MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrsum2 Structured version   Visualization version   GIF version

Theorem dchrsum2 24993
Description: An orthogonality relation for Dirichlet characters: the sum of all the values of a Dirichlet character 𝑋 is 0 if 𝑋 is non-principal and ϕ(𝑛) otherwise. Part of Theorem 6.5.1 of [Shapiro] p. 230. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchrsum.g 𝐺 = (DChr‘𝑁)
dchrsum.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrsum.d 𝐷 = (Base‘𝐺)
dchrsum.1 1 = (0g𝐺)
dchrsum.x (𝜑𝑋𝐷)
dchrsum2.u 𝑈 = (Unit‘𝑍)
Assertion
Ref Expression
dchrsum2 (𝜑 → Σ𝑎𝑈 (𝑋𝑎) = if(𝑋 = 1 , (ϕ‘𝑁), 0))
Distinct variable groups:   1 ,𝑎   𝜑,𝑎   𝑈,𝑎   𝑋,𝑎   𝑍,𝑎
Allowed substitution hints:   𝐷(𝑎)   𝐺(𝑎)   𝑁(𝑎)

Proof of Theorem dchrsum2
Dummy variables 𝑘 𝑥 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq2 2633 . 2 ((ϕ‘𝑁) = if(𝑋 = 1 , (ϕ‘𝑁), 0) → (Σ𝑎𝑈 (𝑋𝑎) = (ϕ‘𝑁) ↔ Σ𝑎𝑈 (𝑋𝑎) = if(𝑋 = 1 , (ϕ‘𝑁), 0)))
2 eqeq2 2633 . 2 (0 = if(𝑋 = 1 , (ϕ‘𝑁), 0) → (Σ𝑎𝑈 (𝑋𝑎) = 0 ↔ Σ𝑎𝑈 (𝑋𝑎) = if(𝑋 = 1 , (ϕ‘𝑁), 0)))
3 fveq1 6190 . . . . . 6 (𝑋 = 1 → (𝑋𝑎) = ( 1𝑎))
4 dchrsum.g . . . . . . 7 𝐺 = (DChr‘𝑁)
5 dchrsum.z . . . . . . 7 𝑍 = (ℤ/nℤ‘𝑁)
6 dchrsum.1 . . . . . . 7 1 = (0g𝐺)
7 dchrsum2.u . . . . . . 7 𝑈 = (Unit‘𝑍)
8 dchrsum.x . . . . . . . . 9 (𝜑𝑋𝐷)
9 dchrsum.d . . . . . . . . . 10 𝐷 = (Base‘𝐺)
104, 9dchrrcl 24965 . . . . . . . . 9 (𝑋𝐷𝑁 ∈ ℕ)
118, 10syl 17 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
1211adantr 481 . . . . . . 7 ((𝜑𝑎𝑈) → 𝑁 ∈ ℕ)
13 simpr 477 . . . . . . 7 ((𝜑𝑎𝑈) → 𝑎𝑈)
144, 5, 6, 7, 12, 13dchr1 24982 . . . . . 6 ((𝜑𝑎𝑈) → ( 1𝑎) = 1)
153, 14sylan9eqr 2678 . . . . 5 (((𝜑𝑎𝑈) ∧ 𝑋 = 1 ) → (𝑋𝑎) = 1)
1615an32s 846 . . . 4 (((𝜑𝑋 = 1 ) ∧ 𝑎𝑈) → (𝑋𝑎) = 1)
1716sumeq2dv 14433 . . 3 ((𝜑𝑋 = 1 ) → Σ𝑎𝑈 (𝑋𝑎) = Σ𝑎𝑈 1)
185, 7znunithash 19913 . . . . . . . . 9 (𝑁 ∈ ℕ → (#‘𝑈) = (ϕ‘𝑁))
1911, 18syl 17 . . . . . . . 8 (𝜑 → (#‘𝑈) = (ϕ‘𝑁))
2011phicld 15477 . . . . . . . . 9 (𝜑 → (ϕ‘𝑁) ∈ ℕ)
2120nnnn0d 11351 . . . . . . . 8 (𝜑 → (ϕ‘𝑁) ∈ ℕ0)
2219, 21eqeltrd 2701 . . . . . . 7 (𝜑 → (#‘𝑈) ∈ ℕ0)
23 fvex 6201 . . . . . . . . 9 (Unit‘𝑍) ∈ V
247, 23eqeltri 2697 . . . . . . . 8 𝑈 ∈ V
25 hashclb 13149 . . . . . . . 8 (𝑈 ∈ V → (𝑈 ∈ Fin ↔ (#‘𝑈) ∈ ℕ0))
2624, 25ax-mp 5 . . . . . . 7 (𝑈 ∈ Fin ↔ (#‘𝑈) ∈ ℕ0)
2722, 26sylibr 224 . . . . . 6 (𝜑𝑈 ∈ Fin)
28 ax-1cn 9994 . . . . . 6 1 ∈ ℂ
29 fsumconst 14522 . . . . . 6 ((𝑈 ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑎𝑈 1 = ((#‘𝑈) · 1))
