Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvmptfprodlem Structured version   Visualization version   GIF version

Theorem dvmptfprodlem 40159
Description: Induction step for dvmptfprod 40160. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
dvmptfprodlem.xph 𝑥𝜑
dvmptfprodlem.iph 𝑖𝜑
dvmptfprodlem.jph 𝑗𝜑
dvmptfprodlem.if 𝑖𝐹
dvmptfprodlem.jg 𝑗𝐺
dvmptfprodlem.a ((𝜑𝑖𝐼𝑥𝑋) → 𝐴 ∈ ℂ)
dvmptfprodlem.d (𝜑𝐷 ∈ Fin)
dvmptfprodlem.e (𝜑𝐸 ∈ V)
dvmptfprodlem.db (𝜑 → ¬ 𝐸𝐷)
dvmptfprodlem.ss (𝜑 → (𝐷 ∪ {𝐸}) ⊆ 𝐼)
dvmptfprodlem.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvmptfprodlem.c (((𝜑𝑥𝑋) ∧ 𝑗𝐷) → 𝐶 ∈ ℂ)
dvmptfprodlem.dvp (𝜑 → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝐷 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝐷 (𝐶 · ∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴)))
dvmptfprodlem.14 ((𝜑𝑥𝑋) → 𝐺 ∈ ℂ)
dvmptfprodlem.dvf (𝜑 → (𝑆 D (𝑥𝑋𝐹)) = (𝑥𝑋𝐺))
dvmptfprodlem.f (𝑖 = 𝐸𝐴 = 𝐹)
dvmptfprodlem.cg (𝑗 = 𝐸𝐶 = 𝐺)
Assertion
Ref Expression
dvmptfprodlem (𝜑 → (𝑆 D (𝑥𝑋 ↦ ∏𝑖 ∈ (𝐷 ∪ {𝐸})𝐴)) = (𝑥𝑋 ↦ Σ𝑗 ∈ (𝐷 ∪ {𝐸})(𝐶 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})𝐴)))
Distinct variable groups:   𝐴,𝑗   𝐷,𝑖,𝑗,𝑥   𝑖,𝐸,𝑗,𝑥   𝑗,𝐹   𝑖,𝐼   𝑖,𝑋,𝑗,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑖,𝑗)   𝐴(𝑥,𝑖)   𝐶(𝑥,𝑖,𝑗)   𝑆(𝑥,𝑖,𝑗)   𝐹(𝑥,𝑖)   𝐺(𝑥,𝑖,𝑗)   𝐼(𝑥,𝑗)

Proof of Theorem dvmptfprodlem
StepHypRef Expression
1 dvmptfprodlem.xph . . . 4 𝑥𝜑
2 dvmptfprodlem.iph . . . . . . 7 𝑖𝜑
3 nfcv 2764 . . . . . . . 8 𝑖𝑥
4 nfcv 2764 . . . . . . . 8 𝑖𝑋
53, 4nfel 2777 . . . . . . 7 𝑖 𝑥𝑋
62, 5nfan 1828 . . . . . 6 𝑖(𝜑𝑥𝑋)
7 dvmptfprodlem.if . . . . . . 7 𝑖𝐹
87a1i 11 . . . . . 6 ((𝜑𝑥𝑋) → 𝑖𝐹)
9 dvmptfprodlem.d . . . . . . . 8 (𝜑𝐷 ∈ Fin)
10 snfi 8038 . . . . . . . . 9 {𝐸} ∈ Fin
1110a1i 11 . . . . . . . 8 (𝜑 → {𝐸} ∈ Fin)
12 unfi 8227 . . . . . . . 8 ((𝐷 ∈ Fin ∧ {𝐸} ∈ Fin) → (𝐷 ∪ {𝐸}) ∈ Fin)
139, 11, 12syl2anc 693 . . . . . . 7 (𝜑 → (𝐷 ∪ {𝐸}) ∈ Fin)
1413adantr 481 . . . . . 6 ((𝜑𝑥𝑋) → (𝐷 ∪ {𝐸}) ∈ Fin)
15 simpll 790 . . . . . . 7 (((𝜑𝑥𝑋) ∧ 𝑖 ∈ (𝐷 ∪ {𝐸})) → 𝜑)
16 dvmptfprodlem.ss . . . . . . . . 9 (𝜑 → (𝐷 ∪ {𝐸}) ⊆ 𝐼)
1716sselda 3603 . . . . . . . 8 ((𝜑𝑖 ∈ (𝐷 ∪ {𝐸})) → 𝑖𝐼)
1817adantlr 751 . . . . . . 7 (((𝜑𝑥𝑋) ∧ 𝑖 ∈ (𝐷 ∪ {𝐸})) → 𝑖𝐼)
19 simplr 792 . . . . . . 7 (((𝜑𝑥𝑋) ∧ 𝑖 ∈ (𝐷 ∪ {𝐸})) → 𝑥𝑋)
20 dvmptfprodlem.a . . . . . . 7 ((𝜑𝑖𝐼𝑥𝑋) → 𝐴 ∈ ℂ)
2115, 18, 19, 20syl3anc 1326 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑖 ∈ (𝐷 ∪ {𝐸})) → 𝐴 ∈ ℂ)
22 dvmptfprodlem.e . . . . . . . . 9 (𝜑𝐸 ∈ V)
23 snidg 4206 . . . . . . . . 9 (𝐸 ∈ V → 𝐸 ∈ {𝐸})
2422, 23syl 17 . . . . . . . 8 (𝜑𝐸 ∈ {𝐸})
