Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem17 Structured version   Visualization version   GIF version

Theorem stoweidlem17 40234
Description: This lemma proves that the function 𝑔 (as defined in [BrosowskiDeutsh] p. 91, at the end of page 91) belongs to the subalgebra. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem17.1 𝑡𝜑
stoweidlem17.2 (𝜑𝑁 ∈ ℕ)
stoweidlem17.3 (𝜑𝑋:(0...𝑁)⟶𝐴)
stoweidlem17.4 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem17.5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem17.6 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem17.7 (𝜑𝐸 ∈ ℝ)
stoweidlem17.8 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
Assertion
Ref Expression
stoweidlem17 (𝜑 → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴)
Distinct variable groups:   𝑓,𝑔,𝑖,𝑡,𝐸   𝐴,𝑓,𝑔   𝑇,𝑓,𝑔,𝑖,𝑡   𝑓,𝑋,𝑔,𝑖,𝑡   𝜑,𝑓,𝑔,𝑖   𝑖,𝑁,𝑡   𝑥,𝑡,𝐸   𝑥,𝐴   𝑥,𝑇   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑡)   𝐴(𝑡,𝑖)   𝑁(𝑥,𝑓,𝑔)   𝑋(𝑥)

Proof of Theorem stoweidlem17
Dummy variables 𝑚 𝑟 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem17.2 . . 3 (𝜑𝑁 ∈ ℕ)
21nnnn0d 11351 . 2 (𝜑𝑁 ∈ ℕ0)
3 nn0uz 11722 . . . . 5 0 = (ℤ‘0)
42, 3syl6eleq 2711 . . . 4 (𝜑𝑁 ∈ (ℤ‘0))
5 eluzfz2 12349 . . . 4 (𝑁 ∈ (ℤ‘0) → 𝑁 ∈ (0...𝑁))
64, 5syl 17 . . 3 (𝜑𝑁 ∈ (0...𝑁))
76ancli 574 . 2 (𝜑 → (𝜑𝑁 ∈ (0...𝑁)))
8 eleq1 2689 . . . . 5 (𝑛 = 0 → (𝑛 ∈ (0...𝑁) ↔ 0 ∈ (0...𝑁)))
98anbi2d 740 . . . 4 (𝑛 = 0 → ((𝜑𝑛 ∈ (0...𝑁)) ↔ (𝜑 ∧ 0 ∈ (0...𝑁))))
10 oveq2 6658 . . . . . . 7 (𝑛 = 0 → (0...𝑛) = (0...0))
1110sumeq1d 14431 . . . . . 6 (𝑛 = 0 → Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑋𝑖)‘𝑡)) = Σ𝑖 ∈ (0...0)(𝐸 · ((𝑋𝑖)‘𝑡)))
1211mpteq2dv 4745 . . . . 5 (𝑛 = 0 → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑋𝑖)‘𝑡))) = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...0)(𝐸 · ((𝑋𝑖)‘𝑡))))
1312eleq1d 2686 . . . 4 (𝑛 = 0 → ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴 ↔ (𝑡𝑇 ↦ Σ𝑖 ∈ (0...0)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴))
149, 13imbi12d 334 . . 3 (𝑛 = 0 → (((𝜑𝑛 ∈ (0...𝑁)) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴) ↔ ((𝜑 ∧ 0 ∈ (0...𝑁)) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...0)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴)))
15 eleq1 2689 . . . . 5 (𝑛 = 𝑚 → (𝑛 ∈ (0...𝑁) ↔ 𝑚 ∈ (0...𝑁)))
1615anbi2d 740 . . . 4 (𝑛 = 𝑚 → ((𝜑𝑛 ∈ (0...𝑁)) ↔ (𝜑𝑚 ∈ (0...𝑁))))
17 oveq2 6658 . . . . . . 7 (𝑛 = 𝑚 → (0...𝑛) = (0...𝑚))
1817sumeq1d 14431 . . . . . 6 (𝑛 = 𝑚 → Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑋𝑖)‘𝑡)) = Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))
1918mpteq2dv 4745 . . . . 5 (𝑛 = 𝑚 → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑋𝑖)‘𝑡))) = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))))
2019eleq1d 2686 . . . 4 (𝑛 = 𝑚 → ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴 ↔ (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴))
2116, 20imbi12d 334 . . 3 (𝑛 = 𝑚 → (((𝜑𝑛 ∈ (0...𝑁)) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴) ↔ ((𝜑𝑚 ∈ (0...𝑁)) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴)))
22 eleq1 2689 . . . . 5 (𝑛 = (𝑚 + 1) → (𝑛 ∈ (0...𝑁) ↔ (𝑚 + 1) ∈ (0...𝑁)))
2322anbi2d 740 . . . 4 (𝑛 = (𝑚 + 1) → ((𝜑𝑛 ∈ (0...𝑁)) ↔ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁))))
24 oveq2 6658 . . . . . . 7 (𝑛 = (𝑚 + 1) → (0...𝑛) = (0...(𝑚 + 1)))
2524sumeq1d 14431 . . . . . 6 (𝑛 = (𝑚 + 1) → Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑋𝑖)‘𝑡)) = Σ𝑖 ∈ (0...(𝑚 + 1))(𝐸 · ((𝑋𝑖)‘𝑡)))
2625mpteq2dv 4745 . . . . 5 (𝑛 = (𝑚 + 1) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑋𝑖)‘𝑡))) = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...(𝑚 + 1))(𝐸 · ((𝑋𝑖)‘𝑡))))
2726eleq1d 2686 . . . 4 (𝑛 = (𝑚 + 1) → ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴 ↔ (𝑡𝑇 ↦ Σ𝑖 ∈ (0...(𝑚 + 1))(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴))
2823, 27imbi12d 334 . . 3 (𝑛 = (𝑚 + 1) → (((𝜑𝑛 ∈ (0...𝑁)) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴) ↔ ((𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...(𝑚 + 1))(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴)))
29 eleq1 2689 . . . . 5 (𝑛 = 𝑁 → (𝑛 ∈ (0...𝑁) ↔ 𝑁 ∈ (0...𝑁)))
3029anbi2d 740 . . . 4 (𝑛 = 𝑁 → ((𝜑𝑛 ∈ (0...𝑁)) ↔ (𝜑𝑁 ∈ (0...𝑁))))
31 oveq2 6658 . . . . . . 7 (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁))
3231sumeq1d 14431 . . . . . 6 (𝑛 = 𝑁 → Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑋𝑖)‘𝑡)) = Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))
