MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3pthdlem1 Structured version   Visualization version   GIF version

Theorem 3pthdlem1 27024
Description: Lemma 1 for 3pthd 27034. (Contributed by AV, 9-Feb-2021.)
Hypotheses
Ref Expression
3wlkd.p 𝑃 = ⟨“𝐴𝐵𝐶𝐷”⟩
3wlkd.f 𝐹 = ⟨“𝐽𝐾𝐿”⟩
3wlkd.s (𝜑 → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)))
3wlkd.n (𝜑 → ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷))
Assertion
Ref Expression
3pthdlem1 (𝜑 → ∀𝑘 ∈ (0..^(#‘𝑃))∀𝑗 ∈ (1..^(#‘𝐹))(𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝐶,𝑘   𝐷,𝑘   𝑘,𝐽   𝑘,𝐾   𝑘,𝐿   𝑘,𝑉   𝑘,𝐹   𝑃,𝑘   𝑗,𝐹,𝑘   𝑃,𝑗
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝐴(𝑗)   𝐵(𝑗)   𝐶(𝑗)   𝐷(𝑗)   𝐽(𝑗)   𝐾(𝑗)   𝐿(𝑗)   𝑉(𝑗)

Proof of Theorem 3pthdlem1
StepHypRef Expression
1 3wlkd.p . . . . 5 𝑃 = ⟨“𝐴𝐵𝐶𝐷”⟩
2 3wlkd.f . . . . 5 𝐹 = ⟨“𝐽𝐾𝐿”⟩
3 3wlkd.s . . . . 5 (𝜑 → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)))
41, 2, 33wlkdlem3 27021 . . . 4 (𝜑 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)))
5 3wlkd.n . . . 4 (𝜑 → ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷))
6 simpr1l 1118 . . . . . . . 8 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → 𝐴𝐵)
7 simpl 473 . . . . . . . . . . 11 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → (𝑃‘0) = 𝐴)
87adantr 481 . . . . . . . . . 10 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (𝑃‘0) = 𝐴)
9 simpr 477 . . . . . . . . . . 11 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → (𝑃‘1) = 𝐵)
109adantr 481 . . . . . . . . . 10 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (𝑃‘1) = 𝐵)
118, 10neeq12d 2855 . . . . . . . . 9 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝑃‘0) ≠ (𝑃‘1) ↔ 𝐴𝐵))
1211adantr 481 . . . . . . . 8 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → ((𝑃‘0) ≠ (𝑃‘1) ↔ 𝐴𝐵))
136, 12mpbird 247 . . . . . . 7 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → (𝑃‘0) ≠ (𝑃‘1))
1413a1d 25 . . . . . 6 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → (0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1)))
15 simpr1r 1119 . . . . . . . 8 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → 𝐴𝐶)
16 simpl 473 . . . . . . . . . . 11 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → (𝑃‘2) = 𝐶)
1716adantl 482 . . . . . . . . . 10 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (𝑃‘2) = 𝐶)
188, 17neeq12d 2855 . . . . . . . . 9 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝑃‘0) ≠ (𝑃‘2) ↔ 𝐴𝐶))
1918adantr 481 . . . . . . . 8 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → ((𝑃‘0) ≠ (𝑃‘2) ↔ 𝐴𝐶))