25 elun2 3781 . . . . . . . 8 (𝐸 ∈ {𝐸} → 𝐸 ∈ (𝐷 ∪ {𝐸}))
2624, 25syl 17 . . . . . . 7 (𝜑𝐸 ∈ (𝐷 ∪ {𝐸}))
2726adantr 481 . . . . . 6 ((𝜑𝑥𝑋) → 𝐸 ∈ (𝐷 ∪ {𝐸}))
28 dvmptfprodlem.f . . . . . . 7 (𝑖 = 𝐸𝐴 = 𝐹)
2928adantl 482 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑖 = 𝐸) → 𝐴 = 𝐹)
306, 8, 14, 21, 27, 29fprodsplit1f 14721 . . . . 5 ((𝜑𝑥𝑋) → ∏𝑖 ∈ (𝐷 ∪ {𝐸})𝐴 = (𝐹 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝐸})𝐴))
31 difundir 3880 . . . . . . . . . 10 ((𝐷 ∪ {𝐸}) ∖ {𝐸}) = ((𝐷 ∖ {𝐸}) ∪ ({𝐸} ∖ {𝐸}))
3231a1i 11 . . . . . . . . 9 (𝜑 → ((𝐷 ∪ {𝐸}) ∖ {𝐸}) = ((𝐷 ∖ {𝐸}) ∪ ({𝐸} ∖ {𝐸})))
33 dvmptfprodlem.db . . . . . . . . . . 11 (𝜑 → ¬ 𝐸𝐷)
34 difsn 4328 . . . . . . . . . . 11 𝐸𝐷 → (𝐷 ∖ {𝐸}) = 𝐷)
3533, 34syl 17 . . . . . . . . . 10 (𝜑 → (𝐷 ∖ {𝐸}) = 𝐷)
36 difid 3948 . . . . . . . . . . 11 ({𝐸} ∖ {𝐸}) = ∅
3736a1i 11 . . . . . . . . . 10 (𝜑 → ({𝐸} ∖ {𝐸}) = ∅)
3835, 37uneq12d 3768 . . . . . . . . 9 (𝜑 → ((𝐷 ∖ {𝐸}) ∪ ({𝐸} ∖ {𝐸})) = (𝐷 ∪ ∅))
39 un0 3967 . . . . . . . . . 10 (𝐷 ∪ ∅) = 𝐷
4039a1i 11 . . . . . . . . 9 (𝜑 → (𝐷 ∪ ∅) = 𝐷)
4132, 38, 403eqtrd 2660 . . . . . . . 8 (𝜑 → ((𝐷 ∪ {𝐸}) ∖ {𝐸}) = 𝐷)
4241prodeq1d 14651 . . . . . . 7 (𝜑 → ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝐸})𝐴 = ∏𝑖𝐷 𝐴)
4342oveq2d 6666 . . . . . 6 (𝜑 → (𝐹 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝐸})𝐴) = (𝐹 · ∏𝑖𝐷 𝐴))
4443adantr 481 . . . . 5 ((𝜑𝑥𝑋) → (𝐹 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝐸})𝐴) = (𝐹 · ∏𝑖𝐷 𝐴))
4530, 44eqtrd 2656 . . . 4 ((𝜑𝑥𝑋) → ∏𝑖 ∈ (𝐷 ∪ {𝐸})𝐴 = (𝐹 · ∏𝑖𝐷 𝐴))
461, 45mpteq2da 4743 . . 3 (𝜑 → (𝑥𝑋 ↦ ∏𝑖 ∈ (𝐷 ∪ {𝐸})𝐴) = (𝑥𝑋 ↦ (𝐹 · ∏𝑖𝐷 𝐴)))
4746oveq2d 6666 . 2 (𝜑 → (𝑆 D (𝑥𝑋 ↦ ∏𝑖 ∈ (𝐷 ∪ {𝐸})𝐴)) = (𝑆 D (𝑥𝑋 ↦ (𝐹 · ∏𝑖𝐷 𝐴))))
48 dvmptfprodlem.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
4916, 26sseldd 3604 . . . . 5 (𝜑𝐸𝐼)
5049adantr 481 . . . 4 ((𝜑𝑥𝑋) → 𝐸𝐼)
51 simpl 473 . . . . 5 ((𝜑𝑥𝑋) → 𝜑)
52 simpr 477 . . . . 5 ((𝜑𝑥𝑋) → 𝑥𝑋)
5351, 50, 523jca 1242 . . . 4 ((𝜑𝑥𝑋) → (𝜑𝐸𝐼𝑥𝑋))
54 nfcv 2764 . . . . 5 𝑖𝐸
55 nfv 1843 . . . . . . 7 𝑖 𝐸𝐼
562, 55, 5nf3an 1831 . . . . . 6 𝑖(𝜑𝐸𝐼𝑥𝑋)
57 nfcv 2764 . . . . . . 7 𝑖
587, 57nfel 2777 . . . . . 6 𝑖 𝐹 ∈ ℂ
5956, 58nfim 1825 . . . . 5 𝑖((𝜑𝐸𝐼𝑥𝑋) → 𝐹 ∈ ℂ)
60 ancom 466 . . . . . . . . . . . . 13 (((𝜑𝑥𝑋) ∧ 𝑖 = 𝐸) ↔ (𝑖 = 𝐸 ∧ (𝜑𝑥𝑋)))
6160imbi1i 339 . . . . . . . . . . . 12 ((((𝜑𝑥𝑋) ∧ 𝑖 = 𝐸) → 𝐴 = 𝐹) ↔ ((𝑖 = 𝐸 ∧ (𝜑𝑥𝑋)) → 𝐴 = 𝐹))
62 eqcom 2629 . . . . . . . . . . . . 13 (𝐴 = 𝐹𝐹 = 𝐴)
6362imbi2i 326 . . . . . . . . . . . 12 (((𝑖 = 𝐸 ∧ (𝜑𝑥𝑋)) → 𝐴 = 𝐹) ↔ ((𝑖 = 𝐸 ∧ (𝜑𝑥𝑋)) → 𝐹 = 𝐴))
6461, 63bitri 264 . . . . . . . . . . 11 ((((𝜑𝑥𝑋) ∧ 𝑖 = 𝐸) → 𝐴 = 𝐹) ↔ ((𝑖 = 𝐸 ∧ (𝜑𝑥𝑋)) → 𝐹 = 𝐴))
