveq2 6658 |
. . . . . . . . 9
⊢ (𝑥 = 1 → (1...𝑥) = (1...1)) |
| 18 | 17 | sumeq1d 14431 |
. . . . . . . 8
⊢ (𝑥 = 1 → Σ𝑖 ∈ (1...𝑥)((𝐺‘𝑖)‘𝑡) = Σ𝑖 ∈ (1...1)((𝐺‘𝑖)‘𝑡)) |
| 19 | 18 | mpteq2dv 4745 |
. . . . . . 7
⊢ (𝑥 = 1 → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑥)((𝐺‘𝑖)‘𝑡)) = (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...1)((𝐺‘𝑖)‘𝑡))) |
| 20 | 19 | eleq1d 2686 |
. . . . . 6
⊢ (𝑥 = 1 → ((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑥)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴 ↔ (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...1)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴)) |
| 21 | 16, 20 | imbi12d 334 |
. . . . 5
⊢ (𝑥 = 1 → (((𝜑 ∧ 𝑥 ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑥)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴) ↔ ((𝜑 ∧ 1 ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...1)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴))) |
| 22 | | breq1 4656 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑥 ≤ 𝑀 ↔ 𝑦 ≤ 𝑀)) |
| 23 | 22 | anbi2d 740 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((𝜑 ∧ 𝑥 ≤ 𝑀) ↔ (𝜑 ∧ 𝑦 ≤ 𝑀))) |
| 24 | | oveq2 6658 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (1...𝑥) = (1...𝑦)) |
| 25 | 24 | sumeq1d 14431 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → Σ𝑖 ∈ (1...𝑥)((𝐺‘𝑖)‘𝑡) = Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) |
| 26 | 25 | mpteq2dv 4745 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑥)((𝐺‘𝑖)‘𝑡)) = (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡))) |
| 27 | 26 | eleq1d 2686 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑥)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴 ↔ (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴)) |
| 28 | 23, 27 | imbi12d 334 |
. . . . 5
⊢ (𝑥 = 𝑦 → (((𝜑 ∧ 𝑥 ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑥)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴) ↔ ((𝜑 ∧ 𝑦 ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴))) |
| 29 | | breq1 4656 |
. . . . . . 7
⊢ (𝑥 = (𝑦 + 1) → (𝑥 ≤ 𝑀 ↔ (𝑦 + 1) ≤ 𝑀)) |
| 30 | 29 | anbi2d 740 |
. . . . . 6
⊢ (𝑥 = (𝑦 + 1) → ((𝜑 ∧ 𝑥 ≤ 𝑀) ↔ (𝜑 ∧ (𝑦 + 1) ≤ 𝑀))) |
| 31 | | oveq2 6658 |
. . . . . . . . 9
⊢ (𝑥 = (𝑦 + 1) → (1...𝑥) = (1...(𝑦 + 1))) |
| 32 | 31 | sumeq1d 14431 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 + 1) → Σ𝑖 ∈ (1...𝑥)((𝐺‘𝑖)‘𝑡) = Σ𝑖 ∈ (1...(𝑦 + 1))((𝐺‘𝑖)‘𝑡)) |
| 33 | 32 | mpteq2dv 4745 |
. . . . . . 7
⊢ (𝑥 = (𝑦 + 1) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑥)((𝐺‘𝑖)‘𝑡)) = (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...(𝑦 + 1))((𝐺‘𝑖)‘𝑡))) |
| 34 | 33 | eleq1d 2686 |
. . . . . 6
⊢ (𝑥 = (𝑦 + 1) → ((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑥)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴 ↔ (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...(𝑦 + 1))((𝐺‘𝑖)‘𝑡)) ∈ 𝐴)) |
| 35 | 30, 34 | imbi12d 334 |
. . . . 5