3332mpteq2dv 4745 . . . . 5 (𝑛 = 𝑁 → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑋𝑖)‘𝑡))) = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡))))
3433eleq1d 2686 . . . 4 (𝑛 = 𝑁 → ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴 ↔ (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴))
3530, 34imbi12d 334 . . 3 (𝑛 = 𝑁 → (((𝜑𝑛 ∈ (0...𝑁)) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴) ↔ ((𝜑𝑁 ∈ (0...𝑁)) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴)))
36 0z 11388 . . . . . . . . 9 0 ∈ ℤ
37 fzsn 12383 . . . . . . . . 9 (0 ∈ ℤ → (0...0) = {0})
3836, 37ax-mp 5 . . . . . . . 8 (0...0) = {0}
3938sumeq1i 14428 . . . . . . 7 Σ𝑖 ∈ (0...0)(𝐸 · ((𝑋𝑖)‘𝑡)) = Σ𝑖 ∈ {0} (𝐸 · ((𝑋𝑖)‘𝑡))
4039mpteq2i 4741 . . . . . 6 (𝑡𝑇 ↦ Σ𝑖 ∈ (0...0)(𝐸 · ((𝑋𝑖)‘𝑡))) = (𝑡𝑇 ↦ Σ𝑖 ∈ {0} (𝐸 · ((𝑋𝑖)‘𝑡)))
41 stoweidlem17.1 . . . . . . 7 𝑡𝜑
42 stoweidlem17.7 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℝ)
4342adantr 481 . . . . . . . . . 10 ((𝜑𝑡𝑇) → 𝐸 ∈ ℝ)
4443recnd 10068 . . . . . . . . 9 ((𝜑𝑡𝑇) → 𝐸 ∈ ℂ)
45 stoweidlem17.3 . . . . . . . . . . . . 13 (𝜑𝑋:(0...𝑁)⟶𝐴)
46 nnz 11399 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
47 nngt0 11049 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → 0 < 𝑁)
48 0re 10040 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ
49 nnre 11027 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
50 ltle 10126 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < 𝑁 → 0 ≤ 𝑁))
5148, 49, 50sylancr 695 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → (0 < 𝑁 → 0 ≤ 𝑁))
5247, 51mpd 15 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 0 ≤ 𝑁)
5346, 52jca 554 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))
541, 53syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))
5536eluz1i 11695 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘0) ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))
5654, 55sylibr 224 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ (ℤ‘0))
57 eluzfz1 12348 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘0) → 0 ∈ (0...𝑁))
5856, 57syl 17 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ (0...𝑁))
5945, 58ffvelrnd 6360 . . . . . . . . . . . 12 (𝜑 → (𝑋‘0) ∈ 𝐴)
60 feq1 6026 . . . . . . . . . . . . . 14 (𝑓 = (𝑋‘0) → (𝑓:𝑇⟶ℝ ↔ (𝑋‘0):𝑇⟶ℝ))
6160imbi2d 330 . . . . . . . . . . . . 13 (𝑓 = (𝑋‘0) → ((𝜑𝑓:𝑇⟶ℝ) ↔ (𝜑 → (𝑋‘0):𝑇⟶ℝ)))
62 stoweidlem17.8 . . . . . . . . . . . . . 14 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
6362expcom 451 . . . . . . . . . . . . 13 (𝑓𝐴 → (𝜑𝑓:𝑇⟶ℝ))
6461, 63vtoclga 3272 . . . . . . . . . . . 12 ((𝑋‘0) ∈ 𝐴 → (𝜑 → (𝑋‘0):𝑇⟶ℝ))
6559, 64mpcom 38 . . . . . . . . . . 11 (𝜑 → (𝑋‘0):𝑇⟶ℝ)
6665ffvelrnda 6359 . . . . . . . . . 10 ((𝜑𝑡𝑇) → ((𝑋‘0)‘𝑡) ∈ ℝ)
6766recnd 10068 . . . . . . . . 9 ((𝜑𝑡𝑇) → ((𝑋‘0)‘𝑡) ∈ ℂ)
6844, 67mulcld 10060 . . . . . . . 8 ((𝜑𝑡𝑇) → (𝐸 · ((𝑋‘0)‘𝑡)) ∈ ℂ)
69 fveq2 6191 . . . . . . . . . . 11 (𝑖 = 0 → (𝑋𝑖) = (𝑋‘0))
7069fveq1d 6193 . . . . . . . . . 10 (𝑖 = 0 → ((𝑋𝑖)‘𝑡) = ((𝑋‘0)‘𝑡))
7170oveq2d 6666 . . . . . . . . 9 (𝑖 = 0 → (𝐸 · ((𝑋𝑖)‘𝑡)) = (𝐸 · ((𝑋‘0)‘𝑡)))
7271sumsn 14475 . . . . . . . 8 ((0 ∈ ℤ ∧ (𝐸 · ((𝑋‘0)‘𝑡)) ∈ ℂ) → Σ𝑖 ∈ {0} (𝐸 · ((𝑋𝑖)‘𝑡)) = (𝐸 · ((𝑋‘0)‘𝑡)))
7336, 68, 72sylancr 695 . . . . . . 7 ((𝜑𝑡𝑇) → Σ𝑖 ∈ {0} (𝐸 · ((𝑋𝑖)‘𝑡)) = (𝐸 · ((𝑋‘0)‘𝑡)))
7441, 73mpteq2da 4743 . . . . . 6 (𝜑 → (𝑡𝑇 ↦ Σ𝑖 ∈ {0} (𝐸 · ((𝑋𝑖)‘𝑡))) = (𝑡𝑇 ↦ (𝐸 · ((𝑋‘0)‘𝑡))))
7540, 74syl5eq 2668 . . . . 5 (𝜑 → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...0)(𝐸 · ((𝑋𝑖)‘𝑡))) = (𝑡𝑇 ↦ (𝐸 · ((𝑋‘0)‘𝑡))))
76 stoweidlem17.5 . . . . . 6 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
77 stoweidlem17.6 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
7841, 76, 77, 62, 42, 59stoweidlem2 40219 . . . . 5 (𝜑 → (𝑡𝑇 ↦ (𝐸 · ((𝑋‘0)‘𝑡))) ∈ 𝐴)
7975, 78eqeltrd 2701 . . . 4 (𝜑 → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...0)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴)
8079adantr 481 . . 3 ((𝜑 ∧ 0 ∈ (0...𝑁)) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...0)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴)
81 eqidd 2623 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑡𝐸 = 𝐸)
8281cbvmptv 4750 . . . . . . . . . . . . . . 15 (𝑟𝑇𝐸) = (𝑡𝑇𝐸)
8382eqcomi 2631 . . . . . . . . . . . . . 14 (𝑡𝑇𝐸) = (𝑟𝑇𝐸)
8483a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑡𝑇) → (𝑡𝑇𝐸) = (𝑟𝑇𝐸))
85 eqidd 2623 . . . . . . . . . . . . 13 (((𝜑𝑡𝑇) ∧ 𝑟 = 𝑡) → 𝐸 = 𝐸)
86 simpr 477 . . . . . . . . . . . . 13 ((𝜑𝑡𝑇) → 𝑡𝑇)
8784, 85, 86, 43fvmptd 6288 . . . . . . . . . . . 12 ((𝜑𝑡𝑇) → ((𝑡𝑇𝐸)‘𝑡) = 𝐸)