2015, 19mpbird 247 . . . . . . 7 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → (𝑃‘0) ≠ (𝑃‘2))
2120a1d 25 . . . . . 6 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → (0 ≠ 2 → (𝑃‘0) ≠ (𝑃‘2)))
2214, 21jca 554 . . . . 5 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → ((0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1)) ∧ (0 ≠ 2 → (𝑃‘0) ≠ (𝑃‘2))))
23 eqid 2622 . . . . . . . 8 1 = 1
24232a1i 12 . . . . . . 7 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → ((𝑃‘1) = (𝑃‘1) → 1 = 1))
2524necon3d 2815 . . . . . 6 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → (1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1)))
26 simpr2l 1120 . . . . . . . 8 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → 𝐵𝐶)
2710, 17neeq12d 2855 . . . . . . . . 9 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝑃‘1) ≠ (𝑃‘2) ↔ 𝐵𝐶))
2827adantr 481 . . . . . . . 8 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → ((𝑃‘1) ≠ (𝑃‘2) ↔ 𝐵𝐶))
2926, 28mpbird 247 . . . . . . 7 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → (𝑃‘1) ≠ (𝑃‘2))
3029a1d 25 . . . . . 6 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → (1 ≠ 2 → (𝑃‘1) ≠ (𝑃‘2)))
3125, 30jca 554 . . . . 5 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → ((1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1)) ∧ (1 ≠ 2 → (𝑃‘1) ≠ (𝑃‘2))))
3229necomd 2849 . . . . . . 7 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → (𝑃‘2) ≠ (𝑃‘1))
3332a1d 25 . . . . . 6 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → (2 ≠ 1 → (𝑃‘2) ≠ (𝑃‘1)))
34 eqid 2622 . . . . . . . 8 2 = 2
35342a1i 12 . . . . . . 7 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → ((𝑃‘2) = (𝑃‘2) → 2 = 2))
3635necon3d 2815 . . . . . 6 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → (2 ≠ 2 → (𝑃‘2) ≠ (𝑃‘2)))
37 simpr2r 1121 . . . . . . . . . 10 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → 𝐵𝐷)
38 simpr 477 . . . . . . . . . . . . 13 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → (𝑃‘3) = 𝐷)
3938adantl 482 . . . . . . . . . . . 12 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (𝑃‘3) = 𝐷)
4010, 39neeq12d 2855 . . . . . . . . . . 11 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝑃‘1) ≠ (𝑃‘3) ↔ 𝐵𝐷))
4140adantr 481 . . . . . . . . . 10 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → ((𝑃‘1) ≠ (𝑃‘3) ↔ 𝐵𝐷))
4237, 41mpbird 247 . . . . . . . . 9 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → (𝑃‘1) ≠ (𝑃‘3))
