HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normlem0 Structured version   Visualization version   Unicode version

Theorem normlem0 27966
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 7-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem1.1  |-  S  e.  CC
normlem1.2  |-  F  e. 
~H
normlem1.3  |-  G  e. 
~H
Assertion
Ref Expression
normlem0  |-  ( ( F  -h  ( S  .h  G ) ) 
.ih  ( F  -h  ( S  .h  G
) ) )  =  ( ( ( F 
.ih  F )  +  ( -u ( * `
 S )  x.  ( F  .ih  G
) ) )  +  ( ( -u S  x.  ( G  .ih  F
) )  +  ( ( S  x.  (
* `  S )
)  x.  ( G 
.ih  G ) ) ) )

Proof of Theorem normlem0
StepHypRef Expression
1 normlem1.2 . . . . 5  |-  F  e. 
~H
2 normlem1.1 . . . . . 6  |-  S  e.  CC
3 normlem1.3 . . . . . 6  |-  G  e. 
~H
42, 3hvmulcli 27871 . . . . 5  |-  ( S  .h  G )  e. 
~H
51, 4hvsubvali 27877 . . . 4  |-  ( F  -h  ( S  .h  G ) )  =  ( F  +h  ( -u 1  .h  ( S  .h  G ) ) )
62mulm1i 10475 . . . . . . 7  |-  ( -u
1  x.  S )  =  -u S
76oveq1i 6660 . . . . . 6  |-  ( (
-u 1  x.  S
)  .h  G )  =  ( -u S  .h  G )
8 neg1cn 11124 . . . . . . 7  |-  -u 1  e.  CC
98, 2, 3hvmulassi 27903 . . . . . 6  |-  ( (
-u 1  x.  S
)  .h  G )  =  ( -u 1  .h  ( S  .h  G
) )
107, 9eqtr3i 2646 . . . . 5  |-  ( -u S  .h  G )  =  ( -u 1  .h  ( S  .h  G
) )
1110oveq2i 6661 . . . 4  |-  ( F  +h  ( -u S  .h  G ) )  =  ( F  +h  ( -u 1  .h  ( S  .h  G ) ) )
125, 11eqtr4i 2647 . . 3  |-  ( F  -h  ( S  .h  G ) )  =  ( F  +h  ( -u S  .h  G ) )
1312, 12oveq12i 6662 . 2  |-  ( ( F  -h  ( S  .h  G ) ) 
.ih  ( F  -h  ( S  .h  G
) ) )  =  ( ( F  +h  ( -u S  .h  G
) )  .ih  ( F  +h  ( -u S  .h  G ) ) )
142negcli 10349 . . . 4  |-  -u S  e.  CC
1514, 3hvmulcli 27871 . . 3  |-  ( -u S  .h  G )  e.  ~H
161, 15hvaddcli 27875 . . 3  |-  ( F  +h  ( -u S  .h  G ) )  e. 
~H
17 ax-his2 27940 . . 3  |-  ( ( F  e.  ~H  /\  ( -u S  .h  G
)  e.  ~H  /\  ( F  +h  ( -u S  .h  G ) )  e.  ~H )  ->  ( ( F  +h  ( -u S  .h  G
) )  .ih  ( F  +h  ( -u S  .h  G ) ) )  =  ( ( F 
.ih  ( F  +h  ( -u S  .h  G
) ) )  +  ( ( -u S  .h  G )  .ih  ( F  +h  ( -u S  .h  G ) ) ) ) )
181, 15, 16, 17mp3an 1424 . 2  |-  ( ( F  +h  ( -u S  .h  G )
)  .ih  ( F  +h  ( -u S  .h  G ) ) )  =  ( ( F 
.ih  ( F  +h  ( -u S  .h  G
) ) )  +  ( ( -u S  .h  G )  .ih  ( F  +h  ( -u S  .h  G ) ) ) )
19 his7 27947 . . . . 5  |-  ( ( F  e.  ~H  /\  F  e.  ~H  /\  ( -u S  .h  G )  e.  ~H )  -> 
( F  .ih  ( F  +h  ( -u S  .h  G ) ) )  =  ( ( F 
.ih  F )  +  ( F  .ih  ( -u S  .h  G ) ) ) )
201, 1, 15, 19mp3an 1424 . . . 4  |-  ( F 
.ih  ( F  +h  ( -u S  .h  G
) ) )  =  ( ( F  .ih  F )  +  ( F 
.ih  ( -u S  .h  G ) ) )