8887oveq1d 6665 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → (((𝑡𝑇𝐸)‘𝑡) · ((𝑋‘(𝑚 + 1))‘𝑡)) = (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))
8941, 88mpteq2da 4743 . . . . . . . . . 10 (𝜑 → (𝑡𝑇 ↦ (((𝑡𝑇𝐸)‘𝑡) · ((𝑋‘(𝑚 + 1))‘𝑡))) = (𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡))))
9089adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) → (𝑡𝑇 ↦ (((𝑡𝑇𝐸)‘𝑡) · ((𝑋‘(𝑚 + 1))‘𝑡))) = (𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡))))
9145ffvelrnda 6359 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) → (𝑋‘(𝑚 + 1)) ∈ 𝐴)
92 simpl 473 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) → 𝜑)
93 id 22 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐸𝑥 = 𝐸)
9493mpteq2dv 4745 . . . . . . . . . . . . . . 15 (𝑥 = 𝐸 → (𝑡𝑇𝑥) = (𝑡𝑇𝐸))
9594eleq1d 2686 . . . . . . . . . . . . . 14 (𝑥 = 𝐸 → ((𝑡𝑇𝑥) ∈ 𝐴 ↔ (𝑡𝑇𝐸) ∈ 𝐴))
9695imbi2d 330 . . . . . . . . . . . . 13 (𝑥 = 𝐸 → ((𝜑 → (𝑡𝑇𝑥) ∈ 𝐴) ↔ (𝜑 → (𝑡𝑇𝐸) ∈ 𝐴)))
9777expcom 451 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (𝜑 → (𝑡𝑇𝑥) ∈ 𝐴))
9896, 97vtoclga 3272 . . . . . . . . . . . 12 (𝐸 ∈ ℝ → (𝜑 → (𝑡𝑇𝐸) ∈ 𝐴))
9942, 98mpcom 38 . . . . . . . . . . 11 (𝜑 → (𝑡𝑇𝐸) ∈ 𝐴)
10099adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) → (𝑡𝑇𝐸) ∈ 𝐴)
101 fveq1 6190 . . . . . . . . . . . . . . . 16 (𝑔 = (𝑋‘(𝑚 + 1)) → (𝑔𝑡) = ((𝑋‘(𝑚 + 1))‘𝑡))
102101oveq2d 6666 . . . . . . . . . . . . . . 15 (𝑔 = (𝑋‘(𝑚 + 1)) → (((𝑡𝑇𝐸)‘𝑡) · (𝑔𝑡)) = (((𝑡𝑇𝐸)‘𝑡) · ((𝑋‘(𝑚 + 1))‘𝑡)))
103102mpteq2dv 4745 . . . . . . . . . . . . . 14 (𝑔 = (𝑋‘(𝑚 + 1)) → (𝑡𝑇 ↦ (((𝑡𝑇𝐸)‘𝑡) · (𝑔𝑡))) = (𝑡𝑇 ↦ (((𝑡𝑇𝐸)‘𝑡) · ((𝑋‘(𝑚 + 1))‘𝑡))))
104103eleq1d 2686 . . . . . . . . . . . . 13 (𝑔 = (𝑋‘(𝑚 + 1)) → ((𝑡𝑇 ↦ (((𝑡𝑇𝐸)‘𝑡) · (𝑔𝑡))) ∈ 𝐴 ↔ (𝑡𝑇 ↦ (((𝑡𝑇𝐸)‘𝑡) · ((𝑋‘(𝑚 + 1))‘𝑡))) ∈ 𝐴))
105104imbi2d 330 . . . . . . . . . . . 12 (𝑔 = (𝑋‘(𝑚 + 1)) → (((𝜑 ∧ (𝑡𝑇𝐸) ∈ 𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇𝐸)‘𝑡) · (𝑔𝑡))) ∈ 𝐴) ↔ ((𝜑 ∧ (𝑡𝑇𝐸) ∈ 𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇𝐸)‘𝑡) · ((𝑋‘(𝑚 + 1))‘𝑡))) ∈ 𝐴)))
10682eleq1i 2692 . . . . . . . . . . . . . . . 16 ((𝑟𝑇𝐸) ∈ 𝐴 ↔ (𝑡𝑇𝐸) ∈ 𝐴)
107 fveq1 6190 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = (𝑟𝑇𝐸) → (𝑓𝑡) = ((𝑟𝑇𝐸)‘𝑡))
10882fveq1i 6192 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑟𝑇𝐸)‘𝑡) = ((𝑡𝑇𝐸)‘𝑡)
109107, 108syl6eq 2672 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = (𝑟𝑇𝐸) → (𝑓𝑡) = ((𝑡𝑇𝐸)‘𝑡))
110109oveq1d 6665 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (𝑟𝑇𝐸) → ((𝑓𝑡) · (𝑔𝑡)) = (((𝑡𝑇𝐸)‘𝑡) · (𝑔𝑡)))
111110mpteq2dv 4745 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑟𝑇𝐸) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) = (𝑡𝑇 ↦ (((𝑡𝑇𝐸)‘𝑡) · (𝑔𝑡))))
112111eleq1d 2686 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑟𝑇𝐸) → ((𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴 ↔ (𝑡𝑇 ↦ (((𝑡𝑇𝐸)‘𝑡) · (𝑔𝑡))) ∈ 𝐴))
113112imbi2d 330 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑟𝑇𝐸) → (((𝜑𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴) ↔ ((𝜑𝑔𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇𝐸)‘𝑡) · (𝑔𝑡))) ∈ 𝐴)))
114763com12 1269 . . . . . . . . . . . . . . . . . 18 ((𝑓𝐴𝜑𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
1151143expib 1268 . . . . . . . . . . . . . . . . 17 (𝑓𝐴 → ((𝜑𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴))
116113, 115vtoclga 3272 . . . . . . . . . . . . . . . 16 ((𝑟𝑇𝐸) ∈ 𝐴 → ((𝜑𝑔𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇𝐸)‘𝑡) · (𝑔𝑡))) ∈ 𝐴))
117106, 116sylbir 225 . . . . . . . . . . . . . . 15 ((𝑡𝑇𝐸) ∈ 𝐴 → ((𝜑𝑔𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇𝐸)‘𝑡) · (𝑔𝑡))) ∈ 𝐴))
1181173impib 1262 . . . . . . . . . . . . . 14 (((𝑡𝑇𝐸) ∈ 𝐴𝜑𝑔𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇𝐸)‘𝑡) · (𝑔𝑡))) ∈ 𝐴)
1191183com13 1270 . . . . . . . . . . . . 13 ((𝑔𝐴𝜑 ∧ (𝑡𝑇𝐸) ∈ 𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇𝐸)‘𝑡) · (𝑔𝑡))) ∈ 𝐴)
1201193expib 1268 . . . . . . . . . . . 12 (𝑔𝐴 → ((𝜑 ∧ (𝑡𝑇𝐸) ∈ 𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇𝐸)‘𝑡) · (𝑔𝑡))) ∈ 𝐴))
121105, 120vtoclga 3272 . . . . . . . . . . 11 ((𝑋‘(𝑚 + 1)) ∈ 𝐴 → ((𝜑 ∧ (𝑡𝑇𝐸) ∈ 𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇𝐸)‘𝑡) · ((𝑋‘(𝑚 + 1))‘𝑡))) ∈ 𝐴))
1221213impib 1262 . . . . . . . . . 10 (((𝑋‘(𝑚 + 1)) ∈ 𝐴𝜑 ∧ (𝑡𝑇𝐸) ∈ 𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇𝐸)‘𝑡) · ((𝑋‘(𝑚 + 1))‘𝑡))) ∈ 𝐴)
12391, 92, 100, 122syl3anc 1326 . . . . . . . . 9 ((𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) → (𝑡𝑇 ↦ (((𝑡𝑇𝐸)‘𝑡) · ((𝑋‘(𝑚 + 1))‘𝑡))) ∈ 𝐴)
12490, 123eqeltrrd 2702 . . . . . . . 8 ((𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) → (𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡))) ∈ 𝐴)
125124ad2antll 765 . . . . . . 7 (((𝑚 ∈ ℕ0 → ((𝜑𝑚 ∈ (0...𝑁)) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴)) ∧ (𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)))) → (𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡))) ∈ 𝐴)
126 simprrl 804 . . . . . . 7 (((𝑚 ∈ ℕ0 → ((𝜑𝑚 ∈ (0...𝑁)) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴)) ∧ (𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)))) → 𝜑)
127 simpl 473 . . . . . . . . . 10 ((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁))) → 𝑚 ∈ ℕ0)
128 simprl 794 . . . . . . . . . 10 ((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁))) → 𝜑)
1291ad2antrl 764 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁))) → 𝑁 ∈ ℕ)
130129nnnn0d 11351 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁))) → 𝑁 ∈ ℕ0)
131 nn0re 11301 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ0𝑚 ∈ ℝ)
132131adantr 481 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁))) → 𝑚 ∈ ℝ)
133 peano2nn0 11333 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℕ0)
134133nn0red 11352 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℝ)
135134adantr 481 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁))) → (𝑚 + 1) ∈ ℝ)
1361nnred 11035 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℝ)
137136ad2antrl 764 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁))) → 𝑁 ∈ ℝ)
138 lep1 10862 . . . . . . . . . . . . 13 (𝑚 ∈ ℝ → 𝑚 ≤ (𝑚 + 1))
139127, 131, 1383syl 18 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁))) → 𝑚 ≤ (𝑚 + 1))
140 elfzle2 12345 . . . . . . . . . . . . 13 ((𝑚 + 1) ∈ (0...𝑁) → (𝑚 + 1) ≤ 𝑁)
141140ad2antll 765 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁))) → (𝑚 + 1) ≤ 𝑁)
142132, 135, 137, 139, 141letrd 10194 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁))) → 𝑚𝑁)
143 elfz2nn0 12431 . . . . . . . . . . 11 (𝑚 ∈ (0...𝑁) ↔ (𝑚 ∈ ℕ0𝑁 ∈ ℕ0𝑚𝑁))
144127, 130, 142, 143syl3anbrc 1246 . . . . . . . . . 10 ((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁))) → 𝑚 ∈ (0...𝑁))
145127, 128, 144jca32 558 . . . . . . . . 9 ((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁))) → (𝑚 ∈ ℕ0 ∧ (𝜑𝑚 ∈ (0...𝑁))))
146145adantl 482 . . . . . . . 8 (((𝑚 ∈ ℕ0 → ((𝜑𝑚 ∈ (0...𝑁)) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴)) ∧ (𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)))) → (𝑚 ∈ ℕ0 ∧ (𝜑𝑚 ∈ (0...𝑁))))
147 pm3.31 461 . . . . . . . . 9 ((𝑚 ∈ ℕ0 → ((𝜑𝑚 ∈ (0...𝑁)) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴)) → ((𝑚 ∈ ℕ0 ∧ (𝜑𝑚 ∈ (0...𝑁))) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴))
148147adantr 481 . . . . . . . 8 (((𝑚 ∈ ℕ0 → ((𝜑𝑚 ∈ (0...𝑁)) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴)) ∧ (𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)))) → ((𝑚 ∈ ℕ0 ∧ (𝜑𝑚 ∈ (0...𝑁))) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴))
149146, 148mpd 15 . . . . . . 7 (((𝑚 ∈ ℕ0 → ((𝜑𝑚 ∈ (0...𝑁)) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴)) ∧ (𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)))) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴)
150 fveq2 6191 . . . . . . . . . . . 12 (𝑟 = 𝑡 → ((𝑋‘(𝑚 + 1))‘𝑟) = ((𝑋‘(𝑚 + 1))‘𝑡))
151150oveq2d 6666 . . . . . . . . . . 11 (𝑟 = 𝑡 → (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑟)) = (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))
152151cbvmptv 4750 . . . . . . . . . 10 (𝑟𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑟))) = (𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))
153152eleq1i 2692 . . . . . . . . 9 ((𝑟𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑟))) ∈ 𝐴 ↔ (𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡))) ∈ 𝐴)
154 fveq1 6190 . . . . . . . . . . . . . . 15 (𝑔 = (𝑟𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑟))) → (𝑔𝑡) = ((𝑟𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑟)))‘𝑡))
155152fveq1i 6192 . . . . . . . . . . . . . . 15 ((𝑟𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑟)))‘𝑡) = ((𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))‘𝑡)
156154, 155syl6eq 2672 . . . . . . . . . . . . . 14 (𝑔 = (𝑟𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑟))) → (𝑔𝑡) = ((𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))‘𝑡))