4342necomd 2849 . . . . . . . 8 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → (𝑃‘3) ≠ (𝑃‘1))
4443a1d 25 . . . . . . 7 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → (3 ≠ 1 → (𝑃‘3) ≠ (𝑃‘1)))
45 simp3 1063 . . . . . . . . . . 11 (((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷) → 𝐶𝐷)
4645necomd 2849 . . . . . . . . . 10 (((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷) → 𝐷𝐶)
4746adantl 482 . . . . . . . . 9 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → 𝐷𝐶)
48 simpl 473 . . . . . . . . . . . . 13 (((𝑃‘3) = 𝐷 ∧ (𝑃‘2) = 𝐶) → (𝑃‘3) = 𝐷)
49 simpr 477 . . . . . . . . . . . . 13 (((𝑃‘3) = 𝐷 ∧ (𝑃‘2) = 𝐶) → (𝑃‘2) = 𝐶)
5048, 49neeq12d 2855 . . . . . . . . . . . 12 (((𝑃‘3) = 𝐷 ∧ (𝑃‘2) = 𝐶) → ((𝑃‘3) ≠ (𝑃‘2) ↔ 𝐷𝐶))
5150ancoms 469 . . . . . . . . . . 11 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → ((𝑃‘3) ≠ (𝑃‘2) ↔ 𝐷𝐶))
5251adantl 482 . . . . . . . . . 10 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝑃‘3) ≠ (𝑃‘2) ↔ 𝐷𝐶))
5352adantr 481 . . . . . . . . 9 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → ((𝑃‘3) ≠ (𝑃‘2) ↔ 𝐷𝐶))
5447, 53mpbird 247 . . . . . . . 8 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → (𝑃‘3) ≠ (𝑃‘2))
5554a1d 25 . . . . . . 7 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → (3 ≠ 2 → (𝑃‘3) ≠ (𝑃‘2)))
5644, 55jca 554 . . . . . 6 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → ((3 ≠ 1 → (𝑃‘3) ≠ (𝑃‘1)) ∧ (3 ≠ 2 → (𝑃‘3) ≠ (𝑃‘2))))
5733, 36, 56jca31 557 . . . . 5 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → (((2 ≠ 1 → (𝑃‘2) ≠ (𝑃‘1)) ∧ (2 ≠ 2 → (𝑃‘2) ≠ (𝑃‘2))) ∧ ((3 ≠ 1 → (𝑃‘3) ≠ (𝑃‘1)) ∧ (3 ≠ 2 → (𝑃‘3) ≠ (𝑃‘2)))))
5822, 31, 57jca31 557 . . . 4 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → ((((0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1)) ∧ (0 ≠ 2 → (𝑃‘0) ≠ (𝑃‘2))) ∧ ((1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1)) ∧ (1 ≠ 2 → (𝑃‘1) ≠ (𝑃‘2)))) ∧ (((2 ≠ 1 → (𝑃‘2) ≠ (𝑃‘1)) ∧ (2 ≠ 2 → (𝑃‘2) ≠ (𝑃‘2))) ∧ ((3 ≠ 1 → (𝑃‘3) ≠ (𝑃‘1)) ∧ (3 ≠ 2 → (𝑃‘3) ≠ (𝑃‘2))))))
594, 5, 58syl2anc 693 . . 3 (𝜑 → ((((0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1)) ∧ (0 ≠ 2 → (𝑃‘0) ≠ (𝑃‘2))) ∧ ((1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1)) ∧ (1 ≠ 2 → (𝑃‘1) ≠ (𝑃‘2)))) ∧ (((2 ≠ 1 → (𝑃‘2) ≠ (𝑃‘1)) ∧ (2 ≠ 2 → (𝑃‘2) ≠ (𝑃‘2))) ∧ ((3 ≠ 1 → (𝑃‘3) ≠ (𝑃‘1)) ∧ (3 ≠ 2 → (𝑃‘3) ≠ (𝑃‘2))))))
601fveq2i 6194 . . . . . . . 8 (#‘𝑃) = (#‘⟨“𝐴𝐵𝐶𝐷”⟩)
61 s4len 13644 . . . . . . . 8 (#‘⟨“𝐴𝐵𝐶𝐷”⟩) = 4
6260, 61eqtri 2644 . . . . . . 7 (#‘𝑃) = 4
6362oveq2i 6661 . . . . . 6 (0..^(#‘𝑃)) = (0..^4)
