MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeeu Structured version   Visualization version   GIF version

Theorem oeeu 7683
Description: The division algorithm for ordinal exponentiation. (Contributed by Mario Carneiro, 25-May-2015.)
Assertion
Ref Expression
oeeu ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → ∃!𝑤𝑥 ∈ On ∃𝑦 ∈ (𝐴 ∖ 1𝑜)∃𝑧 ∈ (𝐴𝑜 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝐵,𝑥,𝑦,𝑧

Proof of Theorem oeeu
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . . 6 {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)} = {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)}
21oeeulem 7681 . . . . 5 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → ( {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)} ∈ On ∧ (𝐴𝑜 {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)}) ⊆ 𝐵𝐵 ∈ (𝐴𝑜 suc {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)})))
32simp1d 1073 . . . 4 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)} ∈ On)
4 elex 3212 . . . 4 ( {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)} ∈ On → {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)} ∈ V)
53, 4syl 17 . . 3 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)} ∈ V)
6 fvexd 6203 . . 3 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → (1st ‘(℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴𝑜 {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴𝑜 {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)}) ·𝑜 𝑏) +𝑜 𝑐) = 𝐵))) ∈ V)
7 fvexd 6203 . . 3 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → (2nd ‘(℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴𝑜 {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴𝑜 {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)}) ·𝑜 𝑏) +𝑜 𝑐) = 𝐵))) ∈ V)
8 eqid 2622 . . . 4 (℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴𝑜 {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴𝑜 {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)}) ·𝑜 𝑏) +𝑜 𝑐) = 𝐵)) = (℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴𝑜 {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴𝑜 {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)}) ·𝑜 𝑏) +𝑜 𝑐) = 𝐵))
9 eqid 2622 . . . 4 (1st ‘(℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴𝑜 {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴𝑜 {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)}) ·𝑜 𝑏) +𝑜 𝑐) = 𝐵))) = (1st ‘(℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴𝑜 {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴𝑜 {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)}) ·𝑜 𝑏) +𝑜 𝑐) = 𝐵)))
10 eqid 2622 . . . 4 (2nd ‘(℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴𝑜 {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴𝑜 {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)}) ·𝑜 𝑏) +𝑜 𝑐) = 𝐵))) = (2nd ‘(℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴𝑜 {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴𝑜 {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)}) ·𝑜 𝑏) +𝑜 𝑐) = 𝐵)))
111, 8, 9, 10oeeui 7682 . . 3 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → (((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜) ∧ 𝑧 ∈ (𝐴𝑜 𝑥)) ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵) ↔ (𝑥 = {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)} ∧ 𝑦 = (1st ‘(℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴𝑜 {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴𝑜 {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)}) ·𝑜 𝑏) +𝑜 𝑐) = 𝐵))) ∧ 𝑧 = (2nd ‘(℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴𝑜 {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴𝑜 {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑎)}) ·𝑜 𝑏) +𝑜 𝑐) = 𝐵))))))
125, 6, 7, 11euotd 4975 . 2 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → ∃!𝑤𝑥𝑦𝑧(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜) ∧ 𝑧 ∈ (𝐴𝑜 𝑥)) ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵)))
13 df-3an 1039 . . . . . . . . . . 11 ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜) ∧ 𝑧 ∈ (𝐴𝑜 𝑥)) ↔ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜)) ∧ 𝑧 ∈ (𝐴𝑜 𝑥)))
14 ancom 466 . . . . . . . . . . 11 (((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜)) ∧ 𝑧 ∈ (𝐴𝑜 𝑥)) ↔ (𝑧 ∈ (𝐴𝑜 𝑥) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜))))
1513, 14bitri 264 . . . . . . . . . 10 ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜) ∧ 𝑧 ∈ (𝐴𝑜 𝑥)) ↔ (𝑧 ∈ (𝐴𝑜 𝑥) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜))))
