MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negf1o Structured version   Visualization version   GIF version

Theorem negf1o 10460
Description: Negation is an isomorphism of a subset of the real numbers to the negated elements of the subset. (Contributed by AV, 9-Aug-2020.)
Hypothesis
Ref Expression
negf1o.1 𝐹 = (𝑥𝐴 ↦ -𝑥)
Assertion
Ref Expression
negf1o (𝐴 ⊆ ℝ → 𝐹:𝐴1-1-onto→{𝑛 ∈ ℝ ∣ -𝑛𝐴})
Distinct variable group:   𝐴,𝑛,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem negf1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 negf1o.1 . . 3 𝐹 = (𝑥𝐴 ↦ -𝑥)
2 ssel 3597 . . . . . 6 (𝐴 ⊆ ℝ → (𝑥𝐴𝑥 ∈ ℝ))
3 renegcl 10344 . . . . . 6 (𝑥 ∈ ℝ → -𝑥 ∈ ℝ)
42, 3syl6 35 . . . . 5 (𝐴 ⊆ ℝ → (𝑥𝐴 → -𝑥 ∈ ℝ))
54imp 445 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → -𝑥 ∈ ℝ)
62imp 445 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
7 recn 10026 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
8 negneg 10331 . . . . . . . . . 10 (𝑥 ∈ ℂ → --𝑥 = 𝑥)
98eqcomd 2628 . . . . . . . . 9 (𝑥 ∈ ℂ → 𝑥 = --𝑥)
107, 9syl 17 . . . . . . . 8 (𝑥 ∈ ℝ → 𝑥 = --𝑥)
1110eleq1d 2686 . . . . . . 7 (𝑥 ∈ ℝ → (𝑥𝐴 ↔ --𝑥𝐴))
1211biimpcd 239 . . . . . 6 (𝑥𝐴 → (𝑥 ∈ ℝ → --𝑥𝐴))
1312adantl 482 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → (𝑥 ∈ ℝ → --𝑥𝐴))
146, 13mpd 15 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → --𝑥𝐴)
15 negeq 10273 . . . . . 6 (𝑛 = -𝑥 → -𝑛 = --𝑥)
1615eleq1d 2686 . . . . 5 (𝑛 = -𝑥 → (-𝑛𝐴 ↔ --𝑥𝐴))
1716elrab 3363 . . . 4 (-𝑥 ∈ {𝑛 ∈ ℝ ∣ -𝑛𝐴} ↔ (-𝑥 ∈ ℝ ∧ --𝑥𝐴))
185, 14, 17sylanbrc 698 . . 3 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → -𝑥 ∈ {𝑛 ∈ ℝ ∣ -𝑛𝐴})
19 negeq 10273 . . . . . . 7 (𝑛 = 𝑦 → -𝑛 = -𝑦)
2019eleq1d 2686 . . . . . 6 (𝑛 = 𝑦 → (-𝑛𝐴 ↔ -𝑦𝐴))
2120elrab 3363 . . . . 5 (𝑦 ∈ {𝑛 ∈ ℝ ∣ -𝑛𝐴} ↔ (𝑦 ∈ ℝ ∧ -𝑦𝐴))
22 simpr 477 . . . . . 6 ((𝑦 ∈ ℝ ∧ -𝑦𝐴) → -𝑦𝐴)
2322a1i 11 . . . . 5 (𝐴 ⊆ ℝ → ((𝑦 ∈ ℝ ∧ -𝑦𝐴) → -𝑦𝐴))
2421, 23syl5bi 232 . . . 4 (𝐴 ⊆ ℝ → (𝑦 ∈ {𝑛 ∈ ℝ ∣ -𝑛𝐴} → -𝑦𝐴))
2524imp 445 . . 3 ((𝐴 ⊆ ℝ ∧ 𝑦 ∈ {𝑛 ∈ ℝ ∣ -𝑛𝐴}) → -𝑦𝐴)
262, 7syl6com 37 . . . . . . . . . 10 (𝑥𝐴 → (𝐴 ⊆ ℝ → 𝑥 ∈ ℂ))
2726adantl 482 . . . . . . . . 9 (((𝑦 ∈ ℝ ∧ -𝑦𝐴) ∧ 𝑥𝐴) → (𝐴 ⊆ ℝ → 𝑥 ∈ ℂ))
2827imp 445 . . . . . . . 8 ((((𝑦 ∈ ℝ ∧ -𝑦𝐴) ∧ 𝑥𝐴) ∧ 𝐴 ⊆ ℝ) → 𝑥 ∈ ℂ)
29 recn 10026 . . . . . . . . 9 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
3029ad3antrrr 766 . . . . . . . 8 ((((𝑦 ∈ ℝ ∧ -𝑦𝐴) ∧ 𝑥𝐴) ∧ 𝐴 ⊆ ℝ) → 𝑦 ∈ ℂ)
31 negcon2 10334 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 = -𝑦𝑦 = -𝑥))
3228, 30, 31syl2anc 693 . . . . . . 7 ((((𝑦 ∈ ℝ ∧ -𝑦𝐴) ∧ 𝑥𝐴) ∧ 𝐴 ⊆ ℝ) → (𝑥 = -𝑦𝑦 = -𝑥))
3332exp31 630 . . . . . 6 ((𝑦 ∈ ℝ ∧ -𝑦𝐴) → (𝑥𝐴 → (𝐴 ⊆ ℝ → (𝑥 = -𝑦𝑦 = -𝑥))))
3421, 33sylbi 207 . . . . 5 (𝑦 ∈ {𝑛 ∈ ℝ ∣ -𝑛𝐴} → (𝑥𝐴 → (𝐴 ⊆ ℝ → (𝑥 = -𝑦𝑦 = -𝑥))))
3534impcom 446 . . . 4 ((𝑥𝐴𝑦 ∈ {𝑛 ∈ ℝ ∣ -𝑛𝐴}) → (𝐴 ⊆ ℝ → (𝑥 = -𝑦𝑦 = -𝑥)))
3635impcom 446 . . 3 ((𝐴 ⊆ ℝ ∧ (𝑥𝐴𝑦 ∈ {𝑛 ∈ ℝ ∣ -𝑛𝐴})) → (𝑥 = -𝑦𝑦 = -𝑥))
371, 18, 25, 36f1ocnv2d 6886 . 2 (𝐴 ⊆ ℝ → (𝐹:𝐴1-1-onto→{𝑛 ∈ ℝ ∣ -𝑛𝐴} ∧ 𝐹 = (𝑦 ∈ {𝑛 ∈ ℝ ∣ -𝑛𝐴} ↦ -𝑦)))
3837simpld 475 1 (𝐴 ⊆ ℝ → 𝐹:𝐴1-1-onto→{𝑛 ∈ ℝ ∣ -𝑛𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  {crab 2916  wss 3574  cmpt 4729  ccnv 5113  1-1-ontowf1o 5887  cc 9934  cr 9935  -cneg 10267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-sub 10268  df-neg 10269
This theorem is referenced by:  negfi  10971
  Copyright terms: Public domain W3C validator