64 fzo0to42pr 12555 . . . . . 6 (0..^4) = ({0, 1} ∪ {2, 3})
6563, 64eqtri 2644 . . . . 5 (0..^(#‘𝑃)) = ({0, 1} ∪ {2, 3})
6665raleqi 3142 . . . 4 (∀𝑘 ∈ (0..^(#‘𝑃))((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ∧ (𝑘 ≠ 2 → (𝑃𝑘) ≠ (𝑃‘2))) ↔ ∀𝑘 ∈ ({0, 1} ∪ {2, 3})((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ∧ (𝑘 ≠ 2 → (𝑃𝑘) ≠ (𝑃‘2))))
67 ralunb 3794 . . . 4 (∀𝑘 ∈ ({0, 1} ∪ {2, 3})((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ∧ (𝑘 ≠ 2 → (𝑃𝑘) ≠ (𝑃‘2))) ↔ (∀𝑘 ∈ {0, 1} ((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ∧ (𝑘 ≠ 2 → (𝑃𝑘) ≠ (𝑃‘2))) ∧ ∀𝑘 ∈ {2, 3} ((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ∧ (𝑘 ≠ 2 → (𝑃𝑘) ≠ (𝑃‘2)))))
68 c0ex 10034 . . . . . 6 0 ∈ V
69 1ex 10035 . . . . . 6 1 ∈ V
70 neeq1 2856 . . . . . . . 8 (𝑘 = 0 → (𝑘 ≠ 1 ↔ 0 ≠ 1))
71 fveq2 6191 . . . . . . . . 9 (𝑘 = 0 → (𝑃𝑘) = (𝑃‘0))
7271neeq1d 2853 . . . . . . . 8 (𝑘 = 0 → ((𝑃𝑘) ≠ (𝑃‘1) ↔ (𝑃‘0) ≠ (𝑃‘1)))
7370, 72imbi12d 334 . . . . . . 7 (𝑘 = 0 → ((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ↔ (0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1))))
74 neeq1 2856 . . . . . . . 8 (𝑘 = 0 → (𝑘 ≠ 2 ↔ 0 ≠ 2))
7571neeq1d 2853 . . . . . . . 8 (𝑘 = 0 → ((𝑃𝑘) ≠ (𝑃‘2) ↔ (𝑃‘0) ≠ (𝑃‘2)))
7674, 75imbi12d 334 . . . . . . 7 (𝑘 = 0 → ((𝑘 ≠ 2 → (𝑃𝑘) ≠ (𝑃‘2)) ↔ (0 ≠ 2 → (𝑃‘0) ≠ (𝑃‘2))))
7773, 76anbi12d 747 . . . . . 6 (𝑘 = 0 → (((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ∧ (𝑘 ≠ 2 → (𝑃𝑘) ≠ (𝑃‘2))) ↔ ((0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1)) ∧ (0 ≠ 2 → (𝑃‘0) ≠ (𝑃‘2)))))
78 neeq1 2856 . . . . . . . 8 (𝑘 = 1 → (𝑘 ≠ 1 ↔ 1 ≠ 1))
79 fveq2 6191 . . . . . . . . 9 (𝑘 = 1 → (𝑃𝑘) = (𝑃‘1))
8079neeq1d 2853 . . . . . . . 8 (𝑘 = 1 → ((𝑃𝑘) ≠ (𝑃‘1) ↔ (𝑃‘1) ≠ (𝑃‘1)))
8178, 80imbi12d 334 . . . . . . 7 (𝑘 = 1 → ((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ↔ (1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1))))
82 neeq1 2856 . . . . . . . 8 (𝑘 = 1 → (𝑘 ≠ 2 ↔ 1 ≠ 2))
8379neeq1d 2853 . . . . . . . 8 (𝑘 = 1 → ((𝑃𝑘) ≠ (𝑃‘2) ↔ (𝑃‘1) ≠ (𝑃‘2)))
8482, 83imbi12d 334 . . . . . . 7 (𝑘 = 1 → ((𝑘 ≠ 2 → (𝑃𝑘) ≠ (𝑃‘2)) ↔ (1 ≠ 2 → (𝑃‘1) ≠ (𝑃‘2))))
8581, 84anbi12d 747 . . . . . 6 (𝑘 = 1 → (((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ∧ (𝑘 ≠ 2 → (𝑃𝑘) ≠ (𝑃‘2))) ↔ ((1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1)) ∧ (1 ≠ 2 → (𝑃‘1) ≠ (𝑃‘2)))))
8668, 69, 77, 85ralpr 4238 . . . . 5 (∀𝑘 ∈ {0, 1} ((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ∧ (𝑘 ≠ 2 → (𝑃𝑘) ≠ (𝑃‘2))) ↔ (((0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1)) ∧ (0 ≠ 2 → (𝑃‘0) ≠ (𝑃‘2))) ∧ ((1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1)) ∧ (1 ≠ 2 → (𝑃‘1) ≠ (𝑃‘2)))))
