Proof of Theorem neiptopreu
| Step | Hyp | Ref
| Expression |
| 1 | | neiptop.o |
. . . . 5
⊢ 𝐽 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝 ∈ 𝑎 𝑎 ∈ (𝑁‘𝑝)} |
| 2 | | neiptop.0 |
. . . . 5
⊢ (𝜑 → 𝑁:𝑋⟶𝒫 𝒫 𝑋) |
| 3 | | neiptop.1 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → 𝑏 ∈ (𝑁‘𝑝)) |
| 4 | | neiptop.2 |
. . . . 5
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑋) → (fi‘(𝑁‘𝑝)) ⊆ (𝑁‘𝑝)) |
| 5 | | neiptop.3 |
. . . . 5
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → 𝑝 ∈ 𝑎) |
| 6 | | neiptop.4 |
. . . . 5
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → ∃𝑏 ∈ (𝑁‘𝑝)∀𝑞 ∈ 𝑏 𝑎 ∈ (𝑁‘𝑞)) |
| 7 | | neiptop.5 |
. . . . 5
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑋) → 𝑋 ∈ (𝑁‘𝑝)) |
| 8 | 1, 2, 3, 4, 5, 6, 7 | neiptoptop 20935 |
. . . 4
⊢ (𝜑 → 𝐽 ∈ Top) |
| 9 | | eqid 2622 |
. . . . 5
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 10 | 9 | toptopon 20722 |
. . . 4
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 11 | 8, 10 | sylib 208 |
. . 3
⊢ (𝜑 → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 12 | 1, 2, 3, 4, 5, 6, 7 | neiptopuni 20934 |
. . . 4
⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
| 13 | 12 | fveq2d 6195 |
. . 3
⊢ (𝜑 → (TopOn‘𝑋) = (TopOn‘∪ 𝐽)) |
| 14 | 11, 13 | eleqtrrd 2704 |
. 2
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 15 | 1, 2, 3, 4, 5, 6, 7 | neiptopnei 20936 |
. 2
⊢ (𝜑 → 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝐽)‘{𝑝}))) |
| 16 | | nfv 1843 |
. . . . . . . . . 10
⊢
Ⅎ𝑝(𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) |
| 17 | | nfmpt1 4747 |
. . . . . . . . . . 11
⊢
Ⅎ𝑝(𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})) |
| 18 | 17 | nfeq2 2780 |
. . . . . . . . . 10
⊢
Ⅎ𝑝 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})) |
| 19 | 16, 18 | nfan 1828 |
. . . . . . . . 9
⊢
Ⅎ𝑝((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) |
| 20 | | nfv 1843 |
. . . . . . . . 9
⊢
Ⅎ𝑝 𝑏 ⊆ 𝑋 |
| 21 | 19, 20 | nfan 1828 |
. . . . . . . 8
⊢
Ⅎ𝑝(((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏 ⊆ 𝑋) |
| 22 | | simpllr 799 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏 ⊆ 𝑋) ∧ 𝑝 ∈ 𝑏) → 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) |
| 23 | | simpr 477 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏 ⊆ 𝑋) → 𝑏 ⊆ 𝑋) |
| 24 | 23 | sselda 3603 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏 ⊆ 𝑋) ∧ 𝑝 ∈ 𝑏) → 𝑝 ∈ 𝑋) |
| 25 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})) → 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) |
| 26 | | fvexd 6203 |
. . . . . . . . . . . 12
⊢ ((𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ∧ 𝑝 ∈ 𝑋) → ((nei‘𝑗)‘{𝑝}) ∈ V) |
| 27 | 25, 26 | fvmpt2d 6293 |
. . . . . . . . . . 11
⊢ ((𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ∧ 𝑝 ∈ 𝑋) → (𝑁‘𝑝) = ((nei‘𝑗)‘{𝑝})) |
| 28 | 22, 24, 27 | syl2anc 693 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏 ⊆ 𝑋) ∧ 𝑝 ∈ 𝑏) → (𝑁‘𝑝) = ((nei‘𝑗)‘{𝑝})) |
| 29 | 28 | eqcomd 2628 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏 ⊆ 𝑋) ∧ 𝑝 ∈ 𝑏) → ((nei‘𝑗)‘{𝑝}) = (𝑁‘𝑝)) |
| 30 | 29 | eleq2d 2687 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏 ⊆ 𝑋) ∧ 𝑝 ∈ 𝑏) → (𝑏 ∈ ((nei‘𝑗)‘{𝑝}) ↔ 𝑏 ∈ (𝑁‘𝑝))) |
| 31 | 21, 30 | ralbida 2982 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏 ⊆ 𝑋) → (∀𝑝 ∈ 𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝}) ↔ ∀𝑝 ∈ 𝑏 𝑏 ∈ (𝑁‘𝑝))) |
