MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr2wlkneq Structured version   Visualization version   GIF version

Theorem usgr2wlkneq 26652
Description: The vertices and edges are pairwise different in a walk of length 2 in a simple graph. (Contributed by Alexander van der Vekens, 2-Mar-2018.) (Revised by AV, 26-Jan-2021.)
Assertion
Ref Expression
usgr2wlkneq (((𝐺 ∈ USGraph ∧ 𝐹(Walks‘𝐺)𝑃) ∧ ((#‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(#‘𝐹)))) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))

Proof of Theorem usgr2wlkneq
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 usgrupgr 26077 . . . 4 (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph )
2 eqid 2622 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2622 . . . . 5 (iEdg‘𝐺) = (iEdg‘𝐺)
42, 3upgriswlk 26537 . . . 4 (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
51, 4syl 17 . . 3 (𝐺 ∈ USGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
6 2wlklem 26563 . . . . . . . . . . . 12 (∀𝑘 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
7 simplll 798 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘2)) ∧ 𝑃:(0...2)⟶(Vtx‘𝐺)) → 𝐺 ∈ USGraph )
8 fvex 6201 . . . . . . . . . . . . . . 15 (𝑃‘0) ∈ V
93usgrnloopv 26092 . . . . . . . . . . . . . . 15 ((𝐺 ∈ USGraph ∧ (𝑃‘0) ∈ V) → (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} → (𝑃‘0) ≠ (𝑃‘1)))
107, 8, 9sylancl 694 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘2)) ∧ 𝑃:(0...2)⟶(Vtx‘𝐺)) → (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} → (𝑃‘0) ≠ (𝑃‘1)))
11 fvex 6201 . . . . . . . . . . . . . . 15 (𝑃‘1) ∈ V
123usgrnloopv 26092 . . . . . . . . . . . . . . 15 ((𝐺 ∈ USGraph ∧ (𝑃‘1) ∈ V) → (((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} → (𝑃‘1) ≠ (𝑃‘2)))
137, 11, 12sylancl 694 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘2)) ∧ 𝑃:(0...2)⟶(Vtx‘𝐺)) → (((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} → (𝑃‘1) ≠ (𝑃‘2)))
1410, 13anim12d 586 . . . . . . . . . . . . 13 ((((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘2)) ∧ 𝑃:(0...2)⟶(Vtx‘𝐺)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2))))
15 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹‘0) = (𝐹‘1) → ((iEdg‘𝐺)‘(𝐹‘0)) = ((iEdg‘𝐺)‘(𝐹‘1)))
1615eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹‘0) = (𝐹‘1) → (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ↔ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘0), (𝑃‘1)}))
17 eqtr2 2642 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → {(𝑃‘0), (𝑃‘1)} = {(𝑃‘1), (𝑃‘2)})
18 prcom 4267 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 {(𝑃‘1), (𝑃‘2)} = {(𝑃‘2), (𝑃‘1)}
1918eqeq2i 2634 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ({(𝑃‘0), (𝑃‘1)} = {(𝑃‘1), (𝑃‘2)} ↔ {(𝑃‘0), (𝑃‘1)} = {(𝑃‘2), (𝑃‘1)})
20 fvex 6201 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑃‘2) ∈ V
218, 20preqr1 4379 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ({(𝑃‘0), (𝑃‘1)} = {(𝑃‘2), (𝑃‘1)} → (𝑃‘0) = (𝑃‘2))
2219, 21sylbi 207 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ({(𝑃‘0), (𝑃‘1)} = {(𝑃‘1), (𝑃‘2)} → (𝑃‘0) = (𝑃‘2))
2317, 22syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) = (𝑃‘2))
2423ex 450 . . . . . . . . . . . . . . . . . . . . . . . 24 (((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘0), (𝑃‘1)} → (((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} → (𝑃‘0) = (𝑃‘2)))
2516, 24syl6bi 243 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹‘0) = (𝐹‘1) → (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} → (((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} → (𝑃‘0) = (𝑃‘2))))
2625impd 447 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹‘0) = (𝐹‘1) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) = (𝑃‘2)))
2726com12 32 . . . . . . . . . . . . . . . . . . . . 21 ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → ((𝐹‘0) = (𝐹‘1) → (𝑃‘0) = (𝑃‘2)))
2827necon3d 2815 . . . . . . . . . . . . . . . . . . . 20 ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → ((𝑃‘0) ≠ (𝑃‘2) → (𝐹‘0) ≠ (𝐹‘1)))
2928com12 32 . . . . . . . . . . . . . . . . . . 19 ((𝑃‘0) ≠ (𝑃‘2) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝐹‘0) ≠ (𝐹‘1)))
3029adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝑃‘0) ≠ (𝑃‘2) ∧ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2))) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝐹‘0) ≠ (𝐹‘1)))
31 simpl 473 . . . . . . . . . . . . . . . . . . . 20 (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2)) → (𝑃‘0) ≠ (𝑃‘1))
3231adantl 482 . . . . . . . . . . . . . . . . . . 19 (((𝑃‘0) ≠ (𝑃‘2) ∧ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2))) → (𝑃‘0) ≠ (𝑃‘1))
33 simpl 473 . . . . . . . . . . . . . . . . . . 19 (((𝑃‘0) ≠ (𝑃‘2) ∧ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2))) → (𝑃‘0) ≠ (𝑃‘2))
34 simprr 796 . . . . . . . . . . . . . . . . . . 19 (((𝑃‘0) ≠ (𝑃‘2) ∧ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2))) → (𝑃‘1) ≠ (𝑃‘2))
3532, 33, 343jca 1242 . . . . . . . . . . . . . . . . . 18 (((𝑃‘0) ≠ (𝑃‘2) ∧ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2))) → ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)))
3630, 35jctild 566 . . . . . . . . . . . . . . . . 17 (((𝑃‘0) ≠ (𝑃‘2) ∧ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2))) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1))))