6529, 64mpbi 220 . . . . . . . . . 10 ((𝑖 = 𝐸 ∧ (𝜑𝑥𝑋)) → 𝐹 = 𝐴)
66653adantr2 1221 . . . . . . . . 9 ((𝑖 = 𝐸 ∧ (𝜑𝐸𝐼𝑥𝑋)) → 𝐹 = 𝐴)
67663adant2 1080 . . . . . . . 8 ((𝑖 = 𝐸 ∧ ((𝜑𝑖𝐼𝑥𝑋) → 𝐴 ∈ ℂ) ∧ (𝜑𝐸𝐼𝑥𝑋)) → 𝐹 = 𝐴)
68 simp3 1063 . . . . . . . . 9 ((𝑖 = 𝐸 ∧ ((𝜑𝑖𝐼𝑥𝑋) → 𝐴 ∈ ℂ) ∧ (𝜑𝐸𝐼𝑥𝑋)) → (𝜑𝐸𝐼𝑥𝑋))
69 eleq1 2689 . . . . . . . . . . . . 13 (𝑖 = 𝐸 → (𝑖𝐼𝐸𝐼))
70693anbi2d 1404 . . . . . . . . . . . 12 (𝑖 = 𝐸 → ((𝜑𝑖𝐼𝑥𝑋) ↔ (𝜑𝐸𝐼𝑥𝑋)))
7170imbi1d 331 . . . . . . . . . . 11 (𝑖 = 𝐸 → (((𝜑𝑖𝐼𝑥𝑋) → 𝐴 ∈ ℂ) ↔ ((𝜑𝐸𝐼𝑥𝑋) → 𝐴 ∈ ℂ)))
7271biimpa 501 . . . . . . . . . 10 ((𝑖 = 𝐸 ∧ ((𝜑𝑖𝐼𝑥𝑋) → 𝐴 ∈ ℂ)) → ((𝜑𝐸𝐼𝑥𝑋) → 𝐴 ∈ ℂ))
73723adant3 1081 . . . . . . . . 9 ((𝑖 = 𝐸 ∧ ((𝜑𝑖𝐼𝑥𝑋) → 𝐴 ∈ ℂ) ∧ (𝜑𝐸𝐼𝑥𝑋)) → ((𝜑𝐸𝐼𝑥𝑋) → 𝐴 ∈ ℂ))
7468, 73mpd 15 . . . . . . . 8 ((𝑖 = 𝐸 ∧ ((𝜑𝑖𝐼𝑥𝑋) → 𝐴 ∈ ℂ) ∧ (𝜑𝐸𝐼𝑥𝑋)) → 𝐴 ∈ ℂ)
7567, 74eqeltrd 2701 . . . . . . 7 ((𝑖 = 𝐸 ∧ ((𝜑𝑖𝐼𝑥𝑋) → 𝐴 ∈ ℂ) ∧ (𝜑𝐸𝐼𝑥𝑋)) → 𝐹 ∈ ℂ)
76753exp 1264 . . . . . 6 (𝑖 = 𝐸 → (((𝜑𝑖𝐼𝑥𝑋) → 𝐴 ∈ ℂ) → ((𝜑𝐸𝐼𝑥𝑋) → 𝐹 ∈ ℂ)))
77202a1i 12 . . . . . 6 (𝑖 = 𝐸 → (((𝜑𝐸𝐼𝑥𝑋) → 𝐹 ∈ ℂ) → ((𝜑𝑖𝐼𝑥𝑋) → 𝐴 ∈ ℂ)))
7876, 77impbid 202 . . . . 5 (𝑖 = 𝐸 → (((𝜑𝑖𝐼𝑥𝑋) → 𝐴 ∈ ℂ) ↔ ((𝜑𝐸𝐼𝑥𝑋) → 𝐹 ∈ ℂ)))
7954, 59, 78, 20vtoclgf 3264 . . . 4 (𝐸𝐼 → ((𝜑𝐸𝐼𝑥𝑋) → 𝐹 ∈ ℂ))
8050, 53, 79sylc 65 . . 3 ((𝜑𝑥𝑋) → 𝐹 ∈ ℂ)
81 dvmptfprodlem.14 . . 3 ((𝜑𝑥𝑋) → 𝐺 ∈ ℂ)
82 dvmptfprodlem.dvf . . 3 (𝜑 → (𝑆 D (𝑥𝑋𝐹)) = (𝑥𝑋𝐺))
8351, 9syl 17 . . . 4 ((𝜑𝑥𝑋) → 𝐷 ∈ Fin)
8451adantr 481 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑖𝐷) → 𝜑)
8516adantr 481 . . . . . . 7 ((𝜑𝑖𝐷) → (𝐷 ∪ {𝐸}) ⊆ 𝐼)
86 elun1 3780 . . . . . . . 8 (𝑖𝐷𝑖 ∈ (𝐷 ∪ {𝐸}))
8786adantl 482 . . . . . . 7 ((𝜑𝑖𝐷) → 𝑖 ∈ (𝐷 ∪ {𝐸}))
8885, 87sseldd 3604 . . . . . 6 ((𝜑𝑖𝐷) → 𝑖𝐼)
8988adantlr 751 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑖𝐷) → 𝑖𝐼)
9052adantr 481 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑖𝐷) → 𝑥𝑋)
9184, 89, 90, 20syl3anc 1326 . . . 4 (((𝜑𝑥𝑋) ∧ 𝑖𝐷) → 𝐴 ∈ ℂ)
926, 83, 91fprodclf 14723 . . 3 ((𝜑𝑥𝑋) → ∏𝑖𝐷 𝐴 ∈ ℂ)
93 dvmptfprodlem.jph . . . . 5 𝑗𝜑
94 nfv 1843 . . . . 5 𝑗 𝑥𝑋
9593, 94nfan 1828 . . . 4 𝑗(𝜑𝑥𝑋)
96 dvmptfprodlem.c . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑗𝐷) → 𝐶 ∈ ℂ)
97 diffi 8192 . . . . . . . . 9 (𝐷 ∈ Fin → (𝐷 ∖ {𝑗}) ∈ Fin)
989, 97syl 17 . . . . . . . 8 (𝜑 → (𝐷 ∖ {𝑗}) ∈ Fin)
9998adantr 481 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐷 ∖ {𝑗}) ∈ Fin)
100 eldifi 3732 . . . . . . . . 9 (𝑖 ∈ (𝐷 ∖ {𝑗}) → 𝑖𝐷)
101100adantl 482 . . . . . . . 8 (((𝜑𝑥𝑋) ∧ 𝑖 ∈ (𝐷 ∖ {𝑗})) → 𝑖𝐷)
102101, 91syldan 487 . . . . . . 7 (((𝜑𝑥𝑋) ∧ 𝑖 ∈ (𝐷 ∖ {𝑗})) → 𝐴 ∈ ℂ)
1036, 99, 102fprodclf 14723 . . . . . 6 ((𝜑𝑥𝑋) → ∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴 ∈ ℂ)
104103adantr 481 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑗𝐷) → ∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴 ∈ ℂ)
10596, 104mulcld 10060 . . . 4 (((𝜑𝑥𝑋) ∧ 𝑗𝐷) → (𝐶 · ∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴) ∈ ℂ)
10695, 83, 105fsumclf 39801 . . 3 ((𝜑𝑥𝑋) → Σ𝑗𝐷 (𝐶 · ∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴) ∈ ℂ)
107 dvmptfprodlem.dvp . . 3 (𝜑 → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝐷 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝐷 (𝐶 · ∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴)))
1081, 48, 80, 81, 82, 92, 106, 107dvmptmulf 40152 . 2 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐹 · ∏𝑖𝐷 𝐴))) = (𝑥𝑋 ↦ ((𝐺 · ∏𝑖𝐷 𝐴) + (Σ𝑗𝐷 (𝐶 · ∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴) · 𝐹))))
109 dvmptfprodlem.jg . . . . . 6 𝑗𝐺
110 nfcv 2764 . . . . . 6 𝑗 ·
111 nfcv 2764 . . . . . 6 𝑗𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝐸})𝐴
112109, 110, 111nfov 6676 . . . . 5 𝑗(𝐺 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝐸})𝐴)
11351, 22syl 17 . . . . 5 ((𝜑𝑥𝑋) → 𝐸 ∈ V)
11451, 33syl 17 . . . . 5 ((𝜑𝑥𝑋) → ¬ 𝐸𝐷)
115 diffi 8192 . . . . . . . . . 10 ((𝐷 ∪ {𝐸}) ∈ Fin → ((𝐷 ∪ {𝐸}) ∖ {𝑗}) ∈ Fin)
11613, 115syl 17 . . . . . . . . 9 (𝜑 → ((𝐷 ∪ {𝐸}) ∖ {𝑗}) ∈ Fin)
117116adantr 481 . . . . . . . 8 ((𝜑𝑥𝑋) → ((𝐷 ∪ {𝐸}) ∖ {𝑗}) ∈ Fin)
118 eldifi 3732 . . . . . . . . . 10 (𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗}) → 𝑖 ∈ (𝐷 ∪ {𝐸}))
119118adantl 482 . . . . . . . . 9 (((𝜑𝑥𝑋) ∧ 𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})) → 𝑖 ∈ (𝐷 ∪ {𝐸}))
120119, 21syldan 487 . . . . . . . 8 (((𝜑𝑥𝑋) ∧ 𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})) → 𝐴 ∈ ℂ)
1216, 117, 120fprodclf 14723 . . . . . . 7 ((𝜑𝑥𝑋) → ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})𝐴 ∈ ℂ)
122121adantr 481 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑗𝐷) → ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})𝐴 ∈ ℂ)
12396, 122mulcld 10060 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑗𝐷) → (𝐶 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})𝐴) ∈ ℂ)
124 dvmptfprodlem.cg . . . . . 6 (𝑗 = 𝐸𝐶 = 𝐺)
125 sneq 4187 . . . . . . . 8 (𝑗 = 𝐸 → {𝑗} = {𝐸})
126125difeq2d 3728 . . . . . . 7 (𝑗 = 𝐸 → ((𝐷 ∪ {𝐸}) ∖ {𝑗}) = ((𝐷 ∪ {𝐸}) ∖ {𝐸}))
127126prodeq1d 14651 . . . . . 6 (𝑗 = 𝐸 → ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})𝐴 = ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝐸})𝐴)
128124, 127oveq12d 6668 . . . . 5 (𝑗 = 𝐸 → (𝐶 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})𝐴) = (𝐺 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝐸})𝐴))
12941, 9eqeltrd 2701 . . . . . . . 8 (𝜑 → ((𝐷 ∪ {𝐸}) ∖ {𝐸}) ∈ Fin)
130129adantr 481 . . . . . . 7 ((𝜑𝑥𝑋) → ((𝐷 ∪ {𝐸}) ∖ {𝐸}) ∈ Fin)
13151adantr 481 . . . . . . . 8 (((𝜑𝑥𝑋) ∧ 𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝐸})) → 𝜑)
13216adantr 481 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝐸})) → (𝐷 ∪ {𝐸}) ⊆ 𝐼)
133 eldifi 3732 . . . . . . . . . . 11 (𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝐸}) → 𝑖 ∈ (𝐷 ∪ {𝐸}))
134133adantl 482 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝐸})) → 𝑖 ∈ (𝐷 ∪ {𝐸}))
135132, 134sseldd 3604 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝐸})) → 𝑖𝐼)
136135adantlr 751 . . . . . . . 8 (((𝜑𝑥𝑋) ∧ 𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝐸})) → 𝑖𝐼)
13752adantr 481 . . . . . . . 8 (((𝜑𝑥𝑋) ∧ 𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝐸})) → 𝑥𝑋)
138131, 136, 137, 20syl3anc 1326 . . . . . . 7 (((𝜑𝑥𝑋) ∧ 𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝐸})) → 𝐴 ∈ ℂ)
1396, 130, 138fprodclf 14723 . . . . . 6 ((𝜑𝑥𝑋) → ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝐸})𝐴 ∈ ℂ)
14081, 139mulcld 10060 . . . . 5 ((𝜑𝑥𝑋) → (𝐺 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝐸})𝐴) ∈ ℂ)
14195, 112, 83, 113, 114, 123, 128, 140fsumsplitsn 14474 . . . 4 ((𝜑𝑥𝑋) → Σ𝑗 ∈ (𝐷 ∪ {𝐸})(𝐶 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})𝐴) = (Σ𝑗𝐷 (𝐶 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})𝐴) + (𝐺 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝐸})𝐴)))
142 difundir 3880 . . . . . . . . . . . . . . . . 17 ((𝐷 ∪ {𝐸}) ∖ {𝑗}) = ((𝐷 ∖ {𝑗}) ∪ ({𝐸} ∖ {𝑗}))
143142a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝐷) → ((𝐷 ∪ {𝐸}) ∖ {𝑗}) = ((𝐷 ∖ {𝑗}) ∪ ({𝐸} ∖ {𝑗})))
144 nfv 1843 . . . . . . . . . . . . . . . . . . . . 21 𝑥 𝑗𝐷
1451, 144nfan 1828 . . . . . . . . . . . . . . . . . . . 20 𝑥(𝜑𝑗𝐷)
146 elsni 4194 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 ∈ {𝐸} → 𝑥 = 𝐸)
147146eqcomd 2628 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ {𝐸} → 𝐸 = 𝑥)
148147adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥 ∈ {𝐸} ∧ 𝑥 = 𝑗) → 𝐸 = 𝑥)
149 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥 ∈ {𝐸} ∧ 𝑥 = 𝑗) → 𝑥 = 𝑗)
150 eqidd 2623 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥 ∈ {𝐸} ∧ 𝑥 = 𝑗) → 𝑗 = 𝑗)
151148, 149, 1503eqtrd 2660 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ {𝐸} ∧ 𝑥 = 𝑗) → 𝐸 = 𝑗)
152151adantll 750 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑗𝐷) ∧ 𝑥 ∈ {𝐸}) ∧ 𝑥 = 𝑗) → 𝐸 = 𝑗)
153 simpllr 799 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑗𝐷) ∧ 𝑥 ∈ {𝐸}) ∧ 𝑥 = 𝑗) → 𝑗𝐷)
154152, 153eqeltrd 2701 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑗𝐷) ∧ 𝑥 ∈ {𝐸}) ∧ 𝑥 = 𝑗) → 𝐸𝐷)
15533ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑗𝐷) ∧ 𝑥 ∈ {𝐸}) ∧ 𝑥 = 𝑗) → ¬ 𝐸𝐷)
156154, 155pm2.65da 600 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗𝐷) ∧ 𝑥 ∈ {𝐸}) → ¬ 𝑥 = 𝑗)
157 velsn 4193 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ {𝑗} ↔ 𝑥 = 𝑗)
158156, 157sylnibr 319 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗𝐷) ∧ 𝑥 ∈ {𝐸}) → ¬ 𝑥 ∈ {𝑗})
159158ex 450 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗𝐷) → (𝑥 ∈ {𝐸} → ¬ 𝑥 ∈ {𝑗}))
160145, 159ralrimi 2957 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗𝐷) → ∀𝑥 ∈ {𝐸} ¬ 𝑥 ∈ {𝑗})
161 disj 4017 . . . . . . . . . . . . . . . . . . 19 (({𝐸} ∩ {𝑗}) = ∅ ↔ ∀𝑥 ∈ {𝐸} ¬ 𝑥 ∈ {𝑗})
162160, 161sylibr 224 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝐷) → ({𝐸} ∩ {𝑗}) = ∅)
163 disjdif2 4047 . . . . . . . . . . . . . . . . . 18 (({𝐸} ∩ {𝑗}) = ∅ → ({𝐸} ∖ {𝑗}) = {𝐸})
164162, 163syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝐷) → ({𝐸} ∖ {𝑗}) = {𝐸})
165164uneq2d 3767 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝐷) → ((𝐷 ∖ {𝑗}) ∪ ({𝐸} ∖ {𝑗})) = ((𝐷 ∖ {𝑗}) ∪ {𝐸}))
166143, 165eqtrd 2656 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝐷) → ((𝐷 ∪ {𝐸}) ∖ {𝑗}) = ((𝐷 ∖ {𝑗}) ∪ {𝐸}))
167166prodeq1d 14651 . . . . . . . . . . . . . 14 ((𝜑𝑗𝐷) → ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})𝐴 = ∏𝑖 ∈ ((𝐷 ∖ {𝑗}) ∪ {𝐸})𝐴)
168167adantlr 751 . . . . . . . . . . . . 13 (((𝜑𝑥𝑋) ∧ 𝑗𝐷) → ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})𝐴 = ∏𝑖 ∈ ((𝐷 ∖ {𝑗}) ∪ {𝐸})𝐴)
169 nfv 1843 . . . . . . . . . . . . . . 15 𝑖 𝑗𝐷
1706, 169nfan 1828 . . . . . . . . . . . . . 14 𝑖((𝜑𝑥𝑋) ∧ 𝑗𝐷)
17199adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ 𝑗𝐷) → (𝐷 ∖ {𝑗}) ∈ Fin)
17251adantr 481 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ 𝑗𝐷) → 𝜑)
173172, 22syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ 𝑗𝐷) → 𝐸 ∈ V)
174 id 22 . . . . . . . . . . . . . . . . . 18 𝐸𝐷 → ¬ 𝐸𝐷)
175174intnanrd 963 . . . . . . . . . . . . . . . . . 18 𝐸𝐷 → ¬ (𝐸𝐷 ∧ ¬ 𝐸 ∈ {𝑗}))
176174, 175syl 17 . . . . . . . . . . . . . . . . 17 𝐸𝐷 → ¬ (𝐸𝐷 ∧ ¬ 𝐸 ∈ {𝑗}))
177 eldif 3584 . . . . . . . . . . . . . . . . 17 (𝐸 ∈ (𝐷 ∖ {𝑗}) ↔ (𝐸𝐷 ∧ ¬ 𝐸 ∈ {𝑗}))
178176, 177sylnibr 319 . . . . . . . . . . . . . . . 16 𝐸𝐷 → ¬ 𝐸 ∈ (𝐷 ∖ {𝑗}))
17933, 178syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ¬ 𝐸 ∈ (𝐷 ∖ {𝑗}))
