| Step | Hyp | Ref
| Expression |
| 1 | | oeeu.1 |
. . 3
⊢ 𝑋 = ∪
∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)} |
| 2 | | eldifi 3732 |
. . . . . . . 8
⊢ (𝐵 ∈ (On ∖
1𝑜) → 𝐵 ∈ On) |
| 3 | 2 | adantl 482 |
. . . . . . 7
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ 𝐵 ∈
On) |
| 4 | | suceloni 7013 |
. . . . . . 7
⊢ (𝐵 ∈ On → suc 𝐵 ∈ On) |
| 5 | 3, 4 | syl 17 |
. . . . . 6
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ suc 𝐵 ∈
On) |
| 6 | | oeworde 7673 |
. . . . . . . 8
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ suc 𝐵 ∈ On) → suc 𝐵 ⊆ (𝐴 ↑𝑜 suc 𝐵)) |
| 7 | 5, 6 | syldan 487 |
. . . . . . 7
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ suc 𝐵 ⊆ (𝐴 ↑𝑜 suc
𝐵)) |
| 8 | | sucidg 5803 |
. . . . . . . 8
⊢ (𝐵 ∈ On → 𝐵 ∈ suc 𝐵) |
| 9 | 3, 8 | syl 17 |
. . . . . . 7
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ 𝐵 ∈ suc 𝐵) |
| 10 | 7, 9 | sseldd 3604 |
. . . . . 6
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ 𝐵 ∈ (𝐴 ↑𝑜 suc
𝐵)) |
| 11 | | oveq2 6658 |
. . . . . . . 8
⊢ (𝑥 = suc 𝐵 → (𝐴 ↑𝑜 𝑥) = (𝐴 ↑𝑜 suc 𝐵)) |
| 12 | 11 | eleq2d 2687 |
. . . . . . 7
⊢ (𝑥 = suc 𝐵 → (𝐵 ∈ (𝐴 ↑𝑜 𝑥) ↔ 𝐵 ∈ (𝐴 ↑𝑜 suc 𝐵))) |
| 13 | 12 | rspcev 3309 |
. . . . . 6
⊢ ((suc
𝐵 ∈ On ∧ 𝐵 ∈ (𝐴 ↑𝑜 suc 𝐵)) → ∃𝑥 ∈ On 𝐵 ∈ (𝐴 ↑𝑜 𝑥)) |
| 14 | 5, 10, 13 | syl2anc 693 |
. . . . 5
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ ∃𝑥 ∈ On
𝐵 ∈ (𝐴 ↑𝑜 𝑥)) |
| 15 | | onintrab2 7002 |
. . . . 5
⊢
(∃𝑥 ∈ On
𝐵 ∈ (𝐴 ↑𝑜 𝑥) ↔ ∩ {𝑥
∈ On ∣ 𝐵 ∈
(𝐴
↑𝑜 𝑥)} ∈ On) |
| 16 | 14, 15 | sylib 208 |
. . . 4
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ ∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)} ∈ On) |
| 17 | | onuni 6993 |
. . . 4
⊢ (∩ {𝑥
∈ On ∣ 𝐵 ∈
(𝐴
↑𝑜 𝑥)} ∈ On → ∪ ∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)} ∈ On) |
| 18 | 16, 17 | syl 17 |
. . 3
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ ∪ ∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)} ∈ On) |
| 19 | 1, 18 | syl5eqel 2705 |
. 2
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ 𝑋 ∈
On) |
| 20 | | sucidg 5803 |
. . . . . . 7
⊢ (𝑋 ∈ On → 𝑋 ∈ suc 𝑋) |
| 21 | 19, 20 | syl 17 |
. . . . . 6
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ 𝑋 ∈ suc 𝑋) |
| 22 | | dif1o 7580 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ (On ∖
1𝑜) ↔ (𝐵 ∈ On ∧ 𝐵 ≠ ∅)) |
| 23 | 22 | simprbi 480 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ (On ∖
1𝑜) → 𝐵 ≠ ∅) |
| 24 | 23 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ 𝐵 ≠
∅) |
| 25 | | ssrab2 3687 |
. . . . . . . . . . . . . . 15
⊢ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)} ⊆ On |
| 26 | | rabn0 3958 |
. . . . . . . . . . . . . . . 16
⊢ ({𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)} ≠ ∅ ↔
∃𝑥 ∈ On 𝐵 ∈ (𝐴 ↑𝑜 𝑥)) |
| 27 | 14, 26 | sylibr 224 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ {𝑥 ∈ On ∣
𝐵 ∈ (𝐴 ↑𝑜 𝑥)} ≠
∅) |
| 28 | | onint 6995 |
. . . . . . . . . . . . . . 15
⊢ (({𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)} ⊆ On ∧ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)} ≠ ∅) → ∩ {𝑥
∈ On ∣ 𝐵 ∈
(𝐴
↑𝑜 𝑥)} ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)}) |
| 29 | 25, 27, 28 | sylancr 695 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ ∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)} ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)}) |
| 30 | | eleq1 2689 |
. . . . . . . . . . . . . 14
⊢ (∩ {𝑥
∈ On ∣ 𝐵 ∈
(𝐴
↑𝑜 𝑥)} = ∅ → (∩ {𝑥
∈ On ∣ 𝐵 ∈
(𝐴
↑𝑜 𝑥)} ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)} ↔ ∅ ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)})) |
| 31 | 29, 30 | syl5ibcom 235 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ (∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)} = ∅ → ∅
∈ {𝑥 ∈ On ∣
𝐵 ∈ (𝐴 ↑𝑜 𝑥)})) |
| 32 | | oveq2 6658 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = ∅ → (𝐴 ↑𝑜
𝑥) = (𝐴 ↑𝑜