87 2ex 11092 . . . . . 6 2 ∈ V
88 3ex 11096 . . . . . 6 3 ∈ V
89 neeq1 2856 . . . . . . . 8 (𝑘 = 2 → (𝑘 ≠ 1 ↔ 2 ≠ 1))
90 fveq2 6191 . . . . . . . . 9 (𝑘 = 2 → (𝑃𝑘) = (𝑃‘2))
9190neeq1d 2853 . . . . . . . 8 (𝑘 = 2 → ((𝑃𝑘) ≠ (𝑃‘1) ↔ (𝑃‘2) ≠ (𝑃‘1)))
9289, 91imbi12d 334 . . . . . . 7 (𝑘 = 2 → ((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ↔ (2 ≠ 1 → (𝑃‘2) ≠ (𝑃‘1))))
93 neeq1 2856 . . . . . . . 8 (𝑘 = 2 → (𝑘 ≠ 2 ↔ 2 ≠ 2))
9490neeq1d 2853 . . . . . . . 8 (𝑘 = 2 → ((𝑃𝑘) ≠ (𝑃‘2) ↔ (𝑃‘2) ≠ (𝑃‘2)))
9593, 94imbi12d 334 . . . . . . 7 (𝑘 = 2 → ((𝑘 ≠ 2 → (𝑃𝑘) ≠ (𝑃‘2)) ↔ (2 ≠ 2 → (𝑃‘2) ≠ (𝑃‘2))))
9692, 95anbi12d 747 . . . . . 6 (𝑘 = 2 → (((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ∧ (𝑘 ≠ 2 → (𝑃𝑘) ≠ (𝑃‘2))) ↔ ((2 ≠ 1 → (𝑃‘2) ≠ (𝑃‘1)) ∧ (2 ≠ 2 → (𝑃‘2) ≠ (𝑃‘2)))))
97 neeq1 2856 . . . . . . . 8 (𝑘 = 3 → (𝑘 ≠ 1 ↔ 3 ≠ 1))
98 fveq2 6191 . . . . . . . . 9 (𝑘 = 3 → (𝑃𝑘) = (𝑃‘3))
9998neeq1d 2853 . . . . . . . 8 (𝑘 = 3 → ((𝑃𝑘) ≠ (𝑃‘1) ↔ (𝑃‘3) ≠ (𝑃‘1)))
10097, 99imbi12d 334 . . . . . . 7 (𝑘 = 3 → ((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ↔ (3 ≠ 1 → (𝑃‘3) ≠ (𝑃‘1))))
101 neeq1 2856 . . . . . . . 8 (𝑘 = 3 → (𝑘 ≠ 2 ↔ 3 ≠ 2))
10298neeq1d 2853 . . . . . . . 8 (𝑘 = 3 → ((𝑃𝑘) ≠ (𝑃‘2) ↔ (𝑃‘3) ≠ (𝑃‘2)))
103101, 102imbi12d 334 . . . . . . 7 (𝑘 = 3 → ((𝑘 ≠ 2 → (𝑃𝑘) ≠ (𝑃‘2)) ↔ (3 ≠ 2 → (𝑃‘3) ≠ (𝑃‘2))))
104100, 103anbi12d 747 . . . . . 6 (𝑘 = 3 → (((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ∧ (𝑘 ≠ 2 → (𝑃𝑘) ≠ (𝑃‘2))) ↔ ((3 ≠ 1 → (𝑃‘3) ≠ (𝑃‘1)) ∧ (3 ≠ 2 → (𝑃‘3) ≠ (𝑃‘2)))))
10587, 88, 96, 104ralpr 4238 . . . . 5 (∀𝑘 ∈ {2, 3} ((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ∧ (𝑘 ≠ 2 → (𝑃𝑘) ≠ (𝑃‘2))) ↔ (((2 ≠ 1 → (𝑃‘2) ≠ (𝑃‘1)) ∧ (2 ≠ 2 → (𝑃‘2) ≠ (𝑃‘2))) ∧ ((3 ≠ 1 → (𝑃‘3) ≠ (𝑃‘1)) ∧ (3 ≠ 2 → (𝑃‘3) ≠ (𝑃‘2)))))
10686, 105anbi12i 733 . . . 4 ((∀𝑘 ∈ {0, 1} ((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ∧ (𝑘 ≠ 2 → (𝑃𝑘) ≠ (𝑃‘2))) ∧ ∀𝑘 ∈ {2, 3} ((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ∧ (𝑘 ≠ 2 → (𝑃𝑘) ≠ (𝑃‘2)))) ↔ ((((0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1)) ∧ (0 ≠ 2 → (𝑃‘0) ≠ (𝑃‘2))) ∧ ((1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1)) ∧ (1 ≠ 2 → (𝑃‘1) ≠ (𝑃‘2)))) ∧ (((2 ≠ 1 → (𝑃‘2) ≠ (𝑃‘1)) ∧ (2 ≠ 2 → (𝑃‘2) ≠ (𝑃‘2))) ∧ ((3 ≠ 1 → (𝑃‘3) ≠ (𝑃‘1)) ∧ (3 ≠ 2 → (𝑃‘3) ≠ (𝑃‘2))))))
