MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeeulem Structured version   Visualization version   GIF version

Theorem oeeulem 7681
Description: Lemma for oeeu 7683. (Contributed by Mario Carneiro, 28-Feb-2013.)
Hypothesis
Ref Expression
oeeu.1 𝑋 = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}
Assertion
Ref Expression
oeeulem ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → (𝑋 ∈ On ∧ (𝐴𝑜 𝑋) ⊆ 𝐵𝐵 ∈ (𝐴𝑜 suc 𝑋)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑋(𝑥)

Proof of Theorem oeeulem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 oeeu.1 . . 3 𝑋 = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}
2 eldifi 3732 . . . . . . . 8 (𝐵 ∈ (On ∖ 1𝑜) → 𝐵 ∈ On)
32adantl 482 . . . . . . 7 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → 𝐵 ∈ On)
4 suceloni 7013 . . . . . . 7 (𝐵 ∈ On → suc 𝐵 ∈ On)
53, 4syl 17 . . . . . 6 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → suc 𝐵 ∈ On)
6 oeworde 7673 . . . . . . . 8 ((𝐴 ∈ (On ∖ 2𝑜) ∧ suc 𝐵 ∈ On) → suc 𝐵 ⊆ (𝐴𝑜 suc 𝐵))
75, 6syldan 487 . . . . . . 7 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → suc 𝐵 ⊆ (𝐴𝑜 suc 𝐵))
8 sucidg 5803 . . . . . . . 8 (𝐵 ∈ On → 𝐵 ∈ suc 𝐵)
93, 8syl 17 . . . . . . 7 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → 𝐵 ∈ suc 𝐵)
107, 9sseldd 3604 . . . . . 6 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → 𝐵 ∈ (𝐴𝑜 suc 𝐵))
11 oveq2 6658 . . . . . . . 8 (𝑥 = suc 𝐵 → (𝐴𝑜 𝑥) = (𝐴𝑜 suc 𝐵))
1211eleq2d 2687 . . . . . . 7 (𝑥 = suc 𝐵 → (𝐵 ∈ (𝐴𝑜 𝑥) ↔ 𝐵 ∈ (𝐴𝑜 suc 𝐵)))
1312rspcev 3309 . . . . . 6 ((suc 𝐵 ∈ On ∧ 𝐵 ∈ (𝐴𝑜 suc 𝐵)) → ∃𝑥 ∈ On 𝐵 ∈ (𝐴𝑜 𝑥))
145, 10, 13syl2anc 693 . . . . 5 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → ∃𝑥 ∈ On 𝐵 ∈ (𝐴𝑜 𝑥))
15 onintrab2 7002 . . . . 5 (∃𝑥 ∈ On 𝐵 ∈ (𝐴𝑜 𝑥) ↔ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} ∈ On)
1614, 15sylib 208 . . . 4 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} ∈ On)
17 onuni 6993 . . . 4 ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} ∈ On → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} ∈ On)
1816, 17syl 17 . . 3 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} ∈ On)
191, 18syl5eqel 2705 . 2 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → 𝑋 ∈ On)
20 sucidg 5803 . . . . . . 7 (𝑋 ∈ On → 𝑋 ∈ suc 𝑋)
2119, 20syl 17 . . . . . 6 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → 𝑋 ∈ suc 𝑋)
22 dif1o 7580 . . . . . . . . . . . . 13 (𝐵 ∈ (On ∖ 1𝑜) ↔ (𝐵 ∈ On ∧ 𝐵 ≠ ∅))
2322simprbi 480 . . . . . . . . . . . 12 (𝐵 ∈ (On ∖ 1𝑜) → 𝐵 ≠ ∅)
2423adantl 482 . . . . . . . . . . 11 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → 𝐵 ≠ ∅)
25 ssrab2 3687 . . . . . . . . . . . . . . 15 {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} ⊆ On
26 rabn0 3958 . . . . . . . . . . . . . . . 16 ({𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} ≠ ∅ ↔ ∃𝑥 ∈ On 𝐵 ∈ (𝐴𝑜 𝑥))
2714, 26sylibr 224 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} ≠ ∅)
28 onint 6995 . . . . . . . . . . . . . . 15 (({𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} ⊆ On ∧ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} ≠ ∅) → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)})
2925, 27, 28sylancr 695 . . . . . . . . . . . . . 14 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)})
30 eleq1 2689 . . . . . . . . . . . . . 14 ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} = ∅ → ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} ↔ ∅ ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}))