180172, 179syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ 𝑗𝐷) → ¬ 𝐸 ∈ (𝐷 ∖ {𝑗}))
181102adantlr 751 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑋) ∧ 𝑗𝐷) ∧ 𝑖 ∈ (𝐷 ∖ {𝑗})) → 𝐴 ∈ ℂ)
18280adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ 𝑗𝐷) → 𝐹 ∈ ℂ)
183170, 7, 171, 173, 180, 181, 28, 182fprodsplitsn 14720 . . . . . . . . . . . . 13 (((𝜑𝑥𝑋) ∧ 𝑗𝐷) → ∏𝑖 ∈ ((𝐷 ∖ {𝑗}) ∪ {𝐸})𝐴 = (∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴 · 𝐹))
184 eqidd 2623 . . . . . . . . . . . . 13 (((𝜑𝑥𝑋) ∧ 𝑗𝐷) → (∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴 · 𝐹) = (∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴 · 𝐹))
185168, 183, 1843eqtrd 2660 . . . . . . . . . . . 12 (((𝜑𝑥𝑋) ∧ 𝑗𝐷) → ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})𝐴 = (∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴 · 𝐹))
186185oveq2d 6666 . . . . . . . . . . 11 (((𝜑𝑥𝑋) ∧ 𝑗𝐷) → (𝐶 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})𝐴) = (𝐶 · (∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴 · 𝐹)))
18796, 104, 182mulassd 10063 . . . . . . . . . . . 12 (((𝜑𝑥𝑋) ∧ 𝑗𝐷) → ((𝐶 · ∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴) · 𝐹) = (𝐶 · (∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴 · 𝐹)))
188187eqcomd 2628 . . . . . . . . . . 11 (((𝜑𝑥𝑋) ∧ 𝑗𝐷) → (𝐶 · (∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴 · 𝐹)) = ((𝐶 · ∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴) · 𝐹))
189186, 188eqtrd 2656 . . . . . . . . . 10 (((𝜑𝑥𝑋) ∧ 𝑗𝐷) → (𝐶 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})𝐴) = ((𝐶 · ∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴) · 𝐹))
190189ex 450 . . . . . . . . 9 ((𝜑𝑥𝑋) → (𝑗𝐷 → (𝐶 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})𝐴) = ((𝐶 · ∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴) · 𝐹)))
19195, 190ralrimi 2957 . . . . . . . 8 ((𝜑𝑥𝑋) → ∀𝑗𝐷 (𝐶 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})𝐴) = ((𝐶 · ∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴) · 𝐹))
192191sumeq2d 14432 . . . . . . 7 ((𝜑𝑥𝑋) → Σ𝑗𝐷 (𝐶 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})𝐴) = Σ𝑗𝐷 ((𝐶 · ∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴) · 𝐹))
19395, 83, 80, 105fsummulc1f 39802 . . . . . . . 8 ((𝜑𝑥𝑋) → (Σ𝑗𝐷 (𝐶 · ∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴) · 𝐹) = Σ𝑗𝐷 ((𝐶 · ∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴) · 𝐹))
194193eqcomd 2628 . . . . . . 7 ((𝜑𝑥𝑋) → Σ𝑗𝐷 ((𝐶 · ∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴) · 𝐹) = (Σ𝑗𝐷 (𝐶 · ∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴) · 𝐹))
195 eqidd 2623 . . . . . . 7 ((𝜑𝑥𝑋) → (Σ𝑗𝐷 (𝐶 · ∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴) · 𝐹) = (Σ𝑗𝐷 (𝐶 · ∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴) · 𝐹))
196192, 194, 1953eqtrd 2660 . . . . . 6 ((𝜑𝑥𝑋) → Σ𝑗𝐷 (𝐶 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})𝐴) = (Σ𝑗𝐷 (𝐶 · ∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴) · 𝐹))
197106, 80mulcld 10060 . . . . . 6 ((𝜑𝑥𝑋) → (Σ𝑗𝐷 (𝐶 · ∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴) · 𝐹) ∈ ℂ)
198196, 197eqeltrd 2701 . . . . 5 ((𝜑𝑥𝑋) → Σ𝑗𝐷 (𝐶 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})𝐴) ∈ ℂ)
199198, 140addcomd 10238 . . . 4 ((𝜑𝑥𝑋) → (Σ𝑗𝐷 (𝐶 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})𝐴) + (𝐺 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝐸})𝐴)) = ((𝐺 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝐸})𝐴) + Σ𝑗𝐷 (𝐶 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})𝐴)))
20042oveq2d 6666 . . . . . 6 (𝜑 → (𝐺 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝐸})𝐴) = (𝐺 · ∏𝑖𝐷 𝐴))
201200adantr 481 . . . . 5 ((𝜑𝑥𝑋) → (𝐺 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝐸})𝐴) = (𝐺 · ∏𝑖𝐷 𝐴))
202201, 196oveq12d 6668 . . . 4 ((𝜑𝑥𝑋) → ((𝐺 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝐸})𝐴) + Σ𝑗𝐷 (𝐶 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})𝐴)) = ((𝐺 · ∏𝑖𝐷 𝐴) + (Σ𝑗𝐷 (𝐶 · ∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴) · 𝐹)))
203141, 199, 2023eqtrrd 2661 . . 3 ((𝜑𝑥𝑋) → ((𝐺 · ∏𝑖𝐷 𝐴) + (Σ𝑗𝐷 (𝐶 · ∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴) · 𝐹)) = Σ𝑗 ∈ (𝐷 ∪ {𝐸})(𝐶 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})𝐴))
2041, 203mpteq2da 4743 . 2 (𝜑 → (𝑥𝑋 ↦ ((𝐺 · ∏𝑖𝐷 𝐴) + (Σ𝑗𝐷 (𝐶 · ∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴) · 𝐹))) = (𝑥𝑋 ↦ Σ𝑗 ∈ (𝐷 ∪ {𝐸})(𝐶 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})𝐴)))
20547, 108, 2043eqtrd 2660 1 (𝜑 → (𝑆 D (𝑥𝑋 ↦ ∏𝑖 ∈ (𝐷 ∪ {𝐸})𝐴)) = (𝑥𝑋 ↦ Σ𝑗 ∈ (𝐷 ∪ {𝐸})(𝐶 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037   = wceq 1483  wnf 1708  wcel 1990  wnfc 2751  wral 2912  Vcvv 3200  cdif 3571  cun 3572  cin 3573  wss 3574  c0 3915  {csn 4177  {cpr 4179  cmpt 4729  (class class class)co 6650  Fincfn 7955  cc 9934  cr 9935   + caddc 9939   · cmul 9941  Σcsu 14416  cprod 14635   D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-prod 14636  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631
This theorem is referenced by:  dvmptfprod  40160
  Copyright terms: Public domain W3C validator