MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgrn2crct Structured version   Visualization version   GIF version

Theorem uspgrn2crct 26700
Description: In a simple pseudograph there are no circuits with length 2 (consisting of two edges). (Contributed by Alexander van der Vekens, 9-Nov-2017.) (Revised by AV, 3-Feb-2021.) (Proof shortened by AV, 31-Oct-2021.)
Assertion
Ref Expression
uspgrn2crct ((𝐺 ∈ USPGraph ∧ 𝐹(Circuits‘𝐺)𝑃) → (#‘𝐹) ≠ 2)

Proof of Theorem uspgrn2crct
Dummy variables 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crctprop 26687 . . 3 (𝐹(Circuits‘𝐺)𝑃 → (𝐹(Trails‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(#‘𝐹))))
2 istrl 26593 . . . . . . 7 (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝐹))
3 uspgrupgr 26071 . . . . . . . . 9 (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph )
4 eqid 2622 . . . . . . . . . . . . 13 (Vtx‘𝐺) = (Vtx‘𝐺)
5 eqid 2622 . . . . . . . . . . . . 13 (iEdg‘𝐺) = (iEdg‘𝐺)
64, 5upgriswlk 26537 . . . . . . . . . . . 12 (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
7 preq2 4269 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑃‘2) = (𝑃‘0) → {(𝑃‘1), (𝑃‘2)} = {(𝑃‘1), (𝑃‘0)})
8 prcom 4267 . . . . . . . . . . . . . . . . . . . . . . . . . 26 {(𝑃‘1), (𝑃‘0)} = {(𝑃‘0), (𝑃‘1)}
97, 8syl6eq 2672 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑃‘2) = (𝑃‘0) → {(𝑃‘1), (𝑃‘2)} = {(𝑃‘0), (𝑃‘1)})
109eqcoms 2630 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑃‘0) = (𝑃‘2) → {(𝑃‘1), (𝑃‘2)} = {(𝑃‘0), (𝑃‘1)})
1110eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃‘0) = (𝑃‘2) → (((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} ↔ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘0), (𝑃‘1)}))
1211anbi2d 740 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃‘0) = (𝑃‘2) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) ↔ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘0), (𝑃‘1)})))
1312ad2antrr 762 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑃‘0) = (𝑃‘2) ∧ ((#‘𝐹) = 2 ∧ (Fun 𝐹𝐺 ∈ USPGraph ))) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) ↔ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘0), (𝑃‘1)})))
14 eqtr3 2643 . . . . . . . . . . . . . . . . . . . . . 22 ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘0), (𝑃‘1)}) → ((iEdg‘𝐺)‘(𝐹‘0)) = ((iEdg‘𝐺)‘(𝐹‘1)))
154, 5uspgrf 26049 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐺 ∈ USPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2})
1615adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((Fun 𝐹𝐺 ∈ USPGraph ) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2})
1716adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((#‘𝐹) = 2 ∧ (Fun 𝐹𝐺 ∈ USPGraph )) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2})
1817adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((#‘𝐹) = 2 ∧ (Fun 𝐹𝐺 ∈ USPGraph )) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2})
19 df-f1 5893 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐹:(0..^(#‘𝐹))–1-1→dom (iEdg‘𝐺) ↔ (𝐹:(0..^(#‘𝐹))⟶dom (iEdg‘𝐺) ∧ Fun 𝐹))