157156oveq2d 6666 . . . . . . . . . . . . 13 (𝑔 = (𝑟𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑟))) → (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + (𝑔𝑡)) = (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + ((𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))‘𝑡)))
158157mpteq2dv 4745 . . . . . . . . . . . 12 (𝑔 = (𝑟𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑟))) → (𝑡𝑇 ↦ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + (𝑔𝑡))) = (𝑡𝑇 ↦ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + ((𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))‘𝑡))))
159158eleq1d 2686 . . . . . . . . . . 11 (𝑔 = (𝑟𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑟))) → ((𝑡𝑇 ↦ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + (𝑔𝑡))) ∈ 𝐴 ↔ (𝑡𝑇 ↦ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + ((𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))‘𝑡))) ∈ 𝐴))
160159imbi2d 330 . . . . . . . . . 10 (𝑔 = (𝑟𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑟))) → (((𝜑 ∧ (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + (𝑔𝑡))) ∈ 𝐴) ↔ ((𝜑 ∧ (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + ((𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))‘𝑡))) ∈ 𝐴)))
161 fveq2 6191 . . . . . . . . . . . . . . . . . 18 (𝑟 = 𝑡 → ((𝑋𝑖)‘𝑟) = ((𝑋𝑖)‘𝑡))
162161oveq2d 6666 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝑡 → (𝐸 · ((𝑋𝑖)‘𝑟)) = (𝐸 · ((𝑋𝑖)‘𝑡)))
163162sumeq2sdv 14435 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑡 → Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑟)) = Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))
164163cbvmptv 4750 . . . . . . . . . . . . . . 15 (𝑟𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑟))) = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))
165164eleq1i 2692 . . . . . . . . . . . . . 14 ((𝑟𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑟))) ∈ 𝐴 ↔ (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴)
166 fveq1 6190 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (𝑟𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑟))) → (𝑓𝑡) = ((𝑟𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑟)))‘𝑡))
167164fveq1i 6192 . . . . . . . . . . . . . . . . . . . 20 ((𝑟𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑟)))‘𝑡) = ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡)
168166, 167syl6eq 2672 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑟𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑟))) → (𝑓𝑡) = ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡))
169168oveq1d 6665 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑟𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑟))) → ((𝑓𝑡) + (𝑔𝑡)) = (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + (𝑔𝑡)))
170169mpteq2dv 4745 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑟𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑟))) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) = (𝑡𝑇 ↦ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + (𝑔𝑡))))
171170eleq1d 2686 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑟𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑟))) → ((𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴 ↔ (𝑡𝑇 ↦ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + (𝑔𝑡))) ∈ 𝐴))
172171imbi2d 330 . . . . . . . . . . . . . . 15 (𝑓 = (𝑟𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑟))) → (((𝜑𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴) ↔ ((𝜑𝑔𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + (𝑔𝑡))) ∈ 𝐴)))
173 stoweidlem17.4 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
1741733com12 1269 . . . . . . . . . . . . . . . 16 ((𝑓𝐴𝜑𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
1751743expib 1268 . . . . . . . . . . . . . . 15 (𝑓𝐴 → ((𝜑𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴))
176172, 175vtoclga 3272 . . . . . . . . . . . . . 14 ((𝑟𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑟))) ∈ 𝐴 → ((𝜑𝑔𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + (𝑔𝑡))) ∈ 𝐴))
177165, 176sylbir 225 . . . . . . . . . . . . 13 ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴 → ((𝜑𝑔𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + (𝑔𝑡))) ∈ 𝐴))
1781773impib 1262 . . . . . . . . . . . 12 (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴𝜑𝑔𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + (𝑔𝑡))) ∈ 𝐴)
1791783com13 1270 . . . . . . . . . . 11 ((𝑔𝐴𝜑 ∧ (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + (𝑔𝑡))) ∈ 𝐴)