⊢ (𝑥 = (𝑦 + 1) → (((𝜑 ∧ 𝑥 ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑥)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴) ↔ ((𝜑 ∧ (𝑦 + 1) ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...(𝑦 + 1))((𝐺‘𝑖)‘𝑡)) ∈ 𝐴))) |
| 36 | | breq1 4656 |
. . . . . . 7
⊢ (𝑥 = 𝑛 → (𝑥 ≤ 𝑀 ↔ 𝑛 ≤ 𝑀)) |
| 37 | 36 | anbi2d 740 |
. . . . . 6
⊢ (𝑥 = 𝑛 → ((𝜑 ∧ 𝑥 ≤ 𝑀) ↔ (𝜑 ∧ 𝑛 ≤ 𝑀))) |
| 38 | | oveq2 6658 |
. . . . . . . . 9
⊢ (𝑥 = 𝑛 → (1...𝑥) = (1...𝑛)) |
| 39 | 38 | sumeq1d 14431 |
. . . . . . . 8
⊢ (𝑥 = 𝑛 → Σ𝑖 ∈ (1...𝑥)((𝐺‘𝑖)‘𝑡) = Σ𝑖 ∈ (1...𝑛)((𝐺‘𝑖)‘𝑡)) |
| 40 | 39 | mpteq2dv 4745 |
. . . . . . 7
⊢ (𝑥 = 𝑛 → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑥)((𝐺‘𝑖)‘𝑡)) = (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑛)((𝐺‘𝑖)‘𝑡))) |
| 41 | 40 | eleq1d 2686 |
. . . . . 6
⊢ (𝑥 = 𝑛 → ((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑥)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴 ↔ (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑛)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴)) |
| 42 | 37, 41 | imbi12d 334 |
. . . . 5
⊢ (𝑥 = 𝑛 → (((𝜑 ∧ 𝑥 ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑥)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴) ↔ ((𝜑 ∧ 𝑛 ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑛)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴))) |
| 43 | | stoweidlem20.1 |
. . . . . . . . 9
⊢
Ⅎ𝑡𝜑 |
| 44 | | 1z 11407 |
. . . . . . . . . 10
⊢ 1 ∈
ℤ |
| 45 | | stoweidlem20.4 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐺:(1...𝑀)⟶𝐴) |
| 46 | | nnuz 11723 |
. . . . . . . . . . . . . . . 16
⊢ ℕ =
(ℤ≥‘1) |
| 47 | 2, 46 | syl6eleq 2711 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘1)) |
| 48 | | eluzfz1 12348 |
. . . . . . . . . . . . . . 15
⊢ (𝑀 ∈
(ℤ≥‘1) → 1 ∈ (1...𝑀)) |
| 49 | 47, 48 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 1 ∈ (1...𝑀)) |
| 50 | 45, 49 | ffvelrnd 6360 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐺‘1) ∈ 𝐴) |
| 51 | 50 | ancli 574 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝜑 ∧ (𝐺‘1) ∈ 𝐴)) |
| 52 | | eleq1 2689 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = (𝐺‘1) → (𝑓 ∈ 𝐴 ↔ (𝐺‘1) ∈ 𝐴)) |
| 53 | 52 | anbi2d 740 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = (𝐺‘1) → ((𝜑 ∧ 𝑓 ∈ 𝐴) ↔ (𝜑 ∧ (𝐺‘1) ∈ 𝐴))) |
| 54 | | feq1 6026 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = (𝐺‘1) → (𝑓:𝑇⟶ℝ ↔ (𝐺‘1):𝑇⟶ℝ)) |
| 55 | 53, 54 | imbi12d 334 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = (𝐺‘1) → (((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ (𝐺‘1) ∈ 𝐴) → (𝐺‘1):𝑇⟶ℝ))) |
| 56 | | stoweidlem20.6 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) |
| 57 | 55, 56 | vtoclg 3266 |
. . . . . . . . . . . . 13
⊢ ((𝐺‘1) ∈ 𝐴 → ((𝜑 ∧ (𝐺‘1) ∈ 𝐴) → (𝐺‘1):𝑇⟶ℝ)) |
| 58 | 50, 51, 57 | sylc 65 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐺‘1):𝑇⟶ℝ) |