2019simplbi2 655 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐹:(0..^(#‘𝐹))⟶dom (iEdg‘𝐺) → (Fun 𝐹𝐹:(0..^(#‘𝐹))–1-1→dom (iEdg‘𝐺)))
21 wrdf 13310 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐹 ∈ Word dom (iEdg‘𝐺) → 𝐹:(0..^(#‘𝐹))⟶dom (iEdg‘𝐺))
2220, 21syl11 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Fun 𝐹 → (𝐹 ∈ Word dom (iEdg‘𝐺) → 𝐹:(0..^(#‘𝐹))–1-1→dom (iEdg‘𝐺)))
2322adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((Fun 𝐹𝐺 ∈ USPGraph ) → (𝐹 ∈ Word dom (iEdg‘𝐺) → 𝐹:(0..^(#‘𝐹))–1-1→dom (iEdg‘𝐺)))
2423adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((#‘𝐹) = 2 ∧ (Fun 𝐹𝐺 ∈ USPGraph )) → (𝐹 ∈ Word dom (iEdg‘𝐺) → 𝐹:(0..^(#‘𝐹))–1-1→dom (iEdg‘𝐺)))
2524imp 445 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((#‘𝐹) = 2 ∧ (Fun 𝐹𝐺 ∈ USPGraph )) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → 𝐹:(0..^(#‘𝐹))–1-1→dom (iEdg‘𝐺))
26 2nn 11185 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2 ∈ ℕ
27 lbfzo0 12507 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (0 ∈ (0..^2) ↔ 2 ∈ ℕ)
2826, 27mpbir 221 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 0 ∈ (0..^2)
29 1nn0 11308 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1 ∈ ℕ0
30 1lt2 11194 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1 < 2
31 elfzo0 12508 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (1 ∈ (0..^2) ↔ (1 ∈ ℕ0 ∧ 2 ∈ ℕ ∧ 1 < 2))
3229, 26, 30, 31mpbir3an 1244 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1 ∈ (0..^2)
3328, 32pm3.2i 471 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (0 ∈ (0..^2) ∧ 1 ∈ (0..^2))
34 oveq2 6658 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((#‘𝐹) = 2 → (0..^(#‘𝐹)) = (0..^2))
3534eleq2d 2687 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((#‘𝐹) = 2 → (0 ∈ (0..^(#‘𝐹)) ↔ 0 ∈ (0..^2)))
3634eleq2d 2687 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((#‘𝐹) = 2 → (1 ∈ (0..^(#‘𝐹)) ↔ 1 ∈ (0..^2)))
3735, 36anbi12d 747 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((#‘𝐹) = 2 → ((0 ∈ (0..^(#‘𝐹)) ∧ 1 ∈ (0..^(#‘𝐹))) ↔ (0 ∈ (0..^2) ∧ 1 ∈ (0..^2))))
3833, 37mpbiri 248 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((#‘𝐹) = 2 → (0 ∈ (0..^(#‘𝐹)) ∧ 1 ∈ (0..^(#‘𝐹))))
3938ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((#‘𝐹) = 2 ∧ (Fun 𝐹𝐺 ∈ USPGraph )) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → (0 ∈ (0..^(#‘𝐹)) ∧ 1 ∈ (0..^(#‘𝐹))))
40 f1cofveqaeq 6515 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2} ∧ 𝐹:(0..^(#‘𝐹))–1-1→dom (iEdg‘𝐺)) ∧ (0 ∈ (0..^(#‘𝐹)) ∧ 1 ∈ (0..^(#‘𝐹)))) → (((iEdg‘𝐺)‘(𝐹‘0)) = ((iEdg‘𝐺)‘(𝐹‘1)) → 0 = 1))
4118, 25, 39, 40syl21anc 1325 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((#‘𝐹) = 2 ∧ (Fun 𝐹𝐺 ∈ USPGraph )) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → (((iEdg‘𝐺)‘(𝐹‘0)) = ((iEdg‘𝐺)‘(𝐹‘1)) → 0 = 1))
42 0ne1 11088 . . . . . . . . . . . . . . . . . . . . . . . 24 0 ≠ 1
43 eqneqall 2805 . . . . . . . . . . . . . . . . . . . . . . . 24 (0 = 1 → (0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘2)))
