MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negfi Structured version   Visualization version   GIF version

Theorem negfi 10971
Description: The negation of a finite set of real numbers is finite. (Contributed by AV, 9-Aug-2020.)
Assertion
Ref Expression
negfi ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → {𝑛 ∈ ℝ ∣ -𝑛𝐴} ∈ Fin)
Distinct variable group:   𝐴,𝑛

Proof of Theorem negfi
Dummy variables 𝑎 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3597 . . . . . . . . . 10 (𝐴 ⊆ ℝ → (𝑎𝐴𝑎 ∈ ℝ))
2 renegcl 10344 . . . . . . . . . 10 (𝑎 ∈ ℝ → -𝑎 ∈ ℝ)
31, 2syl6 35 . . . . . . . . 9 (𝐴 ⊆ ℝ → (𝑎𝐴 → -𝑎 ∈ ℝ))
43imp 445 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝑎𝐴) → -𝑎 ∈ ℝ)
54ralrimiva 2966 . . . . . . 7 (𝐴 ⊆ ℝ → ∀𝑎𝐴 -𝑎 ∈ ℝ)
6 dmmptg 5632 . . . . . . 7 (∀𝑎𝐴 -𝑎 ∈ ℝ → dom (𝑎𝐴 ↦ -𝑎) = 𝐴)
75, 6syl 17 . . . . . 6 (𝐴 ⊆ ℝ → dom (𝑎𝐴 ↦ -𝑎) = 𝐴)
87eqcomd 2628 . . . . 5 (𝐴 ⊆ ℝ → 𝐴 = dom (𝑎𝐴 ↦ -𝑎))
98eleq1d 2686 . . . 4 (𝐴 ⊆ ℝ → (𝐴 ∈ Fin ↔ dom (𝑎𝐴 ↦ -𝑎) ∈ Fin))
10 funmpt 5926 . . . . 5 Fun (𝑎𝐴 ↦ -𝑎)
11 fundmfibi 8245 . . . . 5 (Fun (𝑎𝐴 ↦ -𝑎) → ((𝑎𝐴 ↦ -𝑎) ∈ Fin ↔ dom (𝑎𝐴 ↦ -𝑎) ∈ Fin))
1210, 11mp1i 13 . . . 4 (𝐴 ⊆ ℝ → ((𝑎𝐴 ↦ -𝑎) ∈ Fin ↔ dom (𝑎𝐴 ↦ -𝑎) ∈ Fin))
139, 12bitr4d 271 . . 3 (𝐴 ⊆ ℝ → (𝐴 ∈ Fin ↔ (𝑎𝐴 ↦ -𝑎) ∈ Fin))
14 reex 10027 . . . . . 6 ℝ ∈ V
1514ssex 4802 . . . . 5 (𝐴 ⊆ ℝ → 𝐴 ∈ V)
16 mptexg 6484 . . . . 5 (𝐴 ∈ V → (𝑎𝐴 ↦ -𝑎) ∈ V)
1715, 16syl 17 . . . 4 (𝐴 ⊆ ℝ → (𝑎𝐴 ↦ -𝑎) ∈ V)
18 eqid 2622 . . . . . 6 (𝑎𝐴 ↦ -𝑎) = (𝑎𝐴 ↦ -𝑎)
1918negf1o 10460 . . . . 5 (𝐴 ⊆ ℝ → (𝑎𝐴 ↦ -𝑎):𝐴1-1-onto→{𝑥 ∈ ℝ ∣ -𝑥𝐴})
20 f1of1 6136 . . . . 5 ((𝑎𝐴 ↦ -𝑎):𝐴1-1-onto→{𝑥 ∈ ℝ ∣ -𝑥𝐴} → (𝑎𝐴 ↦ -𝑎):𝐴1-1→{𝑥 ∈ ℝ ∣ -𝑥𝐴})
2119, 20syl 17 . . . 4 (𝐴 ⊆ ℝ → (𝑎𝐴 ↦ -𝑎):𝐴1-1→{𝑥 ∈ ℝ ∣ -𝑥𝐴})
22 f1vrnfibi 8251 . . . 4 (((𝑎𝐴 ↦ -𝑎) ∈ V ∧ (𝑎𝐴 ↦ -𝑎):𝐴1-1→{𝑥 ∈ ℝ ∣ -𝑥𝐴}) → ((𝑎𝐴 ↦ -𝑎) ∈ Fin ↔ ran (𝑎𝐴 ↦ -𝑎) ∈ Fin))
2317, 21, 22syl2anc 693 . . 3 (𝐴 ⊆ ℝ → ((𝑎𝐴 ↦ -𝑎) ∈ Fin ↔ ran (𝑎𝐴 ↦ -𝑎) ∈ Fin))
241imp 445 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝑎𝐴) → 𝑎 ∈ ℝ)
252adantl 482 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ ∧ 𝑎𝐴) ∧ 𝑎 ∈ ℝ) → -𝑎 ∈ ℝ)
26 recn 10026 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ ℝ → 𝑎 ∈ ℂ)
2726negnegd 10383 . . . . . . . . . . . . . . . 16 (𝑎 ∈ ℝ → --𝑎 = 𝑎)
2827eqcomd 2628 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℝ → 𝑎 = --𝑎)
2928eleq1d 2686 . . . . . . . . . . . . . 14 (𝑎 ∈ ℝ → (𝑎𝐴 ↔ --𝑎𝐴))
3029biimpcd 239 . . . . . . . . . . . . 13 (𝑎𝐴 → (𝑎 ∈ ℝ → --𝑎𝐴))
3130adantl 482 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ ∧ 𝑎𝐴) → (𝑎 ∈ ℝ → --𝑎𝐴))