| 59 | 58 | ffvelrnda 6359 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝐺‘1)‘𝑡) ∈ ℝ) |
| 60 | 59 | recnd 10068 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝐺‘1)‘𝑡) ∈ ℂ) |
| 61 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑖 = 1 → (𝐺‘𝑖) = (𝐺‘1)) |
| 62 | 61 | fveq1d 6193 |
. . . . . . . . . . 11
⊢ (𝑖 = 1 → ((𝐺‘𝑖)‘𝑡) = ((𝐺‘1)‘𝑡)) |
| 63 | 62 | fsum1 14476 |
. . . . . . . . . 10
⊢ ((1
∈ ℤ ∧ ((𝐺‘1)‘𝑡) ∈ ℂ) → Σ𝑖 ∈ (1...1)((𝐺‘𝑖)‘𝑡) = ((𝐺‘1)‘𝑡)) |
| 64 | 44, 60, 63 | sylancr 695 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → Σ𝑖 ∈ (1...1)((𝐺‘𝑖)‘𝑡) = ((𝐺‘1)‘𝑡)) |
| 65 | 43, 64 | mpteq2da 4743 |
. . . . . . . 8
⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...1)((𝐺‘𝑖)‘𝑡)) = (𝑡 ∈ 𝑇 ↦ ((𝐺‘1)‘𝑡))) |
| 66 | 58 | feqmptd 6249 |
. . . . . . . 8
⊢ (𝜑 → (𝐺‘1) = (𝑡 ∈ 𝑇 ↦ ((𝐺‘1)‘𝑡))) |
| 67 | 65, 66 | eqtr4d 2659 |
. . . . . . 7
⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...1)((𝐺‘𝑖)‘𝑡)) = (𝐺‘1)) |
| 68 | 67, 50 | eqeltrd 2701 |
. . . . . 6
⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...1)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴) |
| 69 | 68 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 1 ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...1)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴) |
| 70 | | simprl 794 |
. . . . . . 7
⊢ (((𝑦 ∈ ℕ ∧ ((𝜑 ∧ 𝑦 ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴)) ∧ (𝜑 ∧ (𝑦 + 1) ≤ 𝑀)) → 𝜑) |
| 71 | | simpll 790 |
. . . . . . 7
⊢ (((𝑦 ∈ ℕ ∧ ((𝜑 ∧ 𝑦 ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴)) ∧ (𝜑 ∧ (𝑦 + 1) ≤ 𝑀)) → 𝑦 ∈ ℕ) |
| 72 | | simprr 796 |
. . . . . . 7
⊢ (((𝑦 ∈ ℕ ∧ ((𝜑 ∧ 𝑦 ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴)) ∧ (𝜑 ∧ (𝑦 + 1) ≤ 𝑀)) → (𝑦 + 1) ≤ 𝑀) |
| 73 | | simp1 1061 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → 𝜑) |
| 74 | | nnre 11027 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℝ) |
| 75 | 74 | 3ad2ant2 1083 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → 𝑦 ∈ ℝ) |
| 76 | | 1red 10055 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → 1 ∈ ℝ) |
| 77 | 75, 76 | readdcld 10069 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → (𝑦 + 1) ∈ ℝ) |
| 78 | 2 | 3ad2ant1 1082 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → 𝑀 ∈ ℕ) |
| 79 | 78 | nnred 11035 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → 𝑀 ∈ ℝ) |
| 80 | 75 | lep1d 10955 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → 𝑦 ≤ (𝑦 + 1)) |
| 81 | | simp3 1063 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → (𝑦 + 1) ≤ 𝑀) |
| 82 | 75, 77, 79, 80, 81 | letrd 10194 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → 𝑦 ≤ 𝑀) |
| 83 | 73, 82 | jca 554 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → (𝜑 ∧ 𝑦 ≤ 𝑀)) |
| 84 | 70, 71, 72, 83 | syl3anc 1326 |
. . . . . . . 8
⊢ (((𝑦 ∈ ℕ ∧ ((𝜑 ∧ 𝑦 ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴)) ∧ (𝜑 ∧ (𝑦 + 1) ≤ 𝑀)) → (𝜑 ∧ 𝑦 ≤ 𝑀)) |
| 85 | | simplr 792 |
. . . . . . . 8
⊢ (((𝑦 ∈ ℕ ∧ ((𝜑 ∧ 𝑦 ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴)) ∧ (𝜑 ∧ (𝑦 + 1) ≤ 𝑀)) → ((𝜑 ∧ 𝑦 ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴)) |
| 86 | 84, 85 | mpd 15 |
. . . . . . 7
⊢ (((𝑦 ∈ ℕ ∧ ((𝜑 ∧ 𝑦 ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴)) ∧ (𝜑 ∧ (𝑦 + 1) ≤ 𝑀)) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴) |
| 87 | | nfv 1843 |
. . . . . . . . . . 11
⊢
Ⅎ𝑡 𝑦 ∈ ℕ |
| 88 | | nfv 1843 |
. . . . . . . . . . 11
⊢
Ⅎ𝑡(𝑦 + 1) ≤ 𝑀 |
| 89 | 43, 87, 88 | nf3an 1831 |
. . . . . . . . . 10
⊢
Ⅎ𝑡(𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) |
| 90 | | simpl2 1065 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) → 𝑦 ∈ ℕ) |
| 91 | 90, 46 | syl6eleq 2711 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) → 𝑦 ∈
(ℤ≥‘1)) |
| 92 | | simpll1 1100 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...(𝑦 + 1))) → 𝜑) |
| 93 | | 1zzd 11408 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...(𝑦 + 1))) → 1 ∈
ℤ) |
| 94 | 2 | nnzd 11481 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 95 | 94 | 3ad2ant1 1082 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → 𝑀 ∈ ℤ) |
| 96 | 95 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...(𝑦 + 1))) → 𝑀 ∈ ℤ) |
| 97 | | elfzelz 12342 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (1...(𝑦 + 1)) → 𝑖 ∈ ℤ) |
| 98 | 97 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...(𝑦 + 1))) → 𝑖 ∈ ℤ) |
| 99 | | elfzle1 12344 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (1...(𝑦 + 1)) → 1 ≤ 𝑖) |
| 100 | 99 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...(𝑦 + 1))) → 1 ≤ 𝑖) |
| 101 | 97 | zred 11482 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ (1...(𝑦 + 1)) → 𝑖 ∈ ℝ) |
| 102 | 101 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...(𝑦 + 1))) → 𝑖 ∈ ℝ) |
| 103 | 77 | ad2antrr 762 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...(𝑦 + 1))) → (𝑦 + 1) ∈ ℝ) |
| 104 | 79 | ad2antrr 762 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...(𝑦 + 1))) → 𝑀 ∈ ℝ) |
| 105 | | elfzle2 12345 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ (1...(𝑦 + 1)) → 𝑖 ≤ (𝑦 + 1)) |
| 106 | 105 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...(𝑦 + 1))) → 𝑖 ≤ (𝑦 + 1)) |
| 107 | | simpll3 1102 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...(𝑦 + 1))) → (𝑦 + 1) ≤ 𝑀) |
| 108 | 102, 103,
104, 106, 107 | letrd 10194 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...(𝑦 + 1))) → 𝑖 ≤ 𝑀) |
| 109 | | elfz4 12335 |
. . . . . . . . . . . . . 14
⊢ (((1
∈ ℤ ∧ 𝑀
∈ ℤ ∧ 𝑖
∈ ℤ) ∧ (1 ≤ 𝑖 ∧ 𝑖 ≤ 𝑀)) → 𝑖 ∈ (1...𝑀)) |
| 110 | 93, 96, 98, 100, 108, 109 | syl32anc 1334 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...(𝑦 + 1))) → 𝑖 ∈ (1...𝑀)) |
| 111 | | simplr 792 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...(𝑦 + 1))) → 𝑡 ∈ 𝑇) |
| 112 | 45 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐺‘𝑖) ∈ 𝐴) |
| 113 | 112 | 3adant3 1081 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀) ∧ 𝑡 ∈ 𝑇) → (𝐺‘𝑖) ∈ 𝐴) |
| 114 | | simp1 1061 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀) ∧ 𝑡 ∈ 𝑇) → 𝜑) |
| 115 | 114, 113 | jca 554 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀) ∧ 𝑡 ∈ 𝑇) → (𝜑 ∧ (𝐺‘𝑖) ∈ 𝐴)) |
| 116 | | eleq1 2689 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 = (𝐺‘𝑖) → (𝑓 ∈ 𝐴 ↔ (𝐺‘𝑖) ∈ 𝐴)) |
| 117 | 116 | anbi2d 740 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = (𝐺‘𝑖) → ((𝜑 ∧ 𝑓 ∈ 𝐴) ↔ (𝜑 ∧ (𝐺‘𝑖) ∈ 𝐴))) |
| 118 | | feq1 6026 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = (𝐺‘𝑖) → (𝑓:𝑇⟶ℝ ↔ (𝐺‘𝑖):𝑇⟶ℝ)) |
| 119 | 117, 118 | imbi12d 334 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = (𝐺‘𝑖) → (((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ (𝐺‘𝑖) ∈ 𝐴) → (𝐺‘𝑖):𝑇⟶ℝ))) |
| 120 | 119, 56 | vtoclg 3266 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺‘𝑖) ∈ 𝐴 → ((𝜑 ∧ (𝐺‘𝑖) ∈ 𝐴) → (𝐺‘𝑖):𝑇⟶ℝ)) |
| 121 | 113, 115,
120 | sylc 65 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀) ∧ 𝑡 ∈ 𝑇) → (𝐺‘𝑖):𝑇⟶ℝ) |
| 122 | | simp3 1063 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀) ∧ 𝑡 ∈ 𝑇) → 𝑡 ∈ 𝑇) |
| 123 | 121, 122 | ffvelrnd 6360 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀) ∧ 𝑡 ∈ 𝑇) → ((𝐺‘𝑖)‘𝑡) ∈ ℝ) |
| 124 | 123 | recnd 10068 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀) ∧ 𝑡 ∈ 𝑇) → ((𝐺‘𝑖)‘𝑡) ∈ ℂ) |
| 125 | 92, 110, 111, 124 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...(𝑦 + 1))) → ((𝐺‘𝑖)‘𝑡) ∈ ℂ) |
| 126 | | fveq2 6191 |
. . . . . . . . . . . . 13
⊢ (𝑖 = (𝑦 + 1) → (𝐺‘𝑖) = (𝐺‘(𝑦 + 1))) |
| 127 | 126 | fveq1d 6193 |
. . . . . . . . . . . 12
⊢ (𝑖 = (𝑦 + 1) → ((𝐺‘𝑖)‘𝑡) = ((𝐺‘(𝑦 + 1))‘𝑡)) |
| 128 | 91, 125, 127 | fsump1 14487 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) → Σ𝑖 ∈ (1...(𝑦 + 1))((𝐺‘𝑖)‘𝑡) = (Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡) + ((𝐺‘(𝑦 + 1))‘𝑡))) |
| 129 | | simpr 477 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) → 𝑡 ∈ 𝑇) |
| 130 | | fzfid 12772 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) → (1...𝑦) ∈ Fin) |
| 131 | | simpll1 1100 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...𝑦)) → 𝜑) |
| 132 | | 1zzd 11408 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...𝑦)) → 1 ∈ ℤ) |
| 133 | 95 | ad2antrr 762 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...𝑦)) → 𝑀 ∈ ℤ) |
| 134 | | elfzelz 12342 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (1...𝑦) → 𝑖 ∈ ℤ) |
| 135 | 134 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...𝑦)) → 𝑖 ∈ ℤ) |
| 136 | | elfzle1 12344 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (1...𝑦) → 1 ≤ 𝑖) |
| 137 | 136 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...𝑦)) → 1 ≤ 𝑖) |
| 138 | 134 | zred 11482 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (1...𝑦) → 𝑖 ∈ ℝ) |
| 139 | 138 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑖 ∈ (1...𝑦)) → 𝑖 ∈ ℝ) |
| 140 | 77 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑖 ∈ (1...𝑦)) → (𝑦 + 1) ∈ ℝ) |
| 141 | 79 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑖 ∈ (1...𝑦)) → 𝑀 ∈ ℝ) |
| 142 | 75 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑖 ∈ (1...𝑦)) → 𝑦 ∈ ℝ) |
| 143 | | elfzle2 12345 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ (1...𝑦) → 𝑖 ≤ 𝑦) |
| 144 | 143 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑖 ∈ (1...𝑦)) → 𝑖 ≤ 𝑦) |
| 145 | | letrp1 10865 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑖 ≤ 𝑦) → 𝑖 ≤ (𝑦 + 1)) |
| 146 | 139, 142,
144, 145 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑖 ∈ (1...𝑦)) → 𝑖 ≤ (𝑦 + 1)) |
| 147 | | simpl3 1066 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑖 ∈ (1...𝑦)) → (𝑦 + 1) ≤ 𝑀) |
| 148 | 139, 140,
141, 146, 147 | letrd 10194 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑖 ∈ (1...𝑦)) → 𝑖 ≤ 𝑀) |
| 149 | 148 | adantlr 751 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...𝑦)) → 𝑖 ≤ 𝑀) |
| 150 | 132, 133,
135, 137, 149, 109 | syl32anc 1334 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...𝑦)) → 𝑖 ∈ (1...𝑀)) |
| 151 | | simplr 792 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...𝑦)) → 𝑡 ∈ 𝑇) |
| 152 | 131, 150,
151, 123 | syl3anc 1326 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...𝑦)) → ((𝐺‘𝑖)‘𝑡) ∈ ℝ) |
| 153 | 130, 152 | fsumrecl 14465 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) → Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡) ∈ ℝ) |
| 154 | | eqid 2622 |
. . . . . . . . . . . . . 14
⊢ (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) = (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) |
| 155 | 154 | fvmpt2 6291 |
. . . . . . . . . . . . 13
⊢ ((𝑡 ∈ 𝑇 ∧ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡) ∈ ℝ) → ((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡))‘𝑡) = Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) |
| 156 | 129, 153,
155 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) → ((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡))‘𝑡) = Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) |
| 157 | 156 | oveq1d 6665 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) → (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡))‘𝑡) + ((𝐺‘(𝑦 + 1))‘𝑡)) = (Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡) + ((𝐺‘(𝑦 + 1))‘𝑡))) |
| 158 | 128, 157 | eqtr4d 2659 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) → Σ𝑖 ∈ (1...(𝑦 + 1))((𝐺‘𝑖)‘𝑡) = (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡))‘𝑡) + ((𝐺‘(𝑦 + 1))‘𝑡))) |
| 159 | 89, 158 | mpteq2da 4743 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...(𝑦 + 1))((𝐺‘𝑖)‘𝑡)) = (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡))‘𝑡) + ((𝐺‘(𝑦 + 1))‘𝑡)))) |
| 160 | 159 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...(𝑦 + 1))((𝐺‘𝑖)‘𝑡)) = (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡))‘𝑡) + ((𝐺‘(𝑦 + 1))‘𝑡)))) |
| 161 | | 1zzd 11408 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → 1 ∈ ℤ) |
| 162 | | peano2nn 11032 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ ℕ → (𝑦 + 1) ∈
ℕ) |
| 163 | 162 | nnzd 11481 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ ℕ → (𝑦 + 1) ∈
ℤ) |
| 164 | 163 | 3ad2ant2 1083 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → (𝑦 + 1) ∈ ℤ) |
| 165 | 162 | nnge1d 11063 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ ℕ → 1 ≤
(𝑦 + 1)) |
| 166 | 165 | 3ad2ant2 1083 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → 1 ≤ (𝑦 + 1)) |
| 167 | | elfz4 12335 |
. . . . . . . . . . . . . . . . 17
⊢ (((1
∈ ℤ ∧ 𝑀
∈ ℤ ∧ (𝑦 +
1) ∈ ℤ) ∧ (1 ≤ (𝑦 + 1) ∧ (𝑦 + 1) ≤ 𝑀)) → (𝑦 + 1) ∈ (1...𝑀)) |
| 168 | 161, 95, 164, 166, 81, 167 | syl32anc 1334 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → (𝑦 + 1) ∈ (1...𝑀)) |
| 169 | 45 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑦 + 1) ∈ (1...𝑀)) → (𝐺‘(𝑦 + 1)) ∈ 𝐴) |
| 170 | 73, 168, 169 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → (𝐺‘(𝑦 + 1)) ∈ 𝐴) |
| 171 | | eleq1 2689 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 = (𝐺‘(𝑦 + 1)) → (𝑓 ∈ 𝐴 ↔ (𝐺‘(𝑦 + 1)) ∈ 𝐴)) |
| 172 | 171 | anbi2d 740 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = (𝐺‘(𝑦 + 1)) → ((𝜑 ∧ 𝑓 ∈ 𝐴) ↔ (𝜑 ∧ (𝐺‘(𝑦 + 1)) ∈ 𝐴))) |
| 173 | | feq1 6026 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = (𝐺‘(𝑦 + 1)) → (𝑓:𝑇⟶ℝ ↔ (𝐺‘(𝑦 + 1)):𝑇⟶ℝ)) |
| 174 | 172, 173 | imbi12d 334 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = (𝐺‘(𝑦 + 1)) → (((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ (𝐺‘(𝑦 + 1)) ∈ 𝐴) → (𝐺‘(𝑦 + 1)):𝑇⟶ℝ))) |
| 175 | 174, 56 | vtoclg 3266 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺‘(𝑦 + 1)) ∈ 𝐴 → ((𝜑 ∧ (𝐺‘(𝑦 + 1)) ∈ 𝐴) → (𝐺‘(𝑦 + 1)):𝑇⟶ℝ)) |
| 176 | 175 | anabsi7 860 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝐺‘(𝑦 + 1)) ∈ 𝐴) → (𝐺‘(𝑦 + 1)):𝑇⟶ℝ) |
| 177 | 73, 170, 176 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → (𝐺‘(𝑦 + 1)):𝑇⟶ℝ) |
| 178 | 177 | ffvelrnda 6359 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) → ((𝐺‘(𝑦 + 1))‘𝑡) ∈ ℝ) |
| 179 | | eqid 2622 |
. . . . . . . . . . . . . 14
⊢ (𝑡 ∈ 𝑇 ↦ ((𝐺‘(𝑦 + 1))‘𝑡)) = (𝑡 ∈ 𝑇 ↦ ((𝐺‘(𝑦 + 1))‘𝑡)) |
| 180 | 179 | fvmpt2 6291 |
. . . . . . . . . . . . 13
⊢ ((𝑡 ∈ 𝑇 ∧ ((𝐺‘(𝑦 + 1))‘𝑡) ∈ ℝ) → ((𝑡 ∈ 𝑇 ↦ ((𝐺‘(𝑦 + 1))‘𝑡))‘𝑡) = ((𝐺‘(𝑦 + 1))‘𝑡)) |
| 181 | 129, 178,
180 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) → ((𝑡 ∈ 𝑇 ↦ ((𝐺‘(𝑦 + 1))‘𝑡))‘𝑡) = ((𝐺‘(𝑦 + 1))‘𝑡)) |
| 182 | 181 | oveq2d 6666 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) → (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡))‘𝑡) + ((𝑡 ∈ 𝑇 ↦ ((𝐺‘(𝑦 + 1))‘𝑡))‘𝑡)) = (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡))‘𝑡) + ((𝐺‘(𝑦 + 1))‘𝑡))) |
| 183 | 89, 182 | mpteq2da 4743 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡))‘𝑡) + ((𝑡 ∈ 𝑇 ↦ ((𝐺‘(𝑦 + 1))‘𝑡))‘𝑡))) = (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡))‘𝑡) + ((𝐺‘(𝑦 + 1))‘𝑡)))) |
| 184 | 183 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡))‘𝑡) + ((𝑡 ∈ 𝑇 ↦ ((𝐺‘(𝑦 + 1))‘𝑡))‘𝑡))) = (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡))‘𝑡) + ((𝐺‘(𝑦 + 1))‘𝑡)))) |
| 185 | | simpl1 1064 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴) → 𝜑) |
| 186 | | simpr 477 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴) |
| 187 | 168 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴) → (𝑦 + 1) ∈ (1...𝑀)) |
| 188 | 176 | feqmptd 6249 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝐺‘(𝑦 + 1)) ∈ 𝐴) → (𝐺‘(𝑦 + 1)) = (𝑡 ∈ 𝑇 ↦ ((𝐺‘(𝑦 + 1))‘𝑡))) |
| 189 | 169, 188 | syldan 487 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 + 1) ∈ (1...𝑀)) → (𝐺‘(𝑦 + 1)) = (𝑡 ∈ 𝑇 ↦ ((𝐺‘(𝑦 + 1))‘𝑡))) |
| 190 | 189, 169 | eqeltrrd 2702 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 + 1) ∈ (1...𝑀)) → (𝑡 ∈ 𝑇 ↦ ((𝐺‘(𝑦 + 1))‘𝑡)) ∈ 𝐴) |
| 191 | 185, 187,
190 | syl2anc 693 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝐺‘(𝑦 + 1))‘𝑡)) ∈ 𝐴) |
| 192 | | stoweidlem20.5 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) |
| 193 | | nfmpt1 4747 |
. . . . . . . . . . 11
⊢
Ⅎ𝑡(𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) |
| 194 | | nfmpt1 4747 |
. . . . . . . . . . 11
⊢
Ⅎ𝑡(𝑡 ∈ 𝑇 ↦ ((𝐺‘(𝑦 + 1))‘𝑡)) |
| 195 | 192, 193,
194 | stoweidlem8 40225 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴 ∧ (𝑡 ∈ 𝑇 ↦ ((𝐺‘(𝑦 + 1))‘𝑡)) ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡))‘𝑡) + ((𝑡 ∈ 𝑇 ↦ ((𝐺‘(𝑦 + 1))‘𝑡))‘𝑡))) ∈ 𝐴) |
| 196 | 185, 186,
191, 195 | syl3anc 1326 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡))‘𝑡) + ((𝑡 ∈ 𝑇 ↦ ((𝐺‘(𝑦 + 1))‘𝑡))‘𝑡))) ∈ 𝐴) |
| 197 | 184, 196 | eqeltrrd 2702 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡))‘𝑡) + ((𝐺‘(𝑦 + 1))‘𝑡))) ∈ 𝐴) |
| 198 | 160, 197 | eqeltrd 2701 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...(𝑦 + 1))((𝐺‘𝑖)‘𝑡)) ∈ 𝐴) |
| 199 | 70, 71, 72, 86, 198 | syl31anc 1329 |
. . . . . 6
⊢ (((𝑦 ∈ ℕ ∧ ((𝜑 ∧ 𝑦 ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴)) ∧ (𝜑 ∧ (𝑦 + 1) ≤ 𝑀)) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...(𝑦 + 1))((𝐺‘𝑖)‘𝑡)) ∈ 𝐴) |
| 200 | 199 | exp31 630 |
. . . . 5
⊢ (𝑦 ∈ ℕ → (((𝜑 ∧ 𝑦 ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴) → ((𝜑 ∧ (𝑦 + 1) ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...(𝑦 + 1))((𝐺‘𝑖)‘𝑡)) ∈ 𝐴))) |
| 201 | 21, 28, 35, 42, 69, 200 | nnind 11038 |
. . . 4
⊢ (𝑛 ∈ ℕ → ((𝜑 ∧ 𝑛 ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑛)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴)) |
| 202 | 14, 201 | vtoclg 3266 |
. . 3
⊢ (𝑀 ∈ ℕ → (𝑀 ∈ ℕ → ((𝜑 ∧ 𝑀 ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴))) |
| 203 | 2, 2, 5, 202 | syl3c 66 |
. 2
⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴) |
| 204 | 1, 203 | syl5eqel 2705 |
1
⊢ (𝜑 → 𝐹 ∈ 𝐴) |