4441, 42, 43syl6mpi 67 . . . . . . . . . . . . . . . . . . . . . . 23 ((((#‘𝐹) = 2 ∧ (Fun 𝐹𝐺 ∈ USPGraph )) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → (((iEdg‘𝐺)‘(𝐹‘0)) = ((iEdg‘𝐺)‘(𝐹‘1)) → (𝑃‘0) ≠ (𝑃‘2)))
4544adantll 750 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑃‘0) = (𝑃‘2) ∧ ((#‘𝐹) = 2 ∧ (Fun 𝐹𝐺 ∈ USPGraph ))) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → (((iEdg‘𝐺)‘(𝐹‘0)) = ((iEdg‘𝐺)‘(𝐹‘1)) → (𝑃‘0) ≠ (𝑃‘2)))
4614, 45syl5 34 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑃‘0) = (𝑃‘2) ∧ ((#‘𝐹) = 2 ∧ (Fun 𝐹𝐺 ∈ USPGraph ))) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘0), (𝑃‘1)}) → (𝑃‘0) ≠ (𝑃‘2)))
4713, 46sylbid 230 . . . . . . . . . . . . . . . . . . . 20 ((((𝑃‘0) = (𝑃‘2) ∧ ((#‘𝐹) = 2 ∧ (Fun 𝐹𝐺 ∈ USPGraph ))) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) ≠ (𝑃‘2)))
4847expimpd 629 . . . . . . . . . . . . . . . . . . 19 (((𝑃‘0) = (𝑃‘2) ∧ ((#‘𝐹) = 2 ∧ (Fun 𝐹𝐺 ∈ USPGraph ))) → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) → (𝑃‘0) ≠ (𝑃‘2)))
4948ex 450 . . . . . . . . . . . . . . . . . 18 ((𝑃‘0) = (𝑃‘2) → (((#‘𝐹) = 2 ∧ (Fun 𝐹𝐺 ∈ USPGraph )) → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) → (𝑃‘0) ≠ (𝑃‘2))))
50 2a1 28 . . . . . . . . . . . . . . . . . 18 ((𝑃‘0) ≠ (𝑃‘2) → (((#‘𝐹) = 2 ∧ (Fun 𝐹𝐺 ∈ USPGraph )) → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) → (𝑃‘0) ≠ (𝑃‘2))))
5149, 50pm2.61ine 2877 . . . . . . . . . . . . . . . . 17 (((#‘𝐹) = 2 ∧ (Fun 𝐹𝐺 ∈ USPGraph )) → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) → (𝑃‘0) ≠ (𝑃‘2)))
52 fzo0to2pr 12553 . . . . . . . . . . . . . . . . . . . . . . 23 (0..^2) = {0, 1}
5334, 52syl6eq 2672 . . . . . . . . . . . . . . . . . . . . . 22 ((#‘𝐹) = 2 → (0..^(#‘𝐹)) = {0, 1})
5453raleqdv 3144 . . . . . . . . . . . . . . . . . . . . 21 ((#‘𝐹) = 2 → (∀𝑘 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ ∀𝑘 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
55 2wlklem 26563 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑘 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
5654, 55syl6bb 276 . . . . . . . . . . . . . . . . . . . 20 ((#‘𝐹) = 2 → (∀𝑘 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})))
5756anbi2d 740 . . . . . . . . . . . . . . . . . . 19 ((#‘𝐹) = 2 → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))))
58 fveq2 6191 . . . . . . . . . . . . . . . . . . . 20 ((#‘𝐹) = 2 → (𝑃‘(#‘𝐹)) = (𝑃‘2))
5958neeq2d 2854 . . . . . . . . . . . . . . . . . . 19 ((#‘𝐹) = 2 → ((𝑃‘0) ≠ (𝑃‘(#‘𝐹)) ↔ (𝑃‘0) ≠ (𝑃‘2)))
6057, 59imbi12d 334 . . . . . . . . . . . . . . . . . 18 ((#‘𝐹) = 2 → (((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → (𝑃‘0) ≠ (𝑃‘(#‘𝐹))) ↔ ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) → (𝑃‘0) ≠ (𝑃‘2))))
6160adantr 481 . . . . . . . . . . . . . . . . 17 (((#‘𝐹) = 2 ∧ (Fun 𝐹𝐺 ∈ USPGraph )) → (((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → (𝑃‘0) ≠ (𝑃‘(#‘𝐹))) ↔ ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) → (𝑃‘0) ≠ (𝑃‘2))))
6251, 61mpbird 247 . . . . . . . . . . . . . . . 16 (((#‘𝐹) = 2 ∧ (Fun 𝐹𝐺 ∈ USPGraph )) → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → (𝑃‘0) ≠ (𝑃‘(#‘𝐹))))