3027, 28, 29sylancl 694 . . . . 5 (𝜑 → Σ𝑎𝑈 1 = ((#‘𝑈) · 1))
3119oveq1d 6665 . . . . 5 (𝜑 → ((#‘𝑈) · 1) = ((ϕ‘𝑁) · 1))
3220nncnd 11036 . . . . . 6 (𝜑 → (ϕ‘𝑁) ∈ ℂ)
3332mulid1d 10057 . . . . 5 (𝜑 → ((ϕ‘𝑁) · 1) = (ϕ‘𝑁))
3430, 31, 333eqtrd 2660 . . . 4 (𝜑 → Σ𝑎𝑈 1 = (ϕ‘𝑁))
3534adantr 481 . . 3 ((𝜑𝑋 = 1 ) → Σ𝑎𝑈 1 = (ϕ‘𝑁))
3617, 35eqtrd 2656 . 2 ((𝜑𝑋 = 1 ) → Σ𝑎𝑈 (𝑋𝑎) = (ϕ‘𝑁))
374dchrabl 24979 . . . . . . . 8 (𝑁 ∈ ℕ → 𝐺 ∈ Abel)
38 ablgrp 18198 . . . . . . . 8 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
399, 6grpidcl 17450 . . . . . . . 8 (𝐺 ∈ Grp → 1𝐷)
4011, 37, 38, 394syl 19 . . . . . . 7 (𝜑1𝐷)
414, 5, 9, 7, 8, 40dchreq 24983 . . . . . 6 (𝜑 → (𝑋 = 1 ↔ ∀𝑘𝑈 (𝑋𝑘) = ( 1𝑘)))
4241notbid 308 . . . . 5 (𝜑 → (¬ 𝑋 = 1 ↔ ¬ ∀𝑘𝑈 (𝑋𝑘) = ( 1𝑘)))
43 rexnal 2995 . . . . 5 (∃𝑘𝑈 ¬ (𝑋𝑘) = ( 1𝑘) ↔ ¬ ∀𝑘𝑈 (𝑋𝑘) = ( 1𝑘))
4442, 43syl6bbr 278 . . . 4 (𝜑 → (¬ 𝑋 = 1 ↔ ∃𝑘𝑈 ¬ (𝑋𝑘) = ( 1𝑘)))
45 df-ne 2795 . . . . . 6 ((𝑋𝑘) ≠ ( 1𝑘) ↔ ¬ (𝑋𝑘) = ( 1𝑘))
4611adantr 481 . . . . . . . . 9 ((𝜑𝑘𝑈) → 𝑁 ∈ ℕ)
47 simpr 477 . . . . . . . . 9 ((𝜑𝑘𝑈) → 𝑘𝑈)
484, 5, 6, 7, 46, 47dchr1 24982 . . . . . . . 8 ((𝜑𝑘𝑈) → ( 1𝑘) = 1)
4948neeq2d 2854 . . . . . . 7 ((𝜑𝑘𝑈) → ((𝑋𝑘) ≠ ( 1𝑘) ↔ (𝑋𝑘) ≠ 1))
5027adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → 𝑈 ∈ Fin)
51 eqid 2622 . . . . . . . . . . . . 13 (Base‘𝑍) = (Base‘𝑍)
524, 5, 9, 51, 8dchrf 24967 . . . . . . . . . . . 12 (𝜑𝑋:(Base‘𝑍)⟶ℂ)
5351, 7unitss 18660 . . . . . . . . . . . . 13 𝑈 ⊆ (Base‘𝑍)
5453sseli 3599 . . . . . . . . . . . 12 (𝑎𝑈𝑎 ∈ (Base‘𝑍))
55 ffvelrn 6357 . . . . . . . . . . . 12 ((𝑋:(Base‘𝑍)⟶ℂ ∧ 𝑎 ∈ (Base‘𝑍)) → (𝑋𝑎) ∈ ℂ)
5652, 54, 55syl2an 494 . . . . . . . . . . 11 ((𝜑𝑎𝑈) → (𝑋𝑎) ∈ ℂ)
5756adantlr 751 . . . . . . . . . 10 (((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) ∧ 𝑎𝑈) → (𝑋𝑎) ∈ ℂ)
5850, 57fsumcl 14464 . . . . . . . . 9 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → Σ𝑎𝑈 (𝑋𝑎) ∈ ℂ)
59 0cnd 10033 . . . . . . . . 9 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → 0 ∈ ℂ)
6052adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → 𝑋:(Base‘𝑍)⟶ℂ)
61 simprl 794 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → 𝑘𝑈)
6253, 61sseldi 3601 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → 𝑘 ∈ (Base‘𝑍))
6360, 62ffvelrnd 6360 . . . . . . . . . 10 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (𝑋𝑘) ∈ ℂ)
64 subcl 10280 . . . . . . . . . 10 (((𝑋𝑘) ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑋𝑘) − 1) ∈ ℂ)
6563, 28, 64sylancl 694 . . . . . . . . 9 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → ((𝑋𝑘) − 1) ∈ ℂ)
66 simprr 796 . . . . . . . . . 10 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (𝑋𝑘) ≠ 1)
67 subeq0 10307 . . . . . . . . . . . 12 (((𝑋𝑘) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑋𝑘) − 1) = 0 ↔ (𝑋𝑘) = 1))
6863, 28, 67sylancl 694 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (((𝑋𝑘) − 1) = 0 ↔ (𝑋𝑘) = 1))
6968necon3bid 2838 . . . . . . . . . 10 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (((𝑋𝑘) − 1) ≠ 0 ↔ (𝑋𝑘) ≠ 1))
7066, 69mpbird 247 . . . . . . . . 9 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → ((𝑋𝑘) − 1) ≠ 0)
71 oveq2 6658 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎 → (𝑘(.r𝑍)𝑥) = (𝑘(.r𝑍)𝑎))
7271fveq2d 6195 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → (𝑋‘(𝑘(.r𝑍)𝑥)) = (𝑋‘(𝑘(.r𝑍)𝑎)))
7372cbvsumv 14426 . . . . . . . . . . . . . 14 Σ𝑥𝑈 (𝑋‘(𝑘(.r𝑍)𝑥)) = Σ𝑎𝑈 (𝑋‘(𝑘(.r𝑍)𝑎))
744, 5, 9dchrmhm 24966 . . . . . . . . . . . . . . . . . 18 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))
7574, 8sseldi 3601 . . . . . . . . . . . . . . . . 17 (𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
7675ad2antrr 762 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) ∧ 𝑎𝑈) → 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
7762adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) ∧ 𝑎𝑈) → 𝑘 ∈ (Base‘𝑍))
7854adantl 482 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) ∧ 𝑎𝑈) → 𝑎 ∈ (Base‘𝑍))
79 eqid 2622 . . . . . . . . . . . . . . . . . 18 (mulGrp‘𝑍) = (mulGrp‘𝑍)
8079, 51mgpbas 18495 . . . . . . . . . . . . . . . . 17 (Base‘𝑍) = (Base‘(mulGrp‘𝑍))
81 eqid 2622 . . . . . . . . . . . . . . . . . 18 (.r𝑍) = (.r𝑍)
8279, 81mgpplusg 18493 . . . . . . . . . . . . . . . . 17 (.r𝑍) = (+g‘(mulGrp‘𝑍))
83 eqid 2622 . . . . . . . . . . . . . . . . . 18 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
84 cnfldmul 19752 . . . . . . . . . . . . . . . . . 18 · = (.r‘ℂfld)
8583, 84mgpplusg 18493 . . . . . . . . . . . . . . . . 17 · = (+g‘(mulGrp‘ℂfld))
8680, 82, 85mhmlin 17342 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ 𝑘 ∈ (Base‘𝑍) ∧ 𝑎 ∈ (Base‘𝑍)) → (𝑋‘(𝑘(.r𝑍)𝑎)) = ((𝑋𝑘) · (𝑋𝑎)))
8776, 77, 78, 86syl3anc 1326 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) ∧ 𝑎𝑈) → (𝑋‘(𝑘(.r𝑍)𝑎)) = ((𝑋𝑘) · (𝑋𝑎)))