1801793expib 1268 . . . . . . . . . 10 (𝑔𝐴 → ((𝜑 ∧ (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + (𝑔𝑡))) ∈ 𝐴))
181160, 180vtoclga 3272 . . . . . . . . 9 ((𝑟𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑟))) ∈ 𝐴 → ((𝜑 ∧ (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + ((𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))‘𝑡))) ∈ 𝐴))
182153, 181sylbir 225 . . . . . . . 8 ((𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡))) ∈ 𝐴 → ((𝜑 ∧ (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + ((𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))‘𝑡))) ∈ 𝐴))
1831823impib 1262 . . . . . . 7 (((𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡))) ∈ 𝐴𝜑 ∧ (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + ((𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))‘𝑡))) ∈ 𝐴)
184125, 126, 149, 183syl3anc 1326 . . . . . 6 (((𝑚 ∈ ℕ0 → ((𝜑𝑚 ∈ (0...𝑁)) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴)) ∧ (𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)))) → (𝑡𝑇 ↦ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + ((𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))‘𝑡))) ∈ 𝐴)
185 3anass 1042 . . . . . . . . 9 ((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ↔ (𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁))))
186185biimpri 218 . . . . . . . 8 ((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁))) → (𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)))
187186adantl 482 . . . . . . 7 (((𝑚 ∈ ℕ0 → ((𝜑𝑚 ∈ (0...𝑁)) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴)) ∧ (𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)))) → (𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)))
188 nfv 1843 . . . . . . . . . 10 𝑡 𝑚 ∈ ℕ0
189 nfv 1843 . . . . . . . . . 10 𝑡(𝑚 + 1) ∈ (0...𝑁)
190188, 41, 189nf3an 1831 . . . . . . . . 9 𝑡(𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁))
191 simpr 477 . . . . . . . . . . . 12 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) → 𝑡𝑇)
192 fzfid 12772 . . . . . . . . . . . . 13 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) → (0...𝑚) ∈ Fin)
193423ad2ant2 1083 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) → 𝐸 ∈ ℝ)
194193adantr 481 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) → 𝐸 ∈ ℝ)
195194adantr 481 . . . . . . . . . . . . . 14 ((((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) ∧ 𝑖 ∈ (0...𝑚)) → 𝐸 ∈ ℝ)
196 fzelp1 12393 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (0...𝑚) → 𝑖 ∈ (0...(𝑚 + 1)))
197196anim2i 593 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) ∧ 𝑖 ∈ (0...𝑚)) → (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) ∧ 𝑖 ∈ (0...(𝑚 + 1))))
198 an32 839 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) ∧ 𝑖 ∈ (0...(𝑚 + 1))) ↔ (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑖 ∈ (0...(𝑚 + 1))) ∧ 𝑡𝑇))
199197, 198sylib 208 . . . . . . . . . . . . . . 15 ((((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) ∧ 𝑖 ∈ (0...𝑚)) → (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑖 ∈ (0...(𝑚 + 1))) ∧ 𝑡𝑇))
200453ad2ant2 1083 . . . . . . . . . . . . . . . . . . 19 ((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) → 𝑋:(0...𝑁)⟶𝐴)
201200adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑖 ∈ (0...(𝑚 + 1))) → 𝑋:(0...𝑁)⟶𝐴)
202 elfzuz3 12339 . . . . . . . . . . . . . . . . . . . . 21 ((𝑚 + 1) ∈ (0...𝑁) → 𝑁 ∈ (ℤ‘(𝑚 + 1)))
203 fzss2 12381 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ‘(𝑚 + 1)) → (0...(𝑚 + 1)) ⊆ (0...𝑁))
204202, 203syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑚 + 1) ∈ (0...𝑁) → (0...(𝑚 + 1)) ⊆ (0...𝑁))
205204sselda 3603 . . . . . . . . . . . . . . . . . . 19 (((𝑚 + 1) ∈ (0...𝑁) ∧ 𝑖 ∈ (0...(𝑚 + 1))) → 𝑖 ∈ (0...𝑁))
2062053ad2antl3 1225 . . . . . . . . . . . . . . . . . 18 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑖 ∈ (0...(𝑚 + 1))) → 𝑖 ∈ (0...𝑁))
207201, 206ffvelrnd 6360 . . . . . . . . . . . . . . . . 17 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑖 ∈ (0...(𝑚 + 1))) → (𝑋𝑖) ∈ 𝐴)
208 simpl2 1065 . . . . . . . . . . . . . . . . 17 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑖 ∈ (0...(𝑚 + 1))) → 𝜑)
209 feq1 6026 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑋𝑖) → (𝑓:𝑇⟶ℝ ↔ (𝑋𝑖):𝑇⟶ℝ))
210209imbi2d 330 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑋𝑖) → ((𝜑𝑓:𝑇⟶ℝ) ↔ (𝜑 → (𝑋𝑖):𝑇⟶ℝ)))
211210, 63vtoclga 3272 . . . . . . . . . . . . . . . . 17 ((𝑋𝑖) ∈ 𝐴 → (𝜑 → (𝑋𝑖):𝑇⟶ℝ))
212207, 208, 211sylc 65 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑖 ∈ (0...(𝑚 + 1))) → (𝑋𝑖):𝑇⟶ℝ)
213212ffvelrnda 6359 . . . . . . . . . . . . . . 15 ((((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑖 ∈ (0...(𝑚 + 1))) ∧ 𝑡𝑇) → ((𝑋𝑖)‘𝑡) ∈ ℝ)
214199, 213syl 17 . . . . . . . . . . . . . 14 ((((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) ∧ 𝑖 ∈ (0...𝑚)) → ((𝑋𝑖)‘𝑡) ∈ ℝ)
215195, 214remulcld 10070 . . . . . . . . . . . . 13 ((((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) ∧ 𝑖 ∈ (0...𝑚)) → (𝐸 · ((𝑋𝑖)‘𝑡)) ∈ ℝ)
216192, 215fsumrecl 14465 . . . . . . . . . . . 12 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) → Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)) ∈ ℝ)
217 eqid 2622 . . . . . . . . . . . . 13 (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))
218217fvmpt2 6291 . . . . . . . . . . . 12 ((𝑡𝑇 ∧ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)) ∈ ℝ) → ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) = Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))
219191, 216, 218syl2anc 693 . . . . . . . . . . 11 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) → ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) = Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))
220219oveq1d 6665 . . . . . . . . . 10 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) → (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡))) = (Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)) + (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡))))
221 3simpc 1060 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) → (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)))
222221adantr 481 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) → (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)))
223 feq1 6026 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑋‘(𝑚 + 1)) → (𝑓:𝑇⟶ℝ ↔ (𝑋‘(𝑚 + 1)):𝑇⟶ℝ))
224223imbi2d 330 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑋‘(𝑚 + 1)) → ((𝜑𝑓:𝑇⟶ℝ) ↔ (𝜑 → (𝑋‘(𝑚 + 1)):𝑇⟶ℝ)))
225224, 63vtoclga 3272 . . . . . . . . . . . . . . . 16 ((𝑋‘(𝑚 + 1)) ∈ 𝐴 → (𝜑 → (𝑋‘(𝑚 + 1)):𝑇⟶ℝ))
22691, 92, 225sylc 65 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) → (𝑋‘(𝑚 + 1)):𝑇⟶ℝ)
227222, 226syl 17 . . . . . . . . . . . . . 14 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) → (𝑋‘(𝑚 + 1)):𝑇⟶ℝ)
228227, 191ffvelrnd 6360 . . . . . . . . . . . . 13 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) → ((𝑋‘(𝑚 + 1))‘𝑡) ∈ ℝ)
229194, 228remulcld 10070 . . . . . . . . . . . 12 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) → (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)) ∈ ℝ)
230 eqid 2622 . . . . . . . . . . . . 13 (𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡))) = (𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))
231230fvmpt2 6291 . . . . . . . . . . . 12 ((𝑡𝑇 ∧ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)) ∈ ℝ) → ((𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))‘𝑡) = (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))
232191, 229, 231syl2anc 693 . . . . . . . . . . 11 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) → ((𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))‘𝑡) = (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))
233232oveq2d 6666 . . . . . . . . . 10 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) → (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + ((𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))‘𝑡)) = (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡))))
234 elfzuz 12338 . . . . . . . . . . . . . 14 ((𝑚 + 1) ∈ (0...𝑁) → (𝑚 + 1) ∈ (ℤ‘0))
2352343ad2ant3 1084 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) → (𝑚 + 1) ∈ (ℤ‘0))
236235adantr 481 . . . . . . . . . . . 12 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) → (𝑚 + 1) ∈ (ℤ‘0))
237194adantr 481 . . . . . . . . . . . . 13 ((((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) ∧ 𝑖 ∈ (0...(𝑚 + 1))) → 𝐸 ∈ ℝ)
238213an32s 846 . . . . . . . . . . . . 13 ((((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) ∧ 𝑖 ∈ (0...(𝑚 + 1))) → ((𝑋𝑖)‘𝑡) ∈ ℝ)
239 remulcl 10021 . . . . . . . . . . . . . 14 ((𝐸 ∈ ℝ ∧ ((𝑋𝑖)‘𝑡) ∈ ℝ) → (𝐸 · ((𝑋𝑖)‘𝑡)) ∈ ℝ)
240239recnd 10068 . . . . . . . . . . . . 13 ((𝐸 ∈ ℝ ∧ ((𝑋𝑖)‘𝑡) ∈ ℝ) → (𝐸 · ((𝑋𝑖)‘𝑡)) ∈ ℂ)
241237, 238, 240syl2anc 693 . . . . . . . . . . . 12 ((((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) ∧ 𝑖 ∈ (0...(𝑚 + 1))) → (𝐸 · ((𝑋𝑖)‘𝑡)) ∈ ℂ)
242 fveq2 6191 . . . . . . . . . . . . . 14 (𝑖 = (𝑚 + 1) → (𝑋𝑖) = (𝑋‘(𝑚 + 1)))
243242fveq1d 6193 . . . . . . . . . . . . 13 (𝑖 = (𝑚 + 1) → ((𝑋𝑖)‘𝑡) = ((𝑋‘(𝑚 + 1))‘𝑡))
244243oveq2d 6666 . . . . . . . . . . . 12 (𝑖 = (𝑚 + 1) → (𝐸 · ((𝑋𝑖)‘𝑡)) = (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))
245236, 241, 244fsumm1 14480 . . . . . . . . . . 11 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) → Σ𝑖 ∈ (0...(𝑚 + 1))(𝐸 · ((𝑋𝑖)‘𝑡)) = (Σ𝑖 ∈ (0...((𝑚 + 1) − 1))(𝐸 · ((𝑋𝑖)‘𝑡)) + (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡))))
246 nn0cn 11302 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ0𝑚 ∈ ℂ)
2472463ad2ant1 1082 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) → 𝑚 ∈ ℂ)
248247adantr 481 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) → 𝑚 ∈ ℂ)
249 1cnd 10056 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) → 1 ∈ ℂ)
250248, 249pncand 10393 . . . . . . . . . . . . . 14 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) → ((𝑚 + 1) − 1) = 𝑚)
251250oveq2d 6666 . . . . . . . . . . . . 13 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) → (0...((𝑚 + 1) − 1)) = (0...𝑚))
252251sumeq1d 14431 . . . . . . . . . . . 12 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) → Σ𝑖 ∈ (0...((𝑚 + 1) − 1))(𝐸 · ((𝑋𝑖)‘𝑡)) = Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))
253252oveq1d 6665 . . . . . . . . . . 11 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) → (Σ𝑖 ∈ (0...((𝑚 + 1) − 1))(𝐸 · ((𝑋𝑖)‘𝑡)) + (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡))) = (Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)) + (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡))))
254245, 253eqtrd 2656 . . . . . . . . . 10 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) → Σ𝑖 ∈ (0...(𝑚 + 1))(𝐸 · ((𝑋𝑖)‘𝑡)) = (Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)) + (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡))))
255220, 233, 2543eqtr4rd 2667 . . . . . . . . 9 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) → Σ𝑖 ∈ (0...(𝑚 + 1))(𝐸 · ((𝑋𝑖)‘𝑡)) = (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + ((𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))‘𝑡)))
256190, 255mpteq2da 4743 . . . . . . . 8 ((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...(𝑚 + 1))(𝐸 · ((𝑋𝑖)‘𝑡))) = (𝑡𝑇 ↦ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + ((𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))‘𝑡))))
257256eleq1d 2686 . . . . . . 7 ((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) → ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...(𝑚 + 1))(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴 ↔ (𝑡𝑇 ↦ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + ((𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))‘𝑡))) ∈ 𝐴))
258187, 257syl 17 . . . . . 6 (((𝑚 ∈ ℕ0 → ((𝜑𝑚 ∈ (0...𝑁)) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴)) ∧ (𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)))) → ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...(𝑚 + 1))(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴 ↔ (𝑡𝑇 ↦ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + ((𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))‘𝑡))) ∈ 𝐴))
259184, 258mpbird 247 . . . . 5 (((𝑚 ∈ ℕ0 → ((𝜑𝑚 ∈ (0...𝑁)) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴)) ∧ (𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)))) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...(𝑚 + 1))(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴)
260259exp32 631 . . . 4 ((𝑚 ∈ ℕ0 → ((𝜑𝑚 ∈ (0...𝑁)) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴)) → (𝑚 ∈ ℕ0 → ((𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...(𝑚 + 1))(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴)))
261260pm2.86i 109 . . 3 (𝑚 ∈ ℕ0 → (((𝜑𝑚 ∈ (0...𝑁)) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴) → ((𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...(𝑚 + 1))(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴)))
26214, 21, 28, 35, 80, 261nn0ind 11472 . 2 (𝑁 ∈ ℕ0 → ((𝜑𝑁 ∈ (0...𝑁)) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴))
2632, 7, 262sylc 65 1 (𝜑 → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wnf 1708  wcel 1990  wss 3574  {csn 4177   class class class wbr 4653  cmpt 4729  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266  cn 11020  0cn0 11292  cz 11377  cuz 11687  ...cfz 12326  Σcsu 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417
This theorem is referenced by:  stoweidlem60  40277
  Copyright terms: Public domain W3C validator