10766, 67, 1063bitri 286 . . 3 (∀𝑘 ∈ (0..^(#‘𝑃))((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ∧ (𝑘 ≠ 2 → (𝑃𝑘) ≠ (𝑃‘2))) ↔ ((((0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1)) ∧ (0 ≠ 2 → (𝑃‘0) ≠ (𝑃‘2))) ∧ ((1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1)) ∧ (1 ≠ 2 → (𝑃‘1) ≠ (𝑃‘2)))) ∧ (((2 ≠ 1 → (𝑃‘2) ≠ (𝑃‘1)) ∧ (2 ≠ 2 → (𝑃‘2) ≠ (𝑃‘2))) ∧ ((3 ≠ 1 → (𝑃‘3) ≠ (𝑃‘1)) ∧ (3 ≠ 2 → (𝑃‘3) ≠ (𝑃‘2))))))
10859, 107sylibr 224 . 2 (𝜑 → ∀𝑘 ∈ (0..^(#‘𝑃))((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ∧ (𝑘 ≠ 2 → (𝑃𝑘) ≠ (𝑃‘2))))
1092fveq2i 6194 . . . . . . . 8 (#‘𝐹) = (#‘⟨“𝐽𝐾𝐿”⟩)
110 s3len 13639 . . . . . . . 8 (#‘⟨“𝐽𝐾𝐿”⟩) = 3
111109, 110eqtri 2644 . . . . . . 7 (#‘𝐹) = 3
112111oveq2i 6661 . . . . . 6 (1..^(#‘𝐹)) = (1..^3)
113 fzo13pr 12552 . . . . . 6 (1..^3) = {1, 2}
114112, 113eqtri 2644 . . . . 5 (1..^(#‘𝐹)) = {1, 2}
115114raleqi 3142 . . . 4 (∀𝑗 ∈ (1..^(#‘𝐹))(𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)) ↔ ∀𝑗 ∈ {1, 2} (𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)))
116 neeq2 2857 . . . . . 6 (𝑗 = 1 → (𝑘𝑗𝑘 ≠ 1))
117 fveq2 6191 . . . . . . 7 (𝑗 = 1 → (𝑃𝑗) = (𝑃‘1))
118117neeq2d 2854 . . . . . 6 (𝑗 = 1 → ((𝑃𝑘) ≠ (𝑃𝑗) ↔ (𝑃𝑘) ≠ (𝑃‘1)))
119116, 118imbi12d 334 . . . . 5 (𝑗 = 1 → ((𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)) ↔ (𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1))))
120 neeq2 2857 . . . . . 6 (𝑗 = 2 → (𝑘𝑗𝑘 ≠ 2))
121 fveq2 6191 . . . . . . 7 (𝑗 = 2 → (𝑃𝑗) = (𝑃‘2))
122121neeq2d 2854 . . . . . 6 (𝑗 = 2 → ((𝑃𝑘) ≠ (𝑃𝑗) ↔ (𝑃𝑘) ≠ (𝑃‘2)))
123120, 122imbi12d 334 . . . . 5 (𝑗 = 2 → ((𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)) ↔ (𝑘 ≠ 2 → (𝑃𝑘) ≠ (𝑃‘2))))
12469, 87, 119, 123ralpr 4238 . . . 4 (∀𝑗 ∈ {1, 2} (𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)) ↔ ((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ∧ (𝑘 ≠ 2 → (𝑃𝑘) ≠ (𝑃‘2))))
125115, 124bitri 264 . . 3 (∀𝑗 ∈ (1..^(#‘𝐹))(𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)) ↔ ((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ∧ (𝑘 ≠ 2 → (𝑃𝑘) ≠ (𝑃‘2))))
126125ralbii 2980 . 2 (∀𝑘 ∈ (0..^(#‘𝑃))∀𝑗 ∈ (1..^(#‘𝐹))(𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)) ↔ ∀𝑘 ∈ (0..^(#‘𝑃))((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ∧ (𝑘 ≠ 2 → (𝑃𝑘) ≠ (𝑃‘2))))
127108, 126sylibr 224 1 (𝜑 → ∀𝑘 ∈ (0..^(#‘𝑃))∀𝑗 ∈ (1..^(#‘𝐹))(𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  cun 3572  {cpr 4179  cfv 5888  (class class class)co 6650  0cc0 9936  1c1 9937  2c2 11070  3c3 11071  4c4 11072  ..^cfzo 12465  #chash 13117  ⟨“cs3 13587  ⟨“cs4 13588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-s4 13595
This theorem is referenced by:  3pthd  27034
  Copyright terms: Public domain W3C validator