6362ex 450 . . . . . . . . . . . . . . 15 ((#‘𝐹) = 2 → ((Fun 𝐹𝐺 ∈ USPGraph ) → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → (𝑃‘0) ≠ (𝑃‘(#‘𝐹)))))
6463com13 88 . . . . . . . . . . . . . 14 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → ((Fun 𝐹𝐺 ∈ USPGraph ) → ((#‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘(#‘𝐹)))))
6564expd 452 . . . . . . . . . . . . 13 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → (Fun 𝐹 → (𝐺 ∈ USPGraph → ((#‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘(#‘𝐹))))))
66653adant2 1080 . . . . . . . . . . . 12 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → (Fun 𝐹 → (𝐺 ∈ USPGraph → ((#‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘(#‘𝐹))))))
676, 66syl6bi 243 . . . . . . . . . . 11 (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 → (Fun 𝐹 → (𝐺 ∈ USPGraph → ((#‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘(#‘𝐹)))))))
6867impd 447 . . . . . . . . . 10 (𝐺 ∈ UPGraph → ((𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝐹) → (𝐺 ∈ USPGraph → ((#‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘(#‘𝐹))))))
6968com23 86 . . . . . . . . 9 (𝐺 ∈ UPGraph → (𝐺 ∈ USPGraph → ((𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝐹) → ((#‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘(#‘𝐹))))))
703, 69mpcom 38 . . . . . . . 8 (𝐺 ∈ USPGraph → ((𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝐹) → ((#‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘(#‘𝐹)))))
7170com12 32 . . . . . . 7 ((𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝐹) → (𝐺 ∈ USPGraph → ((#‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘(#‘𝐹)))))
722, 71sylbi 207 . . . . . 6 (𝐹(Trails‘𝐺)𝑃 → (𝐺 ∈ USPGraph → ((#‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘(#‘𝐹)))))
7372imp 445 . . . . 5 ((𝐹(Trails‘𝐺)𝑃𝐺 ∈ USPGraph ) → ((#‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘(#‘𝐹))))
7473necon2d 2817 . . . 4 ((𝐹(Trails‘𝐺)𝑃𝐺 ∈ USPGraph ) → ((𝑃‘0) = (𝑃‘(#‘𝐹)) → (#‘𝐹) ≠ 2))
7574impancom 456 . . 3 ((𝐹(Trails‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(#‘𝐹))) → (𝐺 ∈ USPGraph → (#‘𝐹) ≠ 2))
761, 75syl 17 . 2 (𝐹(Circuits‘𝐺)𝑃 → (𝐺 ∈ USPGraph → (#‘𝐹) ≠ 2))
7776impcom 446 1 ((𝐺 ∈ USPGraph ∧ 𝐹(Circuits‘𝐺)𝑃) → (#‘𝐹) ≠ 2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  {crab 2916  cdif 3571  c0 3915  𝒫 cpw 4158  {csn 4177  {cpr 4179   class class class wbr 4653  ccnv 5113  dom cdm 5114  Fun wfun 5882  wf 5884  1-1wf1 5885  cfv 5888  (class class class)co 6650  0cc0 9936  1c1 9937   + caddc 9939   < clt 10074  cle 10075  cn 11020  2c2 11070  0cn0 11292  ...cfz 12326  ..^cfzo 12465  #chash 13117  Word cword 13291  Vtxcvtx 25874  iEdgciedg 25875   UPGraph cupgr 25975   USPGraph cuspgr 26043  Walkscwlks 26492  Trailsctrls 26587  Circuitsccrcts 26679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-edg 25940  df-uhgr 25953  df-upgr 25977  df-uspgr 26045  df-wlks 26495  df-trls 26589  df-crcts 26681
This theorem is referenced by:  usgrn2cycl  26701
  Copyright terms: Public domain W3C validator