| 32 | 31 | pm5.32da 673 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → ((𝑏 ⊆ 𝑋 ∧ ∀𝑝 ∈ 𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝})) ↔ (𝑏 ⊆ 𝑋 ∧ ∀𝑝 ∈ 𝑏 𝑏 ∈ (𝑁‘𝑝)))) |
| 33 | | simpllr 799 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏 ∈ 𝑗) → 𝑗 ∈ (TopOn‘𝑋)) |
| 34 | | simpr 477 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏 ∈ 𝑗) → 𝑏 ∈ 𝑗) |
| 35 | | toponss 20731 |
. . . . . . . . 9
⊢ ((𝑗 ∈ (TopOn‘𝑋) ∧ 𝑏 ∈ 𝑗) → 𝑏 ⊆ 𝑋) |
| 36 | 33, 34, 35 | syl2anc 693 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏 ∈ 𝑗) → 𝑏 ⊆ 𝑋) |
| 37 | | topontop 20718 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (TopOn‘𝑋) → 𝑗 ∈ Top) |
| 38 | 37 | ad2antlr 763 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → 𝑗 ∈ Top) |
| 39 | | opnnei 20924 |
. . . . . . . . . 10
⊢ (𝑗 ∈ Top → (𝑏 ∈ 𝑗 ↔ ∀𝑝 ∈ 𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝}))) |
| 40 | 38, 39 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → (𝑏 ∈ 𝑗 ↔ ∀𝑝 ∈ 𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝}))) |
| 41 | 40 | biimpa 501 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏 ∈ 𝑗) → ∀𝑝 ∈ 𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝})) |
| 42 | 36, 41 | jca 554 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏 ∈ 𝑗) → (𝑏 ⊆ 𝑋 ∧ ∀𝑝 ∈ 𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝}))) |
| 43 | 40 | biimpar 502 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ ∀𝑝 ∈ 𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝})) → 𝑏 ∈ 𝑗) |
| 44 | 43 | adantrl 752 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ (𝑏 ⊆ 𝑋 ∧ ∀𝑝 ∈ 𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝}))) → 𝑏 ∈ 𝑗) |
| 45 | 42, 44 | impbida 877 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → (𝑏 ∈ 𝑗 ↔ (𝑏 ⊆ 𝑋 ∧ ∀𝑝 ∈ 𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝})))) |
| 46 | 1 | neipeltop 20933 |
. . . . . . 7
⊢ (𝑏 ∈ 𝐽 ↔ (𝑏 ⊆ 𝑋 ∧ ∀𝑝 ∈ 𝑏 𝑏 ∈ (𝑁‘𝑝))) |
| 47 | 46 | a1i 11 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → (𝑏 ∈ 𝐽 ↔ (𝑏 ⊆ 𝑋 ∧ ∀𝑝 ∈ 𝑏 𝑏 ∈ (𝑁‘𝑝)))) |
| 48 | 32, 45, 47 | 3bitr4d 300 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → (𝑏 ∈ 𝑗 ↔ 𝑏 ∈ 𝐽)) |
| 49 | 48 | eqrdv 2620 |
. . . 4
⊢ (((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → 𝑗 = 𝐽) |
| 50 | 49 | ex 450 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) → (𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})) → 𝑗 = 𝐽)) |
| 51 | 50 | ralrimiva 2966 |
. 2
⊢ (𝜑 → ∀𝑗 ∈ (TopOn‘𝑋)(𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})) → 𝑗 = 𝐽)) |
| 52 | | simpl 473 |
. . . . . . 7
⊢ ((𝑗 = 𝐽 ∧ 𝑝 ∈ 𝑋) → 𝑗 = 𝐽) |
| 53 | 52 | fveq2d 6195 |
. . . . . 6
⊢ ((𝑗 = 𝐽 ∧ 𝑝 ∈ 𝑋) → (nei‘𝑗) = (nei‘𝐽)) |
| 54 | 53 | fveq1d 6193 |
. . . . 5
⊢ ((𝑗 = 𝐽 ∧ 𝑝 ∈ 𝑋) → ((nei‘𝑗)‘{𝑝}) = ((nei‘𝐽)‘{𝑝})) |
| 55 | 54 | mpteq2dva 4744 |
. . . 4
⊢ (𝑗 = 𝐽 → (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})) = (𝑝 ∈ 𝑋 ↦ ((nei‘𝐽)‘{𝑝}))) |
| 56 | 55 | eqeq2d 2632 |
. . 3
⊢ (𝑗 = 𝐽 → (𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝐽)‘{𝑝})))) |
| 57 | 56 | eqreu 3398 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝐽)‘{𝑝})) ∧ ∀𝑗 ∈ (TopOn‘𝑋)(𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})) → 𝑗 = 𝐽)) → ∃!𝑗 ∈ (TopOn‘𝑋)𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) |
| 58 | 14, 15, 51, 57 | syl3anc 1326 |
1
⊢ (𝜑 → ∃!𝑗 ∈ (TopOn‘𝑋)𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) |