3231imp 445 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ ∧ 𝑎𝐴) ∧ 𝑎 ∈ ℝ) → --𝑎𝐴)
3325, 32jca 554 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝑎𝐴) ∧ 𝑎 ∈ ℝ) → (-𝑎 ∈ ℝ ∧ --𝑎𝐴))
3424, 33mpdan 702 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝑎𝐴) → (-𝑎 ∈ ℝ ∧ --𝑎𝐴))
35 eleq1 2689 . . . . . . . . . 10 (𝑛 = -𝑎 → (𝑛 ∈ ℝ ↔ -𝑎 ∈ ℝ))
36 negeq 10273 . . . . . . . . . . 11 (𝑛 = -𝑎 → -𝑛 = --𝑎)
3736eleq1d 2686 . . . . . . . . . 10 (𝑛 = -𝑎 → (-𝑛𝐴 ↔ --𝑎𝐴))
3835, 37anbi12d 747 . . . . . . . . 9 (𝑛 = -𝑎 → ((𝑛 ∈ ℝ ∧ -𝑛𝐴) ↔ (-𝑎 ∈ ℝ ∧ --𝑎𝐴)))
3934, 38syl5ibrcom 237 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝑎𝐴) → (𝑛 = -𝑎 → (𝑛 ∈ ℝ ∧ -𝑛𝐴)))
4039rexlimdva 3031 . . . . . . 7 (𝐴 ⊆ ℝ → (∃𝑎𝐴 𝑛 = -𝑎 → (𝑛 ∈ ℝ ∧ -𝑛𝐴)))
41 simprr 796 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ (𝑛 ∈ ℝ ∧ -𝑛𝐴)) → -𝑛𝐴)
42 negeq 10273 . . . . . . . . . . 11 (𝑎 = -𝑛 → -𝑎 = --𝑛)
4342eqeq2d 2632 . . . . . . . . . 10 (𝑎 = -𝑛 → (𝑛 = -𝑎𝑛 = --𝑛))
4443adantl 482 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ (𝑛 ∈ ℝ ∧ -𝑛𝐴)) ∧ 𝑎 = -𝑛) → (𝑛 = -𝑎𝑛 = --𝑛))
45 recn 10026 . . . . . . . . . . 11 (𝑛 ∈ ℝ → 𝑛 ∈ ℂ)
46 negneg 10331 . . . . . . . . . . . 12 (𝑛 ∈ ℂ → --𝑛 = 𝑛)
4746eqcomd 2628 . . . . . . . . . . 11 (𝑛 ∈ ℂ → 𝑛 = --𝑛)
4845, 47syl 17 . . . . . . . . . 10 (𝑛 ∈ ℝ → 𝑛 = --𝑛)
4948ad2antrl 764 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ (𝑛 ∈ ℝ ∧ -𝑛𝐴)) → 𝑛 = --𝑛)
5041, 44, 49rspcedvd 3317 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ (𝑛 ∈ ℝ ∧ -𝑛𝐴)) → ∃𝑎𝐴 𝑛 = -𝑎)
5150ex 450 . . . . . . 7 (𝐴 ⊆ ℝ → ((𝑛 ∈ ℝ ∧ -𝑛𝐴) → ∃𝑎𝐴 𝑛 = -𝑎))
5240, 51impbid 202 . . . . . 6 (𝐴 ⊆ ℝ → (∃𝑎𝐴 𝑛 = -𝑎 ↔ (𝑛 ∈ ℝ ∧ -𝑛𝐴)))
5352abbidv 2741 . . . . 5 (𝐴 ⊆ ℝ → {𝑛 ∣ ∃𝑎𝐴 𝑛 = -𝑎} = {𝑛 ∣ (𝑛 ∈ ℝ ∧ -𝑛𝐴)})
5418rnmpt 5371 . . . . 5 ran (𝑎𝐴 ↦ -𝑎) = {𝑛 ∣ ∃𝑎𝐴 𝑛 = -𝑎}
55 df-rab 2921 . . . . 5 {𝑛 ∈ ℝ ∣ -𝑛𝐴} = {𝑛 ∣ (𝑛 ∈ ℝ ∧ -𝑛𝐴)}
5653, 54, 553eqtr4g 2681 . . . 4 (𝐴 ⊆ ℝ → ran (𝑎𝐴 ↦ -𝑎) = {𝑛 ∈ ℝ ∣ -𝑛𝐴})
5756eleq1d 2686 . . 3 (𝐴 ⊆ ℝ → (ran (𝑎𝐴 ↦ -𝑎) ∈ Fin ↔ {𝑛 ∈ ℝ ∣ -𝑛𝐴} ∈ Fin))
5813, 23, 573bitrd 294 . 2 (𝐴 ⊆ ℝ → (𝐴 ∈ Fin ↔ {𝑛 ∈ ℝ ∣ -𝑛𝐴} ∈ Fin))
5958biimpa 501 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → {𝑛 ∈ ℝ ∣ -𝑛𝐴} ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  {cab 2608  wral 2912  wrex 2913  {crab 2916  Vcvv 3200  wss 3574  cmpt 4729  dom cdm 5114  ran crn 5115  Fun wfun 5882  1-1wf1 5885  1-1-ontowf1o 5887  Fincfn 7955  cc 9934  cr 9935  -cneg 10267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-sub 10268  df-neg 10269
This theorem is referenced by:  fiminre  10972
  Copyright terms: Public domain W3C validator