21 his5 27943 . . . . . . 7  |-  ( (
-u S  e.  CC  /\  F  e.  ~H  /\  G  e.  ~H )  ->  ( F  .ih  ( -u S  .h  G ) )  =  ( ( * `  -u S
)  x.  ( F 
.ih  G ) ) )
2214, 1, 3, 21mp3an 1424 . . . . . 6  |-  ( F 
.ih  ( -u S  .h  G ) )  =  ( ( * `  -u S )  x.  ( F  .ih  G ) )
232cjnegi 13922 . . . . . . 7  |-  ( * `
 -u S )  = 
-u ( * `  S )
2423oveq1i 6660 . . . . . 6  |-  ( ( * `  -u S
)  x.  ( F 
.ih  G ) )  =  ( -u (
* `  S )  x.  ( F  .ih  G
) )
2522, 24eqtri 2644 . . . . 5  |-  ( F 
.ih  ( -u S  .h  G ) )  =  ( -u ( * `
 S )  x.  ( F  .ih  G
) )
2625oveq2i 6661 . . . 4  |-  ( ( F  .ih  F )  +  ( F  .ih  ( -u S  .h  G
) ) )  =  ( ( F  .ih  F )  +  ( -u ( * `  S
)  x.  ( F 
.ih  G ) ) )
2720, 26eqtri 2644 . . 3  |-  ( F 
.ih  ( F  +h  ( -u S  .h  G
) ) )  =  ( ( F  .ih  F )  +  ( -u ( * `  S
)  x.  ( F 
.ih  G ) ) )
28 ax-his3 27941 . . . . 5  |-  ( (
-u S  e.  CC  /\  G  e.  ~H  /\  ( F  +h  ( -u S  .h  G ) )  e.  ~H )  ->  ( ( -u S  .h  G )  .ih  ( F  +h  ( -u S  .h  G ) ) )  =  ( -u S  x.  ( G  .ih  ( F  +h  ( -u S  .h  G ) ) ) ) )
2914, 3, 16, 28mp3an 1424 . . . 4  |-  ( (
-u S  .h  G
)  .ih  ( F  +h  ( -u S  .h  G ) ) )  =  ( -u S  x.  ( G  .ih  ( F  +h  ( -u S  .h  G ) ) ) )
30 his7 27947 . . . . . . 7  |-  ( ( G  e.  ~H  /\  F  e.  ~H  /\  ( -u S  .h  G )  e.  ~H )  -> 
( G  .ih  ( F  +h  ( -u S  .h  G ) ) )  =  ( ( G 
.ih  F )  +  ( G  .ih  ( -u S  .h  G ) ) ) )
313, 1, 15, 30mp3an 1424 . . . . . 6  |-  ( G 
.ih  ( F  +h  ( -u S  .h  G
) ) )  =  ( ( G  .ih  F )  +  ( G 
.ih  ( -u S  .h  G ) ) )
32 his5 27943 . . . . . . . 8  |-  ( (
-u S  e.  CC  /\  G  e.  ~H  /\  G  e.  ~H )  ->  ( G  .ih  ( -u S  .h  G ) )  =  ( ( * `  -u S
)  x.  ( G 
.ih  G ) ) )
3314, 3, 3, 32mp3an 1424 . . . . . . 7  |-  ( G 
.ih  ( -u S  .h  G ) )  =  ( ( * `  -u S )  x.  ( G  .ih  G ) )
3433oveq2i 6661 . . . . . 6  |-  ( ( G  .ih  F )  +  ( G  .ih  ( -u S  .h  G
) ) )  =  ( ( G  .ih  F )  +  ( ( * `  -u S
)  x.  ( G 
.ih  G ) ) )
3531, 34eqtri 2644 . . . . 5  |-  ( G 
.ih  ( F  +h  ( -u S  .h  G
) ) )  =  ( ( G  .ih  F )  +  ( ( * `  -u S
)  x.  ( G 
.ih  G ) ) )
3635oveq2i 6661 . . . 4  |-  ( -u S  x.  ( G  .ih  ( F  +h  ( -u S  .h  G ) ) ) )  =  ( -u S  x.  ( ( G  .ih  F )  +  ( ( * `  -u S
)  x.  ( G 
.ih  G ) ) ) )
373, 1hicli 27938 . . . . . 6  |-  ( G 
.ih  F )  e.  CC
3814cjcli 13909 . . . . . . 7  |-  ( * `
 -u S )  e.  CC
393, 3hicli 27938 . . . . . . 7  |-  ( G 
.ih  G )  e.  CC
4038, 39mulcli 10045 . . . . . 6  |-  ( ( * `  -u S
)  x.  ( G 
.ih  G ) )  e.  CC
4114, 37, 40adddii 10050 . . . . 5  |-  ( -u S  x.  ( ( G  .ih  F )  +  ( ( * `  -u S )  x.  ( G  .ih  G ) ) ) )  =  ( ( -u S  x.  ( G  .ih  F ) )  +  ( -u S  x.  ( (