3129, 30syl5ibcom 235 . . . . . . . . . . . . 13 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} = ∅ → ∅ ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}))
32 oveq2 6658 . . . . . . . . . . . . . . . . 17 (𝑥 = ∅ → (𝐴𝑜 𝑥) = (𝐴𝑜 ∅))
3332eleq2d 2687 . . . . . . . . . . . . . . . 16 (𝑥 = ∅ → (𝐵 ∈ (𝐴𝑜 𝑥) ↔ 𝐵 ∈ (𝐴𝑜 ∅)))
3433elrab 3363 . . . . . . . . . . . . . . 15 (∅ ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} ↔ (∅ ∈ On ∧ 𝐵 ∈ (𝐴𝑜 ∅)))
3534simprbi 480 . . . . . . . . . . . . . 14 (∅ ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} → 𝐵 ∈ (𝐴𝑜 ∅))
36 eldifi 3732 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ (On ∖ 2𝑜) → 𝐴 ∈ On)
3736adantr 481 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → 𝐴 ∈ On)
38 oe0 7602 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ On → (𝐴𝑜 ∅) = 1𝑜)
3937, 38syl 17 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → (𝐴𝑜 ∅) = 1𝑜)
4039eleq2d 2687 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → (𝐵 ∈ (𝐴𝑜 ∅) ↔ 𝐵 ∈ 1𝑜))
41 el1o 7579 . . . . . . . . . . . . . . 15 (𝐵 ∈ 1𝑜𝐵 = ∅)
4240, 41syl6bb 276 . . . . . . . . . . . . . 14 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → (𝐵 ∈ (𝐴𝑜 ∅) ↔ 𝐵 = ∅))
4335, 42syl5ib 234 . . . . . . . . . . . . 13 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → (∅ ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} → 𝐵 = ∅))
4431, 43syld 47 . . . . . . . . . . . 12 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} = ∅ → 𝐵 = ∅))
4544necon3ad 2807 . . . . . . . . . . 11 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → (𝐵 ≠ ∅ → ¬ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} = ∅))
4624, 45mpd 15 . . . . . . . . . 10 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → ¬ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} = ∅)
47 limuni 5785 . . . . . . . . . . . . . . . . 17 (Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)})
4847, 1syl6eqr 2674 . . . . . . . . . . . . . . . 16 (Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} = 𝑋)
4948adantl 482 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}) → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} = 𝑋)
5029adantr 481 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}) → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)})
5149, 50eqeltrrd 2702 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}) → 𝑋 ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)})
52 oveq2 6658 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑋 → (𝐴𝑜 𝑦) = (𝐴𝑜 𝑋))
5352eleq2d 2687 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑋 → (𝐵 ∈ (𝐴𝑜 𝑦) ↔ 𝐵 ∈ (𝐴𝑜 𝑋)))
54 oveq2 6658 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (𝐴𝑜 𝑥) = (𝐴𝑜 𝑦))
5554eleq2d 2687 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (𝐵 ∈ (𝐴𝑜 𝑥) ↔ 𝐵 ∈ (𝐴𝑜 𝑦)))
5655cbvrabv 3199 . . . . . . . . . . . . . . . 16 {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} = {𝑦 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑦)}
5753, 56elrab2 3366 . . . . . . . . . . . . . . 15 (𝑋 ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} ↔ (𝑋 ∈ On ∧ 𝐵 ∈ (𝐴𝑜 𝑋)))
5857simprbi 480 . . . . . . . . . . . . . 14 (𝑋 ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} → 𝐵 ∈ (𝐴𝑜 𝑋))
5951, 58syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}) → 𝐵 ∈ (𝐴𝑜 𝑋))
6036ad2antrr 762 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}) → 𝐴 ∈ On)
61 limeq 5735 . . . . . . . . . . . . . . . . 17 ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} = 𝑋 → (Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} ↔ Lim 𝑋))