3736ex 450 . . . . . . . . . . . . . . . 16 ((𝑃‘0) ≠ (𝑃‘2) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))
3837com23 86 . . . . . . . . . . . . . . 15 ((𝑃‘0) ≠ (𝑃‘2) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2)) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))
3938adantl 482 . . . . . . . . . . . . . 14 (((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘2)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2)) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))
4039adantr 481 . . . . . . . . . . . . 13 ((((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘2)) ∧ 𝑃:(0...2)⟶(Vtx‘𝐺)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2)) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))
4114, 40mpdd 43 . . . . . . . . . . . 12 ((((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘2)) ∧ 𝑃:(0...2)⟶(Vtx‘𝐺)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1))))
426, 41syl5bi 232 . . . . . . . . . . 11 ((((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘2)) ∧ 𝑃:(0...2)⟶(Vtx‘𝐺)) → (∀𝑘 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1))))
4342ex 450 . . . . . . . . . 10 (((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘2)) → (𝑃:(0...2)⟶(Vtx‘𝐺) → (∀𝑘 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))
4443com23 86 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘2)) → (∀𝑘 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝑃:(0...2)⟶(Vtx‘𝐺) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))
4544ex 450 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → ((𝑃‘0) ≠ (𝑃‘2) → (∀𝑘 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝑃:(0...2)⟶(Vtx‘𝐺) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1))))))
46 fveq2 6191 . . . . . . . . . 10 ((#‘𝐹) = 2 → (𝑃‘(#‘𝐹)) = (𝑃‘2))
4746neeq2d 2854 . . . . . . . . 9 ((#‘𝐹) = 2 → ((𝑃‘0) ≠ (𝑃‘(#‘𝐹)) ↔ (𝑃‘0) ≠ (𝑃‘2)))
48 oveq2 6658 . . . . . . . . . . . 12 ((#‘𝐹) = 2 → (0..^(#‘𝐹)) = (0..^2))
49 fzo0to2pr 12553 . . . . . . . . . . . 12 (0..^2) = {0, 1}
5048, 49syl6eq 2672 . . . . . . . . . . 11 ((#‘𝐹) = 2 → (0..^(#‘𝐹)) = {0, 1})
5150raleqdv 3144 . . . . . . . . . 10 ((#‘𝐹) = 2 → (∀𝑘 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ ∀𝑘 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
52 oveq2 6658 . . . . . . . . . . . 12 ((#‘𝐹) = 2 → (0...(#‘𝐹)) = (0...2))
5352feq2d 6031 . . . . . . . . . . 11 ((#‘𝐹) = 2 → (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ↔ 𝑃:(0...2)⟶(Vtx‘𝐺)))
5453imbi1d 331 . . . . . . . . . 10 ((#‘𝐹) = 2 → ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1))) ↔ (𝑃:(0...2)⟶(Vtx‘𝐺) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))
5551, 54imbi12d 334 . . . . . . . . 9 ((#‘𝐹) = 2 → ((∀𝑘 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))) ↔ (∀𝑘 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝑃:(0...2)⟶(Vtx‘𝐺) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1))))))
5647, 55imbi12d 334 . . . . . . . 8 ((#‘𝐹) = 2 → (((𝑃‘0) ≠ (𝑃‘(#‘𝐹)) → (∀𝑘 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1))))) ↔ ((𝑃‘0) ≠ (𝑃‘2) → (∀𝑘 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝑃:(0...2)⟶(Vtx‘𝐺) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))))
5745, 56syl5ibrcom 237 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → ((#‘𝐹) = 2 → ((𝑃‘0) ≠ (𝑃‘(#‘𝐹)) → (∀𝑘 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))))
5857impd 447 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → (((#‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(#‘𝐹))) → (∀𝑘 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1))))))
5958com24 95 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) → (∀𝑘 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (((#‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(#‘𝐹))) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1))))))
6059ex 450 . . . 4 (𝐺 ∈ USGraph → (𝐹 ∈ Word dom (iEdg‘𝐺) → (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) → (∀𝑘 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (((#‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(#‘𝐹))) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))))
61603impd 1281 . . 3 (𝐺 ∈ USGraph → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → (((#‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(#‘𝐹))) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))
625, 61sylbid 230 . 2 (𝐺 ∈ USGraph → (𝐹(Walks‘𝐺)𝑃 → (((#‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(#‘𝐹))) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))
6362imp31 448 1 (((𝐺 ∈ USGraph ∧ 𝐹(Walks‘𝐺)𝑃) ∧ ((#‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(#‘𝐹)))) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  Vcvv 3200  {cpr 4179   class class class wbr 4653  dom cdm 5114  wf 5884  cfv 5888  (class class class)co 6650  0cc0 9936  1c1 9937   + caddc 9939  2c2 11070  ...cfz 12326  ..^cfzo 12465  #chash 13117  Word cword 13291  Vtxcvtx 25874  iEdgciedg 25875   UPGraph cupgr 25975   USGraph cusgr 26044  Walkscwlks 26492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-edg 25940  df-uhgr 25953  df-upgr 25977  df-umgr 25978  df-uspgr 26045  df-usgr 26046  df-wlks 26495
This theorem is referenced by:  usgr2wlkspthlem1  26653  usgr2wlkspthlem2  26654
  Copyright terms: Public domain W3C validator