![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lfgrn1cycl | Structured version Visualization version GIF version |
Description: In a loop-free graph there are no cycles with length 1 (consisting of one edge). (Contributed by Alexander van der Vekens, 7-Nov-2017.) (Revised by AV, 2-Feb-2021.) |
Ref | Expression |
---|---|
lfgrn1cycl.v | ⊢ 𝑉 = (Vtx‘𝐺) |
lfgrn1cycl.i | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
lfgrn1cycl | ⊢ (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} → (𝐹(Cycles‘𝐺)𝑃 → (#‘𝐹) ≠ 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cyclprop 26688 | . . 3 ⊢ (𝐹(Cycles‘𝐺)𝑃 → (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(#‘𝐹)))) | |
2 | cycliswlk 26693 | . . 3 ⊢ (𝐹(Cycles‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
3 | lfgrn1cycl.i | . . . . . . . 8 ⊢ 𝐼 = (iEdg‘𝐺) | |
4 | lfgrn1cycl.v | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐺) | |
5 | 3, 4 | lfgrwlknloop 26586 | . . . . . . 7 ⊢ ((𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(#‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1))) |
6 | 1nn 11031 | . . . . . . . . . . . . . 14 ⊢ 1 ∈ ℕ | |
7 | eleq1 2689 | . . . . . . . . . . . . . 14 ⊢ ((#‘𝐹) = 1 → ((#‘𝐹) ∈ ℕ ↔ 1 ∈ ℕ)) | |
8 | 6, 7 | mpbiri 248 | . . . . . . . . . . . . 13 ⊢ ((#‘𝐹) = 1 → (#‘𝐹) ∈ ℕ) |
9 | lbfzo0 12507 | . . . . . . . . . . . . 13 ⊢ (0 ∈ (0..^(#‘𝐹)) ↔ (#‘𝐹) ∈ ℕ) | |
10 | 8, 9 | sylibr 224 | . . . . . . . . . . . 12 ⊢ ((#‘𝐹) = 1 → 0 ∈ (0..^(#‘𝐹))) |
11 | fveq2 6191 | . . . . . . . . . . . . . 14 ⊢ (𝑘 = 0 → (𝑃‘𝑘) = (𝑃‘0)) | |
12 | oveq1 6657 | . . . . . . . . . . . . . . . 16 ⊢ (𝑘 = 0 → (𝑘 + 1) = (0 + 1)) | |
13 | 0p1e1 11132 | . . . . . . . . . . . . . . . 16 ⊢ (0 + 1) = 1 | |
14 | 12, 13 | syl6eq 2672 | . . . . . . . . . . . . . . 15 ⊢ (𝑘 = 0 → (𝑘 + 1) = 1) |
15 | 14 | fveq2d 6195 | . . . . . . . . . . . . . 14 ⊢ (𝑘 = 0 → (𝑃‘(𝑘 + 1)) = (𝑃‘1)) |
16 | 11, 15 | neeq12d 2855 | . . . . . . . . . . . . 13 ⊢ (𝑘 = 0 → ((𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ (𝑃‘0) ≠ (𝑃‘1))) |
17 | 16 | rspcv 3305 | . . . . . . . . . . . 12 ⊢ (0 ∈ (0..^(#‘𝐹)) → (∀𝑘 ∈ (0..^(#‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)) → (𝑃‘0) ≠ (𝑃‘1))) |
18 | 10, 17 | syl 17 | . . . . . . . . . . 11 ⊢ ((#‘𝐹) = 1 → (∀𝑘 ∈ (0..^(#‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)) → (𝑃‘0) ≠ (𝑃‘1))) |
19 | 18 | impcom 446 | . . . . . . . . . 10 ⊢ ((∀𝑘 ∈ (0..^(#‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)) ∧ (#‘𝐹) = 1) → (𝑃‘0) ≠ (𝑃‘1)) |
20 | fveq2 6191 | . . . . . . . . . . . 12 ⊢ ((#‘𝐹) = 1 → (𝑃‘(#‘𝐹)) = (𝑃‘1)) | |
21 | 20 | neeq2d 2854 | . . . . . . . . . . 11 ⊢ ((#‘𝐹) = 1 → ((𝑃‘0) ≠ (𝑃‘(#‘𝐹)) ↔ (𝑃‘0) ≠ (𝑃‘1))) |
22 | 21 | adantl 482 | . . . . . . . . . 10 ⊢ ((∀𝑘 ∈ (0..^(#‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)) ∧ (#‘𝐹) = 1) → ((𝑃‘0) ≠ (𝑃‘(#‘𝐹)) ↔ (𝑃‘0) ≠ (𝑃‘1))) |
23 | 19, 22 | mpbird 247 | . . . . . . . . 9 ⊢ ((∀𝑘 ∈ (0..^(#‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)) ∧ (#‘𝐹) = 1) → (𝑃‘0) ≠ (𝑃‘(#‘𝐹))) |
24 | 23 | ex 450 | . . . . . . . 8 ⊢ (∀𝑘 ∈ (0..^(#‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)) → ((#‘𝐹) = 1 → (𝑃‘0) ≠ (𝑃‘(#‘𝐹)))) |
25 | 24 | necon2d 2817 | . . . . . . 7 ⊢ (∀𝑘 ∈ (0..^(#‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)) → ((𝑃‘0) = (𝑃‘(#‘𝐹)) → (#‘𝐹) ≠ 1)) |
26 | 5, 25 | syl 17 | . . . . . 6 ⊢ ((𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} ∧ 𝐹(Walks‘𝐺)𝑃) → ((𝑃‘0) = (𝑃‘(#‘𝐹)) → (#‘𝐹) ≠ 1)) |
27 | 26 | ex 450 | . . . . 5 ⊢ (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} → (𝐹(Walks‘𝐺)𝑃 → ((𝑃‘0) = (𝑃‘(#‘𝐹)) → (#‘𝐹) ≠ 1))) |
28 | 27 | com13 88 | . . . 4 ⊢ ((𝑃‘0) = (𝑃‘(#‘𝐹)) → (𝐹(Walks‘𝐺)𝑃 → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} → (#‘𝐹) ≠ 1))) |
29 | 28 | adantl 482 | . . 3 ⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(#‘𝐹))) → (𝐹(Walks‘𝐺)𝑃 → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} → (#‘𝐹) ≠ 1))) |
30 | 1, 2, 29 | sylc 65 | . 2 ⊢ (𝐹(Cycles‘𝐺)𝑃 → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} → (#‘𝐹) ≠ 1)) |
31 | 30 | com12 32 | 1 ⊢ (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} → (𝐹(Cycles‘𝐺)𝑃 → (#‘𝐹) ≠ 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ∀wral 2912 {crab 2916 𝒫 cpw 4158 class class class wbr 4653 dom cdm 5114 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 0cc0 9936 1c1 9937 + caddc 9939 ≤ cle 10075 ℕcn 11020 2c2 11070 ..^cfzo 12465 #chash 13117 Vtxcvtx 25874 iEdgciedg 25875 Walkscwlks 26492 Pathscpths 26608 Cyclesccycls 26680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ifp 1013 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-er 7742 df-map 7859 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-fzo 12466 df-hash 13118 df-word 13299 df-wlks 26495 df-trls 26589 df-pths 26612 df-cycls 26682 |
This theorem is referenced by: umgrn1cycl 26699 |
Copyright terms: Public domain | W3C validator |