6248, 61syl 17 . . . . . . . . . . . . . . . 16 (Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} → (Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} ↔ Lim 𝑋))
6362ibi 256 . . . . . . . . . . . . . . 15 (Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} → Lim 𝑋)
6419, 63anim12i 590 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}) → (𝑋 ∈ On ∧ Lim 𝑋))
65 dif20el 7585 . . . . . . . . . . . . . . 15 (𝐴 ∈ (On ∖ 2𝑜) → ∅ ∈ 𝐴)
6665ad2antrr 762 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}) → ∅ ∈ 𝐴)
67 oelim 7614 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ (𝑋 ∈ On ∧ Lim 𝑋)) ∧ ∅ ∈ 𝐴) → (𝐴𝑜 𝑋) = 𝑦𝑋 (𝐴𝑜 𝑦))
6860, 64, 66, 67syl21anc 1325 . . . . . . . . . . . . 13 (((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}) → (𝐴𝑜 𝑋) = 𝑦𝑋 (𝐴𝑜 𝑦))
6959, 68eleqtrd 2703 . . . . . . . . . . . 12 (((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}) → 𝐵 𝑦𝑋 (𝐴𝑜 𝑦))
70 eliun 4524 . . . . . . . . . . . 12 (𝐵 𝑦𝑋 (𝐴𝑜 𝑦) ↔ ∃𝑦𝑋 𝐵 ∈ (𝐴𝑜 𝑦))
7169, 70sylib 208 . . . . . . . . . . 11 (((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}) → ∃𝑦𝑋 𝐵 ∈ (𝐴𝑜 𝑦))
7219adantr 481 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}) → 𝑋 ∈ On)
73 onss 6990 . . . . . . . . . . . . . . 15 (𝑋 ∈ On → 𝑋 ⊆ On)
7472, 73syl 17 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}) → 𝑋 ⊆ On)
7574sselda 3603 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}) ∧ 𝑦𝑋) → 𝑦 ∈ On)
7649eleq2d 2687 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}) → (𝑦 {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} ↔ 𝑦𝑋))
7776biimpar 502 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}) ∧ 𝑦𝑋) → 𝑦 {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)})
7855onnminsb 7004 . . . . . . . . . . . . 13 (𝑦 ∈ On → (𝑦 {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} → ¬ 𝐵 ∈ (𝐴𝑜 𝑦)))
7975, 77, 78sylc 65 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}) ∧ 𝑦𝑋) → ¬ 𝐵 ∈ (𝐴𝑜 𝑦))
8079nrexdv 3001 . . . . . . . . . . 11 (((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}) → ¬ ∃𝑦𝑋 𝐵 ∈ (𝐴𝑜 𝑦))
8171, 80pm2.65da 600 . . . . . . . . . 10 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → ¬ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)})
82 ioran 511 . . . . . . . . . 10 (¬ ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} = ∅ ∨ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}) ↔ (¬ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} = ∅ ∧ ¬ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}))
8346, 81, 82sylanbrc 698 . . . . . . . . 9 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → ¬ ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} = ∅ ∨ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}))
84 eloni 5733 . . . . . . . . . 10 ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} ∈ On → Ord {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)})
85 unizlim 5844 . . . . . . . . . 10 (Ord {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} → ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} ↔ ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} = ∅ ∨ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)})))
8616, 84, 853syl 18 . . . . . . . . 9 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} ↔ ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} = ∅ ∨ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)})))
8783, 86mtbird 315 . . . . . . . 8 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → ¬ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)})