1615anbi1i 731 . . . . . . . . 9 (((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜) ∧ 𝑧 ∈ (𝐴𝑜 𝑥)) ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵) ↔ ((𝑧 ∈ (𝐴𝑜 𝑥) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜))) ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵))
1716anbi2i 730 . . . . . . . 8 ((𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜) ∧ 𝑧 ∈ (𝐴𝑜 𝑥)) ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵)) ↔ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑧 ∈ (𝐴𝑜 𝑥) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜))) ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵)))
18 an12 838 . . . . . . . 8 ((𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑧 ∈ (𝐴𝑜 𝑥) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜))) ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵)) ↔ ((𝑧 ∈ (𝐴𝑜 𝑥) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜))) ∧ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵)))
19 anass 681 . . . . . . . 8 (((𝑧 ∈ (𝐴𝑜 𝑥) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜))) ∧ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵)) ↔ (𝑧 ∈ (𝐴𝑜 𝑥) ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜)) ∧ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵))))
2017, 18, 193bitri 286 . . . . . . 7 ((𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜) ∧ 𝑧 ∈ (𝐴𝑜 𝑥)) ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵)) ↔ (𝑧 ∈ (𝐴𝑜 𝑥) ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜)) ∧ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵))))
2120exbii 1774 . . . . . 6 (∃𝑧(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜) ∧ 𝑧 ∈ (𝐴𝑜 𝑥)) ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵)) ↔ ∃𝑧(𝑧 ∈ (𝐴𝑜 𝑥) ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜)) ∧ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵))))
22 df-rex 2918 . . . . . 6 (∃𝑧 ∈ (𝐴𝑜 𝑥)((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜)) ∧ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵)) ↔ ∃𝑧(𝑧 ∈ (𝐴𝑜 𝑥) ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜)) ∧ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵))))
23 r19.42v 3092 . . . . . 6 (∃𝑧 ∈ (𝐴𝑜 𝑥)((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜)) ∧ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵)) ↔ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜)) ∧ ∃𝑧 ∈ (𝐴𝑜 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵)))
2421, 22, 233bitr2i 288 . . . . 5 (∃𝑧(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜) ∧ 𝑧 ∈ (𝐴𝑜 𝑥)) ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵)) ↔ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜)) ∧ ∃𝑧 ∈ (𝐴𝑜 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵)))
25242exbii 1775 . . . 4 (∃𝑥𝑦𝑧(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜) ∧ 𝑧 ∈ (𝐴𝑜 𝑥)) ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵)) ↔ ∃𝑥𝑦((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜)) ∧ ∃𝑧 ∈ (𝐴𝑜 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵)))
26 r2ex 3061 . . . 4 (∃𝑥 ∈ On ∃𝑦 ∈ (𝐴 ∖ 1𝑜)∃𝑧 ∈ (𝐴𝑜 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵) ↔ ∃𝑥𝑦((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜)) ∧ ∃𝑧 ∈ (𝐴𝑜 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵)))
2725, 26bitr4i 267 . . 3 (∃𝑥𝑦𝑧(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜) ∧ 𝑧 ∈ (𝐴𝑜 𝑥)) ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵)) ↔ ∃𝑥 ∈ On ∃𝑦 ∈ (𝐴 ∖ 1𝑜)∃𝑧 ∈ (𝐴𝑜 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵))
2827eubii 2492 . 2 (∃!𝑤𝑥𝑦𝑧(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1𝑜) ∧ 𝑧 ∈ (𝐴𝑜 𝑥)) ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵)) ↔ ∃!𝑤𝑥 ∈ On ∃𝑦 ∈ (𝐴 ∖ 1𝑜)∃𝑧 ∈ (𝐴𝑜 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵))
2912, 28sylib 208 1 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → ∃!𝑤𝑥 ∈ On ∃𝑦 ∈ (𝐴 ∖ 1𝑜)∃𝑧 ∈ (𝐴𝑜 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  ∃!weu 2470  wrex 2913  {crab 2916  Vcvv 3200  cdif 3571  wss 3574  cop 4183  cotp 4185   cuni 4436   cint 4475  Oncon0 5723  suc csuc 5725  cio 5849  cfv 5888  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  1𝑜c1o 7553  2𝑜c2o 7554   +𝑜 coa 7557   ·𝑜 comu 7558  𝑜 coe 7559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-oexp 7566
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator