Proof of Theorem xkocnv
| Step | Hyp | Ref
| Expression |
| 1 | | simprr 796 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ∧ 𝑔 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))))) → 𝑔 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦)))) |
| 2 | | xkohmeo.x |
. . . . . . . . 9
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 3 | 2 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) → 𝐽 ∈ (TopOn‘𝑋)) |
| 4 | | xkohmeo.y |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
| 5 | 4 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) → 𝐾 ∈ (TopOn‘𝑌)) |
| 6 | | txtopon 21394 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌))) |
| 7 | 2, 4, 6 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌))) |
| 8 | 7 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌))) |
| 9 | | xkohmeo.l |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐿 ∈ Top) |
| 10 | | eqid 2622 |
. . . . . . . . . . . . . . 15
⊢ ∪ 𝐿 =
∪ 𝐿 |
| 11 | 10 | toptopon 20722 |
. . . . . . . . . . . . . 14
⊢ (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘∪ 𝐿)) |
| 12 | 9, 11 | sylib 208 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐿 ∈ (TopOn‘∪ 𝐿)) |
| 13 | 12 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) → 𝐿 ∈ (TopOn‘∪ 𝐿)) |
| 14 | | simpr 477 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) → 𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) |
| 15 | | cnf2 21053 |
. . . . . . . . . . . 12
⊢ (((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐿 ∈ (TopOn‘∪ 𝐿)
∧ 𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) → 𝑓:(𝑋 × 𝑌)⟶∪ 𝐿) |
| 16 | 8, 13, 14, 15 | syl3anc 1326 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) → 𝑓:(𝑋 × 𝑌)⟶∪ 𝐿) |
| 17 | | ffn 6045 |
. . . . . . . . . . 11
⊢ (𝑓:(𝑋 × 𝑌)⟶∪ 𝐿 → 𝑓 Fn (𝑋 × 𝑌)) |
| 18 | 16, 17 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) → 𝑓 Fn (𝑋 × 𝑌)) |
| 19 | | fnov 6768 |
. . . . . . . . . 10
⊢ (𝑓 Fn (𝑋 × 𝑌) ↔ 𝑓 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))) |
| 20 | 18, 19 | sylib 208 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) → 𝑓 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))) |
| 21 | 20, 14 | eqeltrrd 2702 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦)) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) |
| 22 | 3, 5, 21 | cnmpt2k 21491 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))) ∈ (𝐽 Cn (𝐿 ^ko 𝐾))) |
| 23 | 22 | adantrr 753 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ∧ 𝑔 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))))) → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))) ∈ (𝐽 Cn (𝐿 ^ko 𝐾))) |
| 24 | 1, 23 | eqeltrd 2701 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ∧ 𝑔 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))))) → 𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾))) |
| 25 | 20 | adantrr 753 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ∧ 𝑔 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))))) → 𝑓 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))) |
| 26 | | eqid 2622 |
. . . . . . 7
⊢ 𝑋 = 𝑋 |
| 27 | | nfv 1843 |
. . . . . . . . 9
⊢
Ⅎ𝑥𝜑 |
| 28 | | nfv 1843 |
. . . . . . . . . 10
⊢
Ⅎ𝑥 𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) |
| 29 | | nfmpt1 4747 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥(𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))) |
| 30 | 29 | nfeq2 2780 |
. . . . . . . . . 10
⊢
Ⅎ𝑥 𝑔 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))) |
| 31 | 28, 30 | nfan 1828 |
. . . . . . . . 9
⊢
Ⅎ𝑥(𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ∧ 𝑔 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦)))) |
| 32 | 27, 31 | nfan 1828 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝜑 ∧ (𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ∧ 𝑔 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))))) |
| 33 | | nfv 1843 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦𝜑 |
| 34 | | nfv 1843 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑦 𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) |
| 35 | | nfcv 2764 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑦𝑋 |
| 36 | | nfmpt1 4747 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑦(𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦)) |
| 37 | 35, 36 | nfmpt 4746 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑦(𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))) |
| 38 | 37 | nfeq2 2780 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑦 𝑔 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))) |
| 39 | 34, 38 | nfan 1828 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦(𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ∧ 𝑔 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦)))) |
| 40 | 33, 39 | nfan 1828 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦(𝜑 ∧ (𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ∧ 𝑔 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))))) |
| 41 | | nfv 1843 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦 𝑥 ∈ 𝑋 |
| 42 | 40, 41 | nfan 1828 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦((𝜑 ∧ (𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ∧ 𝑔 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))))) ∧ 𝑥 ∈ 𝑋) |
| 43 | | simplrr 801 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ∧ 𝑔 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌)) → 𝑔 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦)))) |
| 44 | 43 | fveq1d 6193 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ∧ 𝑔 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌)) → (𝑔‘𝑥) = ((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦)))‘𝑥)) |
| 45 | | simprl 794 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ∧ 𝑔 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌)) → 𝑥 ∈ 𝑋) |
| 46 | | toponmax 20730 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 ∈ 𝐾) |
| 47 | 4, 46 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑌 ∈ 𝐾) |
| 48 | 47 | ad2antrr 762 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ∧ 𝑔 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌)) → 𝑌 ∈ 𝐾) |
| 49 | | mptexg 6484 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑌 ∈ 𝐾 → (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦)) ∈ V) |
| 50 | 48, 49 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ∧ 𝑔 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌)) → (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦)) ∈ V) |
| 51 | | eqid 2622 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))) = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))) |
| 52 | 51 | fvmpt2 6291 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦)) ∈ V) → ((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦)))‘𝑥) = (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))) |
| 53 | 45, 50, 52 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ∧ 𝑔 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌)) → ((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦)))‘𝑥) = (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))) |
| 54 | 44, 53 | eqtrd 2656 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ∧ 𝑔 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌)) → (𝑔‘𝑥) = (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))) |
| 55 | 54 | fveq1d 6193 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ∧ 𝑔 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌)) → ((𝑔‘𝑥)‘𝑦) = ((𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))‘𝑦)) |
| 56 | | simprr 796 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ∧ 𝑔 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌)) → 𝑦 ∈ 𝑌) |
| 57 | | ovex 6678 |
. . . . . . . . . . . . . 14
⊢ (𝑥𝑓𝑦) ∈ V |
| 58 | | eqid 2622 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦)) = (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦)) |
| 59 | 58 | fvmpt2 6291 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ 𝑌 ∧ (𝑥𝑓𝑦) ∈ V) → ((𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))‘𝑦) = (𝑥𝑓𝑦)) |
| 60 | 56, 57, 59 | sylancl 694 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ∧ 𝑔 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌)) → ((𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))‘𝑦) = (𝑥𝑓𝑦)) |
| 61 | 55, 60 | eqtrd 2656 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ∧ 𝑔 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌)) → ((𝑔‘𝑥)‘𝑦) = (𝑥𝑓𝑦)) |