88 orduniorsuc 7030 . . . . . . . . . 10 (Ord {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} → ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} ∨ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} = suc {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}))
8916, 84, 883syl 18 . . . . . . . . 9 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} ∨ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} = suc {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}))
9089ord 392 . . . . . . . 8 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → (¬ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} = suc {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}))
9187, 90mpd 15 . . . . . . 7 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} = suc {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)})
92 suceq 5790 . . . . . . . 8 (𝑋 = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} → suc 𝑋 = suc {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)})
931, 92ax-mp 5 . . . . . . 7 suc 𝑋 = suc {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}
9491, 93syl6reqr 2675 . . . . . 6 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → suc 𝑋 = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)})
9521, 94eleqtrd 2703 . . . . 5 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → 𝑋 {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)})
9656inteqi 4479 . . . . 5 {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} = {𝑦 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑦)}
9795, 96syl6eleq 2711 . . . 4 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → 𝑋 {𝑦 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑦)})
9853onnminsb 7004 . . . 4 (𝑋 ∈ On → (𝑋 {𝑦 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑦)} → ¬ 𝐵 ∈ (𝐴𝑜 𝑋)))
9919, 97, 98sylc 65 . . 3 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → ¬ 𝐵 ∈ (𝐴𝑜 𝑋))
100 oecl 7617 . . . . 5 ((𝐴 ∈ On ∧ 𝑋 ∈ On) → (𝐴𝑜 𝑋) ∈ On)
10137, 19, 100syl2anc 693 . . . 4 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → (𝐴𝑜 𝑋) ∈ On)
102 ontri1 5757 . . . 4 (((𝐴𝑜 𝑋) ∈ On ∧ 𝐵 ∈ On) → ((𝐴𝑜 𝑋) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ (𝐴𝑜 𝑋)))
103101, 3, 102syl2anc 693 . . 3 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → ((𝐴𝑜 𝑋) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ (𝐴𝑜 𝑋)))
10499, 103mpbird 247 . 2 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → (𝐴𝑜 𝑋) ⊆ 𝐵)
10594, 29eqeltrd 2701 . . 3 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → suc 𝑋 ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)})
106 oveq2 6658 . . . . . 6 (𝑦 = suc 𝑋 → (𝐴𝑜 𝑦) = (𝐴𝑜 suc 𝑋))
107106eleq2d 2687 . . . . 5 (𝑦 = suc 𝑋 → (𝐵 ∈ (𝐴𝑜 𝑦) ↔ 𝐵 ∈ (𝐴𝑜 suc 𝑋)))
108107, 56elrab2 3366 . . . 4 (suc 𝑋 ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} ↔ (suc 𝑋 ∈ On ∧ 𝐵 ∈ (𝐴𝑜 suc 𝑋)))
109108simprbi 480 . . 3 (suc 𝑋 ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)} → 𝐵 ∈ (𝐴𝑜 suc 𝑋))
110105, 109syl 17 . 2 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → 𝐵 ∈ (𝐴𝑜 suc 𝑋))
11119, 104, 1103jca 1242 1 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → (𝑋 ∈ On ∧ (𝐴𝑜 𝑋) ⊆ 𝐵𝐵 ∈ (𝐴𝑜 suc 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wrex 2913  {crab 2916  cdif 3571  wss 3574  c0 3915   cuni 4436   cint 4475   ciun 4520  Ord word 5722  Oncon0 5723  Lim wlim 5724  suc csuc 5725  (class class class)co 6650  1𝑜c1o 7553  2𝑜c2o 7554  𝑜 coe 7559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-oexp 7566
This theorem is referenced by:  oeeui  7682  oeeu  7683
  Copyright terms: Public domain W3C validator