∅)) |
| 33 | 32 | eleq2d 2687 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = ∅ → (𝐵 ∈ (𝐴 ↑𝑜 𝑥) ↔ 𝐵 ∈ (𝐴 ↑𝑜
∅))) |
| 34 | 33 | elrab 3363 |
. . . . . . . . . . . . . . 15
⊢ (∅
∈ {𝑥 ∈ On ∣
𝐵 ∈ (𝐴 ↑𝑜 𝑥)} ↔ (∅ ∈ On
∧ 𝐵 ∈ (𝐴 ↑𝑜
∅))) |
| 35 | 34 | simprbi 480 |
. . . . . . . . . . . . . 14
⊢ (∅
∈ {𝑥 ∈ On ∣
𝐵 ∈ (𝐴 ↑𝑜 𝑥)} → 𝐵 ∈ (𝐴 ↑𝑜
∅)) |
| 36 | | eldifi 3732 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∈ (On ∖
2𝑜) → 𝐴 ∈ On) |
| 37 | 36 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ 𝐴 ∈
On) |
| 38 | | oe0 7602 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ On → (𝐴 ↑𝑜
∅) = 1𝑜) |
| 39 | 37, 38 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ (𝐴
↑𝑜 ∅) = 1𝑜) |
| 40 | 39 | eleq2d 2687 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ (𝐵 ∈ (𝐴 ↑𝑜
∅) ↔ 𝐵 ∈
1𝑜)) |
| 41 | | el1o 7579 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 ∈ 1𝑜
↔ 𝐵 =
∅) |
| 42 | 40, 41 | syl6bb 276 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ (𝐵 ∈ (𝐴 ↑𝑜
∅) ↔ 𝐵 =
∅)) |
| 43 | 35, 42 | syl5ib 234 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ (∅ ∈ {𝑥
∈ On ∣ 𝐵 ∈
(𝐴
↑𝑜 𝑥)} → 𝐵 = ∅)) |
| 44 | 31, 43 | syld 47 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ (∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)} = ∅ → 𝐵 = ∅)) |
| 45 | 44 | necon3ad 2807 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ (𝐵 ≠ ∅
→ ¬ ∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)} = ∅)) |
| 46 | 24, 45 | mpd 15 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ ¬ ∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)} = ∅) |
| 47 | | limuni 5785 |
. . . . . . . . . . . . . . . . 17
⊢ (Lim
∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)} → ∩ {𝑥
∈ On ∣ 𝐵 ∈
(𝐴
↑𝑜 𝑥)} = ∪ ∩ {𝑥
∈ On ∣ 𝐵 ∈
(𝐴
↑𝑜 𝑥)}) |
| 48 | 47, 1 | syl6eqr 2674 |
. . . . . . . . . . . . . . . 16
⊢ (Lim
∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)} → ∩ {𝑥
∈ On ∣ 𝐵 ∈
(𝐴
↑𝑜 𝑥)} = 𝑋) |
| 49 | 48 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ Lim ∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)}) → ∩ {𝑥
∈ On ∣ 𝐵 ∈
(𝐴
↑𝑜 𝑥)} = 𝑋) |
| 50 | 29 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ Lim ∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)}) → ∩ {𝑥
∈ On ∣ 𝐵 ∈
(𝐴
↑𝑜 𝑥)} ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)}) |
| 51 | 49, 50 | eqeltrrd 2702 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ Lim ∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)}) → 𝑋 ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)}) |
| 52 | | oveq2 6658 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑋 → (𝐴 ↑𝑜 𝑦) = (𝐴 ↑𝑜 𝑋)) |
| 53 | 52 | eleq2d 2687 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑋 → (𝐵 ∈ (𝐴 ↑𝑜 𝑦) ↔ 𝐵 ∈ (𝐴 ↑𝑜 𝑋))) |
| 54 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑦 → (𝐴 ↑𝑜 𝑥) = (𝐴 ↑𝑜 𝑦)) |
| 55 | 54 | eleq2d 2687 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → (𝐵 ∈ (𝐴 ↑𝑜 𝑥) ↔ 𝐵 ∈ (𝐴 ↑𝑜 𝑦))) |
| 56 | 55 | cbvrabv 3199 |
. . . . . . . . . . . . . . . 16
⊢ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)} = {𝑦 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑦)} |
| 57 | 53, 56 | elrab2 3366 |
. . . . . . . . . . . . . . 15
⊢ (𝑋 ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)} ↔ (𝑋 ∈ On ∧ 𝐵 ∈ (𝐴 ↑𝑜 𝑋))) |
| 58 | 57 | simprbi 480 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)} → 𝐵 ∈ (𝐴 ↑𝑜 𝑋)) |
| 59 | 51, 58 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ Lim ∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)}) → 𝐵 ∈ (𝐴 ↑𝑜 𝑋)) |
| 60 | 36 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ Lim ∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)}) → 𝐴 ∈ On) |
| 61 | | limeq 5735 |
. . . . . . . . . . . . . . . . 17
⊢ (∩ {𝑥
∈ On ∣ 𝐵 ∈
(𝐴
↑𝑜 𝑥)} = 𝑋 → (Lim ∩
{𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)} ↔ Lim 𝑋)) |
| 62 | 48, 