| 62 | 61 | expr 643 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ∧ 𝑔 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))))) ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑌 → ((𝑔‘𝑥)‘𝑦) = (𝑥𝑓𝑦))) |
| 63 | 42, 62 | ralrimi 2957 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ∧ 𝑔 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))))) ∧ 𝑥 ∈ 𝑋) → ∀𝑦 ∈ 𝑌 ((𝑔‘𝑥)‘𝑦) = (𝑥𝑓𝑦)) |
| 64 | | eqid 2622 |
. . . . . . . . . 10
⊢ 𝑌 = 𝑌 |
| 65 | 63, 64 | jctil 560 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ∧ 𝑔 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))))) ∧ 𝑥 ∈ 𝑋) → (𝑌 = 𝑌 ∧ ∀𝑦 ∈ 𝑌 ((𝑔‘𝑥)‘𝑦) = (𝑥𝑓𝑦))) |
| 66 | 65 | ex 450 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ∧ 𝑔 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))))) → (𝑥 ∈ 𝑋 → (𝑌 = 𝑌 ∧ ∀𝑦 ∈ 𝑌 ((𝑔‘𝑥)‘𝑦) = (𝑥𝑓𝑦)))) |
| 67 | 32, 66 | ralrimi 2957 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ∧ 𝑔 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))))) → ∀𝑥 ∈ 𝑋 (𝑌 = 𝑌 ∧ ∀𝑦 ∈ 𝑌 ((𝑔‘𝑥)‘𝑦) = (𝑥𝑓𝑦))) |
| 68 | | mpt2eq123 6714 |
. . . . . . 7
⊢ ((𝑋 = 𝑋 ∧ ∀𝑥 ∈ 𝑋 (𝑌 = 𝑌 ∧ ∀𝑦 ∈ 𝑌 ((𝑔‘𝑥)‘𝑦) = (𝑥𝑓𝑦))) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝑔‘𝑥)‘𝑦)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))) |
| 69 | 26, 67, 68 | sylancr 695 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ∧ 𝑔 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))))) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝑔‘𝑥)‘𝑦)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))) |
| 70 | 25, 69 | eqtr4d 2659 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ∧ 𝑔 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))))) → 𝑓 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝑔‘𝑥)‘𝑦))) |
| 71 | 24, 70 | jca 554 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ∧ 𝑔 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))))) → (𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾)) ∧ 𝑓 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝑔‘𝑥)‘𝑦)))) |
| 72 | | simprr 796 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾)) ∧ 𝑓 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝑔‘𝑥)‘𝑦)))) → 𝑓 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝑔‘𝑥)‘𝑦))) |
| 73 | 2 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾))) → 𝐽 ∈ (TopOn‘𝑋)) |
| 74 | 4 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾))) → 𝐾 ∈ (TopOn‘𝑌)) |
| 75 | 12 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾))) → 𝐿 ∈ (TopOn‘∪ 𝐿)) |
| 76 | | xkohmeo.k |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally
Comp) |
| 77 | 76 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾))) → 𝐾 ∈ 𝑛-Locally
Comp) |
| 78 | | nllytop 21276 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ 𝑛-Locally Comp
→ 𝐾 ∈
Top) |
| 79 | 77, 78 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾))) → 𝐾 ∈ Top) |
| 80 | 9 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾))) → 𝐿 ∈ Top) |
| 81 | | eqid 2622 |
. . . . . . . . . . . . . 14
⊢ (𝐿 ^ko 𝐾) = (𝐿 ^ko 𝐾) |
| 82 | 81 | xkotopon 21403 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ Top ∧ 𝐿 ∈ Top) → (𝐿 ^ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿))) |
| 83 | 79, 80, 82 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾))) → (𝐿 ^ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿))) |
| 84 | | simpr 477 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾))) → 𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾))) |
| 85 | | cnf2 21053 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐿 ^ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)) ∧ 𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾))) → 𝑔:𝑋⟶(𝐾 Cn 𝐿)) |
| 86 | 73, 83, 84, 85 | syl3anc 1326 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾))) → 𝑔:𝑋⟶(𝐾 Cn 𝐿)) |
| 87 | 86 | feqmptd 6249 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾))) → 𝑔 = (𝑥 ∈ 𝑋 ↦ (𝑔‘𝑥))) |
| 88 | 4 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾))) ∧ 𝑥 ∈ 𝑋) → 𝐾 ∈ (TopOn‘𝑌)) |
| 89 | 12 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾))) ∧ 𝑥 ∈ 𝑋) → 𝐿 ∈ (TopOn‘∪ 𝐿)) |
| 90 | 86 | ffvelrnda 6359 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾))) ∧ 𝑥 ∈ 𝑋) → (𝑔‘𝑥) ∈ (𝐾 Cn 𝐿)) |
| 91 | | cnf2 21053 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (TopOn‘∪ 𝐿)
∧ (𝑔‘𝑥) ∈ (𝐾 Cn 𝐿)) → (𝑔‘𝑥):𝑌⟶∪ 𝐿) |
| 92 | 88, 89, 90, 91 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾))) ∧ 𝑥 ∈ 𝑋) → (𝑔‘𝑥):𝑌⟶∪ 𝐿) |
| 93 | 92 | feqmptd 6249 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾))) ∧ 𝑥 ∈ 𝑋) → (𝑔‘𝑥) = (𝑦 ∈ 𝑌 ↦ ((𝑔‘𝑥)‘𝑦))) |
| 94 | 93 | mpteq2dva 4744 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾))) → (𝑥 ∈ 𝑋 ↦ (𝑔‘𝑥)) = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ ((𝑔‘𝑥)‘𝑦)))) |
| 95 | 87, 94 | eqtrd 2656 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾))) → 𝑔 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ ((𝑔‘𝑥)‘𝑦)))) |
| 96 | 95, 84 | eqeltrrd 2702 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾))) → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ ((𝑔‘𝑥)‘𝑦))) ∈ (𝐽 Cn (𝐿 ^ko 𝐾))) |
| 97 | 73, 74, 75, 77, 96 | cnmptk2 21489 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾))) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝑔‘𝑥)‘𝑦)) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) |
| 98 | 97 | adantrr 753 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾)) ∧ 𝑓 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝑔‘𝑥)‘𝑦)))) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝑔‘𝑥)‘𝑦)) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) |
| 99 | 72, 98 | eqeltrd 2701 |
. . . . 5
⊢ ((𝜑 ∧ (𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾)) ∧ 𝑓 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝑔‘𝑥)‘𝑦)))) → 𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) |
| 100 | 95 | adantrr 753 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾)) ∧ 𝑓 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝑔‘𝑥)‘𝑦)))) → 𝑔 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ ((𝑔‘𝑥)‘𝑦)))) |
| 101 | | nfv 1843 |
. . . . . . . . 9
⊢
Ⅎ𝑥 𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾)) |
| 102 | | nfmpt21 6722 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝑔‘𝑥)‘𝑦)) |
| 103 | 102 | nfeq2 2780 |
. . . . . . . . 9
⊢
Ⅎ𝑥 𝑓 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝑔‘𝑥)‘𝑦)) |
| 104 | 101, 103 | nfan 1828 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾)) ∧ 𝑓 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝑔‘𝑥)‘𝑦))) |
| 105 | 27, 104 | nfan 1828 |
. . . . . . 7
⊢
Ⅎ𝑥(𝜑 ∧ (𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾)) ∧ 𝑓 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝑔‘𝑥)‘𝑦)))) |
| 106 | | nfv 1843 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦 𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾)) |
| 107 | | nfmpt22 6723 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝑔‘𝑥)‘𝑦)) |
| 108 | 107 | nfeq2 2780 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦 𝑓 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝑔‘𝑥)‘𝑦)) |
| 109 | 106, 108 | nfan 1828 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦(𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾)) ∧ 𝑓 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝑔‘𝑥)‘𝑦))) |
| 110 | 33, 109 | nfan 1828 |
. . . . . . . . . 10
⊢
Ⅎ𝑦(𝜑 ∧ (𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾)) ∧ 𝑓 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝑔‘𝑥)‘𝑦)))) |
| 111 | 110, 41 | nfan 1828 |
. . . . . . . . 9
⊢
Ⅎ𝑦((𝜑 ∧ (𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾)) ∧ 𝑓 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝑔‘𝑥)‘𝑦)))) ∧ 𝑥 ∈ 𝑋) |
| 112 | 72 | oveqd 6667 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾)) ∧ 𝑓 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝑔‘𝑥)‘𝑦)))) → (𝑥𝑓𝑦) = (𝑥(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝑔‘𝑥)‘𝑦))𝑦)) |
| 113 | | fvex 6201 |
. . . . . . . . . . . 12
⊢ ((𝑔‘𝑥)‘𝑦) ∈ V |
| 114 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝑔‘𝑥)‘𝑦)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝑔‘𝑥)‘𝑦)) |
| 115 | 114 | ovmpt4g 6783 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ ((𝑔‘𝑥)‘𝑦) ∈ V) → (𝑥(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝑔‘𝑥)‘𝑦))𝑦) = ((𝑔‘𝑥)‘𝑦)) |
| 116 | 113, 115 | mp3an3 1413 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → (𝑥(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝑔‘𝑥)‘𝑦))𝑦) = ((𝑔‘𝑥)‘𝑦)) |
| 117 | 112, 116 | sylan9eq 2676 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾)) ∧ 𝑓 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝑔‘𝑥)‘𝑦)))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌)) → (𝑥𝑓𝑦) = ((𝑔‘𝑥)‘𝑦)) |
| 118 | 117 | expr 643 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾)) ∧ 𝑓 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝑔‘𝑥)‘𝑦)))) ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑌 → (𝑥𝑓𝑦) = ((𝑔‘𝑥)‘𝑦))) |
| 119 | 111, 118 | ralrimi 2957 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾)) ∧ 𝑓 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝑔‘𝑥)‘𝑦)))) ∧ 𝑥 ∈ 𝑋) → ∀𝑦 ∈ 𝑌 (𝑥𝑓𝑦) = ((𝑔‘𝑥)‘𝑦)) |
| 120 | | mpteq12 4736 |
. . . . . . . 8
⊢ ((𝑌 = 𝑌 ∧ ∀𝑦 ∈ 𝑌 (𝑥𝑓𝑦) = ((𝑔‘𝑥)‘𝑦)) → (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦)) = (𝑦 ∈ 𝑌 ↦ ((𝑔‘𝑥)‘𝑦))) |
| 121 | 64, 119, 120 | sylancr 695 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾)) ∧ 𝑓 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝑔‘𝑥)‘𝑦)))) ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦)) = (𝑦 ∈ 𝑌 ↦ ((𝑔‘𝑥)‘𝑦))) |
| 122 | 105, 121 | mpteq2da 4743 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾)) ∧ 𝑓 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝑔‘𝑥)‘𝑦)))) → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))) = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ ((𝑔‘𝑥)‘𝑦)))) |
| 123 | 100, 122 | eqtr4d 2659 |
. . . . 5
⊢ ((𝜑 ∧ (𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾)) ∧ 𝑓 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝑔‘𝑥)‘𝑦)))) → 𝑔 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦)))) |
| 124 | 99, 123 | jca 554 |
. . . 4
⊢ ((𝜑 ∧ (𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾)) ∧ 𝑓 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝑔‘𝑥)‘𝑦)))) → (𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ∧ 𝑔 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))))) |
| 125 | 71, 124 | impbida 877 |
. . 3
⊢ (𝜑 → ((𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ∧ 𝑔 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦)))) ↔ (𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾)) ∧ 𝑓 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝑔‘𝑥)‘𝑦))))) |
| 126 | 125 | opabbidv 4716 |
. 2
⊢ (𝜑 → {〈𝑔, 𝑓〉 ∣ (𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ∧ 𝑔 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))))} = {〈𝑔, 𝑓〉 ∣ (𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾)) ∧ 𝑓 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝑔‘𝑥)‘𝑦)))}) |
| 127 | | xkohmeo.f |
. . . . 5
⊢ 𝐹 = (𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ↦ (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦)))) |
| 128 | | df-mpt 4730 |
. . . . 5
⊢ (𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ↦ (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦)))) = {〈𝑓, 𝑔〉 ∣ (𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ∧ 𝑔 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))))} |
| 129 | 127, 128 | eqtri 2644 |
. . . 4
⊢ 𝐹 = {〈𝑓, 𝑔〉 ∣ (𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ∧ 𝑔 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))))} |
| 130 | 129 | cnveqi 5297 |
. . 3
⊢ ◡𝐹 = ◡{〈𝑓, 𝑔〉 ∣ (𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ∧ 𝑔 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))))} |
| 131 | | cnvopab 5533 |
. . 3
⊢ ◡{〈𝑓, 𝑔〉 ∣ (𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ∧ 𝑔 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))))} = {〈𝑔, 𝑓〉 ∣ (𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ∧ 𝑔 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))))} |
| 132 | 130, 131 | eqtri 2644 |
. 2
⊢ ◡𝐹 = {〈𝑔, 𝑓〉 ∣ (𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ∧ 𝑔 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))))} |
| 133 | | df-mpt 4730 |
. 2
⊢ (𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾)) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝑔‘𝑥)‘𝑦))) = {〈𝑔, 𝑓〉 ∣ (𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾)) ∧ 𝑓 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝑔‘𝑥)‘𝑦)))} |
| 134 | 126, 132,
133 | 3eqtr4g 2681 |
1
⊢ (𝜑 → ◡𝐹 = (𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾)) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝑔‘𝑥)‘𝑦)))) |