8887sumeq2dv 14433 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → Σ𝑎𝑈 (𝑋‘(𝑘(.r𝑍)𝑎)) = Σ𝑎𝑈 ((𝑋𝑘) · (𝑋𝑎)))
8973, 88syl5eq 2668 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → Σ𝑥𝑈 (𝑋‘(𝑘(.r𝑍)𝑥)) = Σ𝑎𝑈 ((𝑋𝑘) · (𝑋𝑎)))
90 fveq2 6191 . . . . . . . . . . . . . 14 (𝑎 = (𝑘(.r𝑍)𝑥) → (𝑋𝑎) = (𝑋‘(𝑘(.r𝑍)𝑥)))
9111nnnn0d 11351 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℕ0)
925zncrng 19893 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
93 crngring 18558 . . . . . . . . . . . . . . . . 17 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
94 eqid 2622 . . . . . . . . . . . . . . . . . 18 ((mulGrp‘𝑍) ↾s 𝑈) = ((mulGrp‘𝑍) ↾s 𝑈)
957, 94unitgrp 18667 . . . . . . . . . . . . . . . . 17 (𝑍 ∈ Ring → ((mulGrp‘𝑍) ↾s 𝑈) ∈ Grp)
9691, 92, 93, 954syl 19 . . . . . . . . . . . . . . . 16 (𝜑 → ((mulGrp‘𝑍) ↾s 𝑈) ∈ Grp)
9796adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → ((mulGrp‘𝑍) ↾s 𝑈) ∈ Grp)
98 eqid 2622 . . . . . . . . . . . . . . . 16 (𝑏𝑈 ↦ (𝑐𝑈 ↦ (𝑏(.r𝑍)𝑐))) = (𝑏𝑈 ↦ (𝑐𝑈 ↦ (𝑏(.r𝑍)𝑐)))
997, 94unitgrpbas 18666 . . . . . . . . . . . . . . . 16 𝑈 = (Base‘((mulGrp‘𝑍) ↾s 𝑈))
10094, 82ressplusg 15993 . . . . . . . . . . . . . . . . 17 (𝑈 ∈ V → (.r𝑍) = (+g‘((mulGrp‘𝑍) ↾s 𝑈)))
10124, 100ax-mp 5 . . . . . . . . . . . . . . . 16 (.r𝑍) = (+g‘((mulGrp‘𝑍) ↾s 𝑈))
10298, 99, 101grplactf1o 17519 . . . . . . . . . . . . . . 15 ((((mulGrp‘𝑍) ↾s 𝑈) ∈ Grp ∧ 𝑘𝑈) → ((𝑏𝑈 ↦ (𝑐𝑈 ↦ (𝑏(.r𝑍)𝑐)))‘𝑘):𝑈1-1-onto𝑈)
10397, 61, 102syl2anc 693 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → ((𝑏𝑈 ↦ (𝑐𝑈 ↦ (𝑏(.r𝑍)𝑐)))‘𝑘):𝑈1-1-onto𝑈)
10498, 99grplactval 17517 . . . . . . . . . . . . . . 15 ((𝑘𝑈𝑥𝑈) → (((𝑏𝑈 ↦ (𝑐𝑈 ↦ (𝑏(.r𝑍)𝑐)))‘𝑘)‘𝑥) = (𝑘(.r𝑍)𝑥))
10561, 104sylan 488 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) ∧ 𝑥𝑈) → (((𝑏𝑈 ↦ (𝑐𝑈 ↦ (𝑏(.r𝑍)𝑐)))‘𝑘)‘𝑥) = (𝑘(.r𝑍)𝑥))
10690, 50, 103, 105, 57fsumf1o 14454 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → Σ𝑎𝑈 (𝑋𝑎) = Σ𝑥𝑈 (𝑋‘(𝑘(.r𝑍)𝑥)))
10750, 63, 57fsummulc2 14516 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → ((𝑋𝑘) · Σ𝑎𝑈 (𝑋𝑎)) = Σ𝑎𝑈 ((𝑋𝑘) · (𝑋𝑎)))
10889, 106, 1073eqtr4rd 2667 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → ((𝑋𝑘) · Σ𝑎𝑈 (𝑋𝑎)) = Σ𝑎𝑈 (𝑋𝑎))
10958mulid2d 10058 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (1 · Σ𝑎𝑈 (𝑋𝑎)) = Σ𝑎𝑈 (𝑋𝑎))
110108, 109oveq12d 6668 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (((𝑋𝑘) · Σ𝑎𝑈 (𝑋𝑎)) − (1 · Σ𝑎𝑈 (𝑋𝑎))) = (Σ𝑎𝑈 (𝑋𝑎) − Σ𝑎𝑈 (𝑋𝑎)))
11158subidd 10380 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (Σ𝑎𝑈 (𝑋𝑎) − Σ𝑎𝑈 (𝑋𝑎)) = 0)
112110, 111eqtrd 2656 . . . . . . . . . 10 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (((𝑋𝑘) · Σ𝑎𝑈 (𝑋𝑎)) − (1 · Σ𝑎𝑈 (𝑋𝑎))) = 0)
113 1cnd 10056 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → 1 ∈ ℂ)
11463, 113, 58subdird 10487 . . . . . . . . . 10 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (((𝑋𝑘) − 1) · Σ𝑎𝑈 (𝑋𝑎)) = (((𝑋𝑘) · Σ𝑎𝑈 (𝑋𝑎)) − (1 · Σ𝑎𝑈 (𝑋𝑎))))
11565mul01d 10235 . . . . . . . . . 10 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (((𝑋𝑘) − 1) · 0) = 0)
116112, 114, 1153eqtr4d 2666 . . . . . . . . 9 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (((𝑋𝑘) − 1) · Σ𝑎𝑈 (𝑋𝑎)) = (((𝑋𝑘) − 1) · 0))
11758, 59, 65, 70, 116mulcanad 10662 . . . . . . . 8 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → Σ𝑎𝑈 (𝑋𝑎) = 0)
118117expr 643 . . . . . . 7 ((𝜑𝑘𝑈) → ((𝑋𝑘) ≠ 1 → Σ𝑎𝑈 (𝑋𝑎) = 0))
11949, 118sylbid 230 . . . . . 6 ((𝜑𝑘𝑈) → ((𝑋𝑘) ≠ ( 1𝑘) → Σ𝑎𝑈 (𝑋𝑎) = 0))
12045, 119syl5bir 233 . . . . 5 ((𝜑𝑘𝑈) → (¬ (𝑋𝑘) = ( 1𝑘) → Σ𝑎𝑈 (𝑋𝑎) = 0))
121120rexlimdva 3031 . . . 4 (𝜑 → (∃𝑘𝑈 ¬ (𝑋𝑘) = ( 1𝑘) → Σ𝑎𝑈 (𝑋𝑎) = 0))
12244, 121sylbid 230 . . 3 (𝜑 → (¬ 𝑋 = 1 → Σ𝑎𝑈 (𝑋𝑎) = 0))
123122imp 445 . 2 ((𝜑 ∧ ¬ 𝑋 = 1 ) → Σ𝑎𝑈 (𝑋𝑎) = 0)
1241, 2, 36, 123ifbothda 4123 1 (𝜑 → Σ𝑎𝑈 (𝑋𝑎) = if(𝑋 = 1 , (ϕ‘𝑁), 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  Vcvv 3200  ifcif 4086  cmpt 4729  wf 5884  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  Fincfn 7955  cc 9934  0cc0 9936  1c1 9937   · cmul 9941  cmin 10266  cn 11020  0cn0 11292  #chash 13117  Σcsu 14416  ϕcphi 15469  Basecbs 15857  s cress 15858  +gcplusg 15941  .rcmulr 15942  0gc0g 16100   MndHom cmhm 17333  Grpcgrp 17422  Abelcabl 18194  mulGrpcmgp 18489  Ringcrg 18547  CRingccrg 18548  Unitcui 18639  fldccnfld 19746  ℤ/nczn 19851  DChrcdchr 24957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984  df-gcd 15217  df-phi 15471  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-imas 16168  df-qus 16169  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-nsg 17592  df-eqg 17593  df-ghm 17658  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-rnghom 18715  df-subrg 18778  df-lmod 18865  df-lss 18933  df-lsp 18972  df-sra 19172  df-rgmod 19173  df-lidl 19174  df-rsp 19175  df-2idl 19232  df-cnfld 19747  df-zring 19819  df-zrh 19852  df-zn 19855  df-dchr 24958
This theorem is referenced by:  dchrsum  24994
  Copyright terms: Public domain W3C validator