* `  -u S )  x.  ( G  .ih  G ) ) ) )
4214, 38, 39mulassi 10049 . . . . . . 7  |-  ( (
-u S  x.  (
* `  -u S ) )  x.  ( G 
.ih  G ) )  =  ( -u S  x.  ( ( * `  -u S )  x.  ( G  .ih  G ) ) )
4323oveq2i 6661 . . . . . . . . 9  |-  ( -u S  x.  ( * `  -u S ) )  =  ( -u S  x.  -u ( * `  S ) )
442cjcli 13909 . . . . . . . . . 10  |-  ( * `
 S )  e.  CC
452, 44mul2negi 10478 . . . . . . . . 9  |-  ( -u S  x.  -u ( * `
 S ) )  =  ( S  x.  ( * `  S
) )
4643, 45eqtri 2644 . . . . . . . 8  |-  ( -u S  x.  ( * `  -u S ) )  =  ( S  x.  ( * `  S
) )
4746oveq1i 6660 . . . . . . 7  |-  ( (
-u S  x.  (
* `  -u S ) )  x.  ( G 
.ih  G ) )  =  ( ( S  x.  ( * `  S ) )  x.  ( G  .ih  G
) )
4842, 47eqtr3i 2646 . . . . . 6  |-  ( -u S  x.  ( (
* `  -u S )  x.  ( G  .ih  G ) ) )  =  ( ( S  x.  ( * `  S
) )  x.  ( G  .ih  G ) )
4948oveq2i 6661 . . . . 5  |-  ( (
-u S  x.  ( G  .ih  F ) )  +  ( -u S  x.  ( ( * `  -u S )  x.  ( G  .ih  G ) ) ) )  =  ( ( -u S  x.  ( G  .ih  F ) )  +  ( ( S  x.  ( * `
 S ) )  x.  ( G  .ih  G ) ) )
5041, 49eqtri 2644 . . . 4  |-  ( -u S  x.  ( ( G  .ih  F )  +  ( ( * `  -u S )  x.  ( G  .ih  G ) ) ) )  =  ( ( -u S  x.  ( G  .ih  F ) )  +  ( ( S  x.  ( * `
 S ) )  x.  ( G  .ih  G ) ) )
5129, 36, 503eqtri 2648 . . 3  |-  ( (
-u S  .h  G
)  .ih  ( F  +h  ( -u S  .h  G ) ) )  =  ( ( -u S  x.  ( G  .ih  F ) )  +  ( ( S  x.  ( * `  S
) )  x.  ( G  .ih  G ) ) )
5227, 51oveq12i 6662 . 2  |-  ( ( F  .ih  ( F  +h  ( -u S  .h  G ) ) )  +  ( ( -u S  .h  G )  .ih  ( F  +h  ( -u S  .h  G ) ) ) )  =  ( ( ( F 
.ih  F )  +  ( -u ( * `
 S )  x.  ( F  .ih  G
) ) )  +  ( ( -u S  x.  ( G  .ih  F
) )  +  ( ( S  x.  (
* `  S )
)  x.  ( G 
.ih  G ) ) ) )
5313, 18, 523eqtri 2648 1  |-  ( ( F  -h  ( S  .h  G ) ) 
.ih  ( F  -h  ( S  .h  G
) ) )  =  ( ( ( F 
.ih  F )  +  ( -u ( * `
 S )  x.  ( F  .ih  G
) ) )  +  ( ( -u S  x.  ( G  .ih  F
) )  +  ( ( S  x.  (
* `  S )
)  x.  ( G 
.ih  G ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483    e. wcel 1990   ` cfv 5888  (class class class)co 6650   CCcc 9934   1c1 9937    + caddc 9939    x. cmul 9941   -ucneg 10267   *ccj 13836   ~Hchil 27776    +h cva 27777    .h csm 27778    .ih csp 27779    -h cmv 27782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-hfvadd 27857  ax-hfvmul 27862  ax-hvmulass 27864  ax-hfi 27936  ax-his1 27939  ax-his2 27940  ax-his3 27941
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-cj 13839  df-re 13840  df-im 13841  df-hvsub 27828
This theorem is referenced by:  normlem1  27967
  Copyright terms: Public domain W3C validator