| Step | Hyp | Ref
| Expression |
| 1 | | eqeq2 2633 |
. 2
⊢
((ϕ‘𝑁) =
if(𝑋 = 1 , (ϕ‘𝑁), 0) → (Σ𝑎 ∈ 𝑈 (𝑋‘𝑎) = (ϕ‘𝑁) ↔ Σ𝑎 ∈ 𝑈 (𝑋‘𝑎) = if(𝑋 = 1 , (ϕ‘𝑁), 0))) |
| 2 | | eqeq2 2633 |
. 2
⊢ (0 =
if(𝑋 = 1 , (ϕ‘𝑁), 0) → (Σ𝑎 ∈ 𝑈 (𝑋‘𝑎) = 0 ↔ Σ𝑎 ∈ 𝑈 (𝑋‘𝑎) = if(𝑋 = 1 , (ϕ‘𝑁), 0))) |
| 3 | | fveq1 6190 |
. . . . . 6
⊢ (𝑋 = 1 → (𝑋‘𝑎) = ( 1 ‘𝑎)) |
| 4 | | dchrsum.g |
. . . . . . 7
⊢ 𝐺 = (DChr‘𝑁) |
| 5 | | dchrsum.z |
. . . . . . 7
⊢ 𝑍 =
(ℤ/nℤ‘𝑁) |
| 6 | | dchrsum.1 |
. . . . . . 7
⊢ 1 =
(0g‘𝐺) |
| 7 | | dchrsum2.u |
. . . . . . 7
⊢ 𝑈 = (Unit‘𝑍) |
| 8 | | dchrsum.x |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ 𝐷) |
| 9 | | dchrsum.d |
. . . . . . . . . 10
⊢ 𝐷 = (Base‘𝐺) |
| 10 | 4, 9 | dchrrcl 24965 |
. . . . . . . . 9
⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ) |
| 11 | 8, 10 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 12 | 11 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑈) → 𝑁 ∈ ℕ) |
| 13 | | simpr 477 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑈) → 𝑎 ∈ 𝑈) |
| 14 | 4, 5, 6, 7, 12, 13 | dchr1 24982 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑈) → ( 1 ‘𝑎) = 1) |
| 15 | 3, 14 | sylan9eqr 2678 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑋 = 1 ) → (𝑋‘𝑎) = 1) |
| 16 | 15 | an32s 846 |
. . . 4
⊢ (((𝜑 ∧ 𝑋 = 1 ) ∧ 𝑎 ∈ 𝑈) → (𝑋‘𝑎) = 1) |
| 17 | 16 | sumeq2dv 14433 |
. . 3
⊢ ((𝜑 ∧ 𝑋 = 1 ) → Σ𝑎 ∈ 𝑈 (𝑋‘𝑎) = Σ𝑎 ∈ 𝑈 1) |
| 18 | 5, 7 | znunithash 19913 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ →
(#‘𝑈) =
(ϕ‘𝑁)) |
| 19 | 11, 18 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (#‘𝑈) = (ϕ‘𝑁)) |
| 20 | 11 | phicld 15477 |
. . . . . . . . 9
⊢ (𝜑 → (ϕ‘𝑁) ∈
ℕ) |
| 21 | 20 | nnnn0d 11351 |
. . . . . . . 8
⊢ (𝜑 → (ϕ‘𝑁) ∈
ℕ0) |
| 22 | 19, 21 | eqeltrd 2701 |
. . . . . . 7
⊢ (𝜑 → (#‘𝑈) ∈
ℕ0) |
| 23 | | fvex 6201 |
. . . . . . . . 9
⊢
(Unit‘𝑍)
∈ V |
| 24 | 7, 23 | eqeltri 2697 |
. . . . . . . 8
⊢ 𝑈 ∈ V |
| 25 | | hashclb 13149 |
. . . . . . . 8
⊢ (𝑈 ∈ V → (𝑈 ∈ Fin ↔
(#‘𝑈) ∈
ℕ0)) |
| 26 | 24, 25 | ax-mp 5 |
. . . . . . 7
⊢ (𝑈 ∈ Fin ↔
(#‘𝑈) ∈
ℕ0) |
| 27 | 22, 26 | sylibr 224 |
. . . . . 6
⊢ (𝜑 → 𝑈 ∈ Fin) |
| 28 | | ax-1cn 9994 |
. . . . . 6
⊢ 1 ∈
ℂ |
| 29 | | fsumconst 14522 |
. . . . . 6
⊢ ((𝑈 ∈ Fin ∧ 1 ∈
ℂ) → Σ𝑎
∈ 𝑈 1 =
((#‘𝑈) ·
1)) |
| 30 | 27, 28, 29 | sylancl 694 |
. . . . 5
⊢ (𝜑 → Σ𝑎 ∈ 𝑈 1 = ((#‘𝑈) · 1)) |
| 31 | 19 | oveq1d 6665 |
. . . . 5
⊢ (𝜑 → ((#‘𝑈) · 1) =
((ϕ‘𝑁) ·
1)) |
| 32 | 20 | nncnd 11036 |
. . . . . 6
⊢ (𝜑 → (ϕ‘𝑁) ∈
ℂ) |
| 33 | 32 | mulid1d 10057 |
. . . . 5
⊢ (𝜑 → ((ϕ‘𝑁) · 1) =
(ϕ‘𝑁)) |
| 34 | 30, 31, 33 | 3eqtrd 2660 |
. . . 4
⊢ (𝜑 → Σ𝑎 ∈ 𝑈 1 = (ϕ‘𝑁)) |
| 35 | 34 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑋 = 1 ) → Σ𝑎 ∈ 𝑈 1 = (ϕ‘𝑁)) |
| 36 | 17, 35 | eqtrd 2656 |
. 2
⊢ ((𝜑 ∧ 𝑋 = 1 ) → Σ𝑎 ∈ 𝑈 (𝑋‘𝑎) = (ϕ‘𝑁)) |
| 37 | 4 | dchrabl 24979 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → 𝐺 ∈ Abel) |
| 38 | | ablgrp 18198 |
. . . . . . . 8
⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
| 39 | 9, 6 | grpidcl 17450 |
. . . . . . . 8
⊢ (𝐺 ∈ Grp → 1 ∈ 𝐷) |
| 40 | 11, 37, 38, 39 | 4syl 19 |
. . . . . . 7
⊢ (𝜑 → 1 ∈ 𝐷) |
| 41 | 4, 5, 9, 7, 8, 40 | dchreq 24983 |
. . . . . 6
⊢ (𝜑 → (𝑋 = 1 ↔ ∀𝑘 ∈ 𝑈 (𝑋‘𝑘) = ( 1 ‘𝑘))) |
| 42 | 41 | notbid 308 |
. . . . 5
⊢ (𝜑 → (¬ 𝑋 = 1 ↔ ¬ ∀𝑘 ∈ 𝑈 (𝑋‘𝑘) = ( 1 ‘𝑘))) |
| 43 | | rexnal 2995 |
. . . . 5
⊢
(∃𝑘 ∈
𝑈 ¬ (𝑋‘𝑘) = ( 1 ‘𝑘) ↔ ¬ ∀𝑘 ∈ 𝑈 (𝑋‘𝑘) = ( 1 ‘𝑘)) |
| 44 | 42, 43 | syl6bbr 278 |
. . . 4
⊢ (𝜑 → (¬ 𝑋 = 1 ↔ ∃𝑘 ∈ 𝑈 ¬ (𝑋‘𝑘) = ( 1 ‘𝑘))) |
| 45 | | df-ne 2795 |
. . . . . 6
⊢ ((𝑋‘𝑘) ≠ ( 1 ‘𝑘) ↔ ¬ (𝑋‘𝑘) = ( 1 ‘𝑘)) |
| 46 | 11 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝑁 ∈ ℕ) |
| 47 | | simpr 477 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝑘 ∈ 𝑈) |
| 48 | 4, 5, 6, 7, 46, 47 | dchr1 24982 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → ( 1 ‘𝑘) = 1) |
| 49 | 48 | neeq2d 2854 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → ((𝑋‘𝑘) ≠ ( 1 ‘𝑘) ↔ (𝑋‘𝑘) ≠ 1)) |
| 50 | 27 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑈 ∧ (𝑋‘𝑘) ≠ 1)) → 𝑈 ∈ Fin) |
| 51 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢
(Base‘𝑍) =
(Base‘𝑍) |
| 52 | 4, 5, 9, 51, 8 | dchrf 24967 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋:(Base‘𝑍)⟶ℂ) |
| 53 | 51, 7 | unitss 18660 |
. . . . . . . . . . . . 13
⊢ 𝑈 ⊆ (Base‘𝑍) |
| 54 | 53 | sseli 3599 |
. . . . . . . . . . . 12
⊢ (𝑎 ∈ 𝑈 → 𝑎 ∈ (Base‘𝑍)) |
| 55 | | ffvelrn 6357 |
. . . . . . . . . . . 12
⊢ ((𝑋:(Base‘𝑍)⟶ℂ ∧ 𝑎 ∈ (Base‘𝑍)) → (𝑋‘𝑎) ∈ ℂ) |
| 56 | 52, 54, 55 | syl2an 494 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑈) → (𝑋‘𝑎) ∈ ℂ) |
| 57 | 56 | adantlr 751 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑘 ∈ 𝑈 ∧ (𝑋‘𝑘) ≠ 1)) ∧ 𝑎 ∈ 𝑈) → (𝑋‘𝑎) ∈ ℂ) |
| 58 | 50, 57 | fsumcl 14464 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑈 ∧ (𝑋‘𝑘) ≠ 1)) → Σ𝑎 ∈ 𝑈 (𝑋‘𝑎) ∈ ℂ) |
| 59 | | 0cnd 10033 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑈 ∧ (𝑋‘𝑘) ≠ 1)) → 0 ∈
ℂ) |
| 60 | 52 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑈 ∧ (𝑋‘𝑘) ≠ 1)) → 𝑋:(Base‘𝑍)⟶ℂ) |
| 61 | | simprl 794 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑈 ∧ (𝑋‘𝑘) ≠ 1)) → 𝑘 ∈ 𝑈) |
| 62 | 53, 61 | sseldi 3601 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑈 ∧ (𝑋‘𝑘) ≠ 1)) → 𝑘 ∈ (Base‘𝑍)) |
| 63 | 60, 62 | ffvelrnd 6360 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑈 ∧ (𝑋‘𝑘) ≠ 1)) → (𝑋‘𝑘) ∈ ℂ) |
| 64 | | subcl 10280 |
. . . . . . . . . 10
⊢ (((𝑋‘𝑘) ∈ ℂ ∧ 1 ∈ ℂ)
→ ((𝑋‘𝑘) − 1) ∈
ℂ) |
| 65 | 63, 28, 64 | sylancl 694 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑈 ∧ (𝑋‘𝑘) ≠ 1)) → ((𝑋‘𝑘) − 1) ∈ ℂ) |
| 66 | | simprr 796 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑈 ∧ (𝑋‘𝑘) ≠ 1)) → (𝑋‘𝑘) ≠ 1) |
| 67 | | subeq0 10307 |
. . . . . . . . . . . 12
⊢ (((𝑋‘𝑘) ∈ ℂ ∧ 1 ∈ ℂ)
→ (((𝑋‘𝑘) − 1) = 0 ↔ (𝑋‘𝑘) = 1)) |
| 68 | 63, 28, 67 | sylancl 694 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑈 ∧ (𝑋‘𝑘) ≠ 1)) → (((𝑋‘𝑘) − 1) = 0 ↔ (𝑋‘𝑘) = 1)) |
| 69 | 68 | necon3bid 2838 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑈 ∧ (𝑋‘𝑘) ≠ 1)) → (((𝑋‘𝑘) − 1) ≠ 0 ↔ (𝑋‘𝑘) ≠ 1)) |
| 70 | 66, 69 | mpbird 247 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑈 ∧ (𝑋‘𝑘) ≠ 1)) → ((𝑋‘𝑘) − 1) ≠ 0) |
| 71 | | oveq2 6658 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑎 → (𝑘(.r‘𝑍)𝑥) = (𝑘(.r‘𝑍)𝑎)) |
| 72 | 71 | fveq2d 6195 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑎 → (𝑋‘(𝑘(.r‘𝑍)𝑥)) = (𝑋‘(𝑘(.r‘𝑍)𝑎))) |
| 73 | 72 | cbvsumv 14426 |
. . . . . . . . . . . . . 14
⊢
Σ𝑥 ∈
𝑈 (𝑋‘(𝑘(.r‘𝑍)𝑥)) = Σ𝑎 ∈ 𝑈 (𝑋‘(𝑘(.r‘𝑍)𝑎)) |
| 74 | 4, 5, 9 | dchrmhm 24966 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝐷 ⊆ ((mulGrp‘𝑍) MndHom
(mulGrp‘ℂfld)) |
| 75 | 74, 8 | sseldi 3601 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑋 ∈ ((mulGrp‘𝑍) MndHom
(mulGrp‘ℂfld))) |
| 76 | 75 | ad2antrr 762 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑘 ∈ 𝑈 ∧ (𝑋‘𝑘) ≠ 1)) ∧ 𝑎 ∈ 𝑈) → 𝑋 ∈ ((mulGrp‘𝑍) MndHom
(mulGrp‘ℂfld))) |
| 77 | 62 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑘 ∈ 𝑈 ∧ (𝑋‘𝑘) ≠ 1)) ∧ 𝑎 ∈ 𝑈) → 𝑘 ∈ (Base‘𝑍)) |
| 78 | 54 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑘 ∈ 𝑈 ∧ (𝑋‘𝑘) ≠ 1)) ∧ 𝑎 ∈ 𝑈) → 𝑎 ∈ (Base‘𝑍)) |
| 79 | | eqid 2622 |
. . . . . . . . . . . . . . . . . 18
⊢
(mulGrp‘𝑍) =
(mulGrp‘𝑍) |
| 80 | 79, 51 | mgpbas 18495 |
. . . . . . . . . . . . . . . . 17
⊢
(Base‘𝑍) =
(Base‘(mulGrp‘𝑍)) |
| 81 | | eqid 2622 |
. . . . . . . . . . . . . . . . . 18
⊢
(.r‘𝑍) = (.r‘𝑍) |
| 82 | 79, 81 | mgpplusg 18493 |
. . . . . . . . . . . . . . . . 17
⊢
(.r‘𝑍) = (+g‘(mulGrp‘𝑍)) |
| 83 | | eqid 2622 |
. . . . . . . . . . . . . . . . . 18
⊢
(mulGrp‘ℂfld) =
(mulGrp‘ℂfld) |
| 84 | | cnfldmul 19752 |
. . . . . . . . . . . . . . . . . 18
⊢ ·
= (.r‘ℂfld) |
| 85 | 83, 84 | mgpplusg 18493 |
. . . . . . . . . . . . . . . . 17
⊢ ·
= (+g‘(mulGrp‘ℂfld)) |
| 86 | 80, 82, 85 | mhmlin 17342 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑋 ∈ ((mulGrp‘𝑍) MndHom
(mulGrp‘ℂfld)) ∧ 𝑘 ∈ (Base‘𝑍) ∧ 𝑎 ∈ (Base‘𝑍)) → (𝑋‘(𝑘(.r‘𝑍)𝑎)) = ((𝑋‘𝑘) · (𝑋‘𝑎))) |
| 87 | 76, 77, 78, 86 | syl3anc 1326 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑘 ∈ 𝑈 ∧ (𝑋‘𝑘) ≠ 1)) ∧ 𝑎 ∈ 𝑈) → (𝑋‘(𝑘(.r‘𝑍)𝑎)) = ((𝑋‘𝑘) · (𝑋‘𝑎))) |
| 88 | 87 | sumeq2dv 14433 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑈 ∧ (𝑋‘𝑘) ≠ 1)) → Σ𝑎 ∈ 𝑈 (𝑋‘(𝑘(.r‘𝑍)𝑎)) = Σ𝑎 ∈ 𝑈 ((𝑋‘𝑘) · (𝑋‘𝑎))) |
| 89 | 73, 88 | syl5eq 2668 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑈 ∧ (𝑋‘𝑘) ≠ 1)) → Σ𝑥 ∈ 𝑈 (𝑋‘(𝑘(.r‘𝑍)𝑥)) = Σ𝑎 ∈ 𝑈 ((𝑋‘𝑘) · (𝑋‘𝑎))) |
| 90 | | fveq2 6191 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = (𝑘(.r‘𝑍)𝑥) → (𝑋‘𝑎) = (𝑋‘(𝑘(.r‘𝑍)𝑥))) |
| 91 | 11 | nnnn0d 11351 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 92 | 5 | zncrng 19893 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ ℕ0
→ 𝑍 ∈
CRing) |
| 93 | | crngring 18558 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑍 ∈ CRing → 𝑍 ∈ Ring) |
| 94 | | eqid 2622 |
. . . . . . . . . . . . . . . . . 18
⊢
((mulGrp‘𝑍)
↾s 𝑈) =
((mulGrp‘𝑍)
↾s 𝑈) |
| 95 | 7, 94 | unitgrp 18667 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑍 ∈ Ring →
((mulGrp‘𝑍)
↾s 𝑈)
∈ Grp) |
| 96 | 91, 92, 93, 95 | 4syl 19 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((mulGrp‘𝑍) ↾s 𝑈) ∈ Grp) |
| 97 | 96 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑈 ∧ (𝑋‘𝑘) ≠ 1)) → ((mulGrp‘𝑍) ↾s 𝑈) ∈ Grp) |
| 98 | | eqid 2622 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 ∈ 𝑈 ↦ (𝑐 ∈ 𝑈 ↦ (𝑏(.r‘𝑍)𝑐))) = (𝑏 ∈ 𝑈 ↦ (𝑐 ∈ 𝑈 ↦ (𝑏(.r‘𝑍)𝑐))) |
| 99 | 7, 94 | unitgrpbas 18666 |
. . . . . . . . . . . . . . . 16
⊢ 𝑈 =
(Base‘((mulGrp‘𝑍) ↾s 𝑈)) |
| 100 | 94, 82 | ressplusg 15993 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑈 ∈ V →
(.r‘𝑍) =
(+g‘((mulGrp‘𝑍) ↾s 𝑈))) |
| 101 | 24, 100 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢
(.r‘𝑍) =
(+g‘((mulGrp‘𝑍) ↾s 𝑈)) |
| 102 | 98, 99, 101 | grplactf1o 17519 |
. . . . . . . . . . . . . . 15
⊢
((((mulGrp‘𝑍)
↾s 𝑈)
∈ Grp ∧ 𝑘 ∈
𝑈) → ((𝑏 ∈ 𝑈 ↦ (𝑐 ∈ 𝑈 ↦ (𝑏(.r‘𝑍)𝑐)))‘𝑘):𝑈–1-1-onto→𝑈) |
| 103 | 97, 61, 102 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑈 ∧ (𝑋‘𝑘) ≠ 1)) → ((𝑏 ∈ 𝑈 ↦ (𝑐 ∈ 𝑈 ↦ (𝑏(.r‘𝑍)𝑐)))‘𝑘):𝑈–1-1-onto→𝑈) |
| 104 | 98, 99 | grplactval 17517 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈) → (((𝑏 ∈ 𝑈 ↦ (𝑐 ∈ 𝑈 ↦ (𝑏(.r‘𝑍)𝑐)))‘𝑘)‘𝑥) = (𝑘(.r‘𝑍)𝑥)) |
| 105 | 61, 104 | sylan 488 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑘 ∈ 𝑈 ∧ (𝑋‘𝑘) ≠ 1)) ∧ 𝑥 ∈ 𝑈) → (((𝑏 ∈ 𝑈 ↦ (𝑐 ∈ 𝑈 ↦ (𝑏(.r‘𝑍)𝑐)))‘𝑘)‘𝑥) = (𝑘(.r‘𝑍)𝑥)) |
| 106 | 90, 50, 103, 105, 57 | fsumf1o 14454 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑈 ∧ (𝑋‘𝑘) ≠ 1)) → Σ𝑎 ∈ 𝑈 (𝑋‘𝑎) = Σ𝑥 ∈ 𝑈 (𝑋‘(𝑘(.r‘𝑍)𝑥))) |
| 107 | 50, 63, 57 | fsummulc2 14516 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑈 ∧ (𝑋‘𝑘) ≠ 1)) → ((𝑋‘𝑘) · Σ𝑎 ∈ 𝑈 (𝑋‘𝑎)) = Σ𝑎 ∈ 𝑈 ((𝑋‘𝑘) · (𝑋‘𝑎))) |
| 108 | 89, 106, 107 | 3eqtr4rd 2667 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑈 ∧ (𝑋‘𝑘) ≠ 1)) → ((𝑋‘𝑘) · Σ𝑎 ∈ 𝑈 (𝑋‘𝑎)) = Σ𝑎 ∈ 𝑈 (𝑋‘𝑎)) |
| 109 | 58 | mulid2d 10058 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑈 ∧ (𝑋‘𝑘) ≠ 1)) → (1 · Σ𝑎 ∈ 𝑈 (𝑋‘𝑎)) = Σ𝑎 ∈ 𝑈 (𝑋‘𝑎)) |
| 110 | 108, 109 | oveq12d 6668 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑈 ∧ (𝑋‘𝑘) ≠ 1)) → (((𝑋‘𝑘) · Σ𝑎 ∈ 𝑈 (𝑋‘𝑎)) − (1 · Σ𝑎 ∈ 𝑈 (𝑋‘𝑎))) = (Σ𝑎 ∈ 𝑈 (𝑋‘𝑎) − Σ𝑎 ∈ 𝑈 (𝑋‘𝑎))) |
| 111 | 58 | subidd 10380 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑈 ∧ (𝑋‘𝑘) ≠ 1)) → (Σ𝑎 ∈ 𝑈 (𝑋‘𝑎) − Σ𝑎 ∈ 𝑈 (𝑋‘𝑎)) = 0) |
| 112 | 110, 111 | eqtrd 2656 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑈 ∧ (𝑋‘𝑘) ≠ 1)) → (((𝑋‘𝑘) · Σ𝑎 ∈ 𝑈 (𝑋‘𝑎)) − (1 · Σ𝑎 ∈ 𝑈 (𝑋‘𝑎))) = 0) |
| 113 | | 1cnd 10056 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑈 ∧ (𝑋‘𝑘) ≠ 1)) → 1 ∈
ℂ) |
| 114 | 63, 113, 58 | subdird 10487 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑈 ∧ (𝑋‘𝑘) ≠ 1)) → (((𝑋‘𝑘) − 1) · Σ𝑎 ∈ 𝑈 (𝑋‘𝑎)) = (((𝑋‘𝑘) · Σ𝑎 ∈ 𝑈 (𝑋‘𝑎)) − (1 · Σ𝑎 ∈ 𝑈 (𝑋‘𝑎)))) |
| 115 | 65 | mul01d 10235 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑈 ∧ (𝑋‘𝑘) ≠ 1)) → (((𝑋‘𝑘) − 1) · 0) =
0) |
| 116 | 112, 114,
115 | 3eqtr4d 2666 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑈 ∧ (𝑋‘𝑘) ≠ 1)) → (((𝑋‘𝑘) − 1) · Σ𝑎 ∈ 𝑈 (𝑋‘𝑎)) = (((𝑋‘𝑘) − 1) · 0)) |
| 117 | 58, 59, 65, 70, 116 | mulcanad 10662 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑈 ∧ (𝑋‘𝑘) ≠ 1)) → Σ𝑎 ∈ 𝑈 (𝑋‘𝑎) = 0) |
| 118 | 117 | expr 643 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → ((𝑋‘𝑘) ≠ 1 → Σ𝑎 ∈ 𝑈 (𝑋‘𝑎) = 0)) |
| 119 | 49, 118 | sylbid 230 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → ((𝑋‘𝑘) ≠ ( 1 ‘𝑘) → Σ𝑎 ∈ 𝑈 (𝑋‘𝑎) = 0)) |
| 120 | 45, 119 | syl5bir 233 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → (¬ (𝑋‘𝑘) = ( 1 ‘𝑘) → Σ𝑎 ∈ 𝑈 (𝑋‘𝑎) = 0)) |
| 121 | 120 | rexlimdva 3031 |
. . . 4
⊢ (𝜑 → (∃𝑘 ∈ 𝑈 ¬ (𝑋‘𝑘) = ( 1 ‘𝑘) → Σ𝑎 ∈ 𝑈 (𝑋‘𝑎) = 0)) |
| 122 | 44, 121 | sylbid 230 |
. . 3
⊢ (𝜑 → (¬ 𝑋 = 1 → Σ𝑎 ∈ 𝑈 (𝑋‘𝑎) = 0)) |
| 123 | 122 | imp 445 |
. 2
⊢ ((𝜑 ∧ ¬ 𝑋 = 1 ) → Σ𝑎 ∈ 𝑈 (𝑋‘𝑎) = 0) |
| 124 | 1, 2, 36, 123 | ifbothda 4123 |
1
⊢ (𝜑 → Σ𝑎 ∈ 𝑈 (𝑋‘𝑎) = if(𝑋 = 1 , (ϕ‘𝑁), 0)) |