MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul2lt0bi Structured version   Visualization version   GIF version

Theorem mul2lt0bi 11936
Description: If the result of a multiplication is strictly negative, then multiplicands are of different signs. (Contributed by Thierry Arnoux, 19-Sep-2018.)
Hypotheses
Ref Expression
mul2lt0.1 (𝜑𝐴 ∈ ℝ)
mul2lt0.2 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
mul2lt0bi (𝜑 → ((𝐴 · 𝐵) < 0 ↔ ((𝐴 < 0 ∧ 0 < 𝐵) ∨ (0 < 𝐴𝐵 < 0))))

Proof of Theorem mul2lt0bi
StepHypRef Expression
1 mul2lt0.1 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
2 mul2lt0.2 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
31, 2remulcld 10070 . . . . . . . 8 (𝜑 → (𝐴 · 𝐵) ∈ ℝ)
4 0red 10041 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
53, 4ltnled 10184 . . . . . . 7 (𝜑 → ((𝐴 · 𝐵) < 0 ↔ ¬ 0 ≤ (𝐴 · 𝐵)))
61adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 𝐴 ∈ ℝ)
72adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 𝐵 ∈ ℝ)
8 simprl 794 . . . . . . . . . 10 ((𝜑 ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ 𝐴)
9 simprr 796 . . . . . . . . . 10 ((𝜑 ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ 𝐵)
106, 7, 8, 9mulge0d 10604 . . . . . . . . 9 ((𝜑 ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵))
1110ex 450 . . . . . . . 8 (𝜑 → ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → 0 ≤ (𝐴 · 𝐵)))
1211con3d 148 . . . . . . 7 (𝜑 → (¬ 0 ≤ (𝐴 · 𝐵) → ¬ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)))
135, 12sylbid 230 . . . . . 6 (𝜑 → ((𝐴 · 𝐵) < 0 → ¬ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)))
14 ianor 509 . . . . . 6 (¬ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵) ↔ (¬ 0 ≤ 𝐴 ∨ ¬ 0 ≤ 𝐵))
1513, 14syl6ib 241 . . . . 5 (𝜑 → ((𝐴 · 𝐵) < 0 → (¬ 0 ≤ 𝐴 ∨ ¬ 0 ≤ 𝐵)))
161, 4ltnled 10184 . . . . . 6 (𝜑 → (𝐴 < 0 ↔ ¬ 0 ≤ 𝐴))
172, 4ltnled 10184 . . . . . 6 (𝜑 → (𝐵 < 0 ↔ ¬ 0 ≤ 𝐵))
1816, 17orbi12d 746 . . . . 5 (𝜑 → ((𝐴 < 0 ∨ 𝐵 < 0) ↔ (¬ 0 ≤ 𝐴 ∨ ¬ 0 ≤ 𝐵)))
1915, 18sylibrd 249 . . . 4 (𝜑 → ((𝐴 · 𝐵) < 0 → (𝐴 < 0 ∨ 𝐵 < 0)))
2019imp 445 . . 3 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝐴 < 0 ∨ 𝐵 < 0))
21 simpr 477 . . . . . 6 (((𝜑 ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 < 0) → 𝐴 < 0)
221adantr 481 . . . . . . 7 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 𝐴 ∈ ℝ)
232adantr 481 . . . . . . 7 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 𝐵 ∈ ℝ)
24 simpr 477 . . . . . . 7 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝐴 · 𝐵) < 0)
2522, 23, 24mul2lt0llt0 11934 . . . . . 6 (((𝜑 ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 < 0) → 0 < 𝐵)
2621, 25jca 554 . . . . 5 (((𝜑 ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 < 0) → (𝐴 < 0 ∧ 0 < 𝐵))
2726ex 450 . . . 4 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝐴 < 0 → (𝐴 < 0 ∧ 0 < 𝐵)))
2822, 23, 24mul2lt0rlt0 11932 . . . . . 6 (((𝜑 ∧ (𝐴 · 𝐵) < 0) ∧ 𝐵 < 0) → 0 < 𝐴)
29 simpr 477 . . . . . 6 (((𝜑 ∧ (𝐴 · 𝐵) < 0) ∧ 𝐵 < 0) → 𝐵 < 0)
3028, 29jca 554 . . . . 5 (((𝜑 ∧ (𝐴 · 𝐵) < 0) ∧ 𝐵 < 0) → (0 < 𝐴𝐵 < 0))
3130ex 450 . . . 4 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝐵 < 0 → (0 < 𝐴𝐵 < 0)))
3227, 31orim12d 883 . . 3 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → ((𝐴 < 0 ∨ 𝐵 < 0) → ((𝐴 < 0 ∧ 0 < 𝐵) ∨ (0 < 𝐴𝐵 < 0))))
3320, 32mpd 15 . 2 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → ((𝐴 < 0 ∧ 0 < 𝐵) ∨ (0 < 𝐴𝐵 < 0)))
341adantr 481 . . . . 5 ((𝜑 ∧ (𝐴 < 0 ∧ 0 < 𝐵)) → 𝐴 ∈ ℝ)
35 0red 10041 . . . . 5 ((𝜑 ∧ (𝐴 < 0 ∧ 0 < 𝐵)) → 0 ∈ ℝ)
362adantr 481 . . . . . 6 ((𝜑 ∧ (𝐴 < 0 ∧ 0 < 𝐵)) → 𝐵 ∈ ℝ)
37 simprr 796 . . . . . 6 ((𝜑 ∧ (𝐴 < 0 ∧ 0 < 𝐵)) → 0 < 𝐵)
3836, 37elrpd 11869 . . . . 5 ((𝜑 ∧ (𝐴 < 0 ∧ 0 < 𝐵)) → 𝐵 ∈ ℝ+)
39 simprl 794 . . . . 5 ((𝜑 ∧ (𝐴 < 0 ∧ 0 < 𝐵)) → 𝐴 < 0)
4034, 35, 38, 39ltmul1dd 11927 . . . 4 ((𝜑 ∧ (𝐴 < 0 ∧ 0 < 𝐵)) → (𝐴 · 𝐵) < (0 · 𝐵))
4136recnd 10068 . . . . 5 ((𝜑 ∧ (𝐴 < 0 ∧ 0 < 𝐵)) → 𝐵 ∈ ℂ)
4241mul02d 10234 . . . 4 ((𝜑 ∧ (𝐴 < 0 ∧ 0 < 𝐵)) → (0 · 𝐵) = 0)
4340, 42breqtrd 4679 . . 3 ((𝜑 ∧ (𝐴 < 0 ∧ 0 < 𝐵)) → (𝐴 · 𝐵) < 0)
442adantr 481 . . . . 5 ((𝜑 ∧ (0 < 𝐴𝐵 < 0)) → 𝐵 ∈ ℝ)
45 0red 10041 . . . . 5 ((𝜑 ∧ (0 < 𝐴𝐵 < 0)) → 0 ∈ ℝ)
461adantr 481 . . . . . 6 ((𝜑 ∧ (0 < 𝐴𝐵 < 0)) → 𝐴 ∈ ℝ)
47 simprl 794 . . . . . 6 ((𝜑 ∧ (0 < 𝐴𝐵 < 0)) → 0 < 𝐴)
4846, 47elrpd 11869 . . . . 5 ((𝜑 ∧ (0 < 𝐴𝐵 < 0)) → 𝐴 ∈ ℝ+)
49 simprr 796 . . . . 5 ((𝜑 ∧ (0 < 𝐴𝐵 < 0)) → 𝐵 < 0)
5044, 45, 48, 49ltmul2dd 11928 . . . 4 ((𝜑 ∧ (0 < 𝐴𝐵 < 0)) → (𝐴 · 𝐵) < (𝐴 · 0))
5146recnd 10068 . . . . 5 ((𝜑 ∧ (0 < 𝐴𝐵 < 0)) → 𝐴 ∈ ℂ)
5251mul01d 10235 . . . 4 ((𝜑 ∧ (0 < 𝐴𝐵 < 0)) → (𝐴 · 0) = 0)
5350, 52breqtrd 4679 . . 3 ((𝜑 ∧ (0 < 𝐴𝐵 < 0)) → (𝐴 · 𝐵) < 0)
5443, 53jaodan 826 . 2 ((𝜑 ∧ ((𝐴 < 0 ∧ 0 < 𝐵) ∨ (0 < 𝐴𝐵 < 0))) → (𝐴 · 𝐵) < 0)
5533, 54impbida 877 1 (𝜑 → ((𝐴 · 𝐵) < 0 ↔ ((𝐴 < 0 ∧ 0 < 𝐵) ∨ (0 < 𝐴𝐵 < 0))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  wcel 1990   class class class wbr 4653  (class class class)co 6650  cr 9935  0cc0 9936   · cmul 9941   < clt 10074  cle 10075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-rp 11833
This theorem is referenced by:  ztprmneprm  42125
  Copyright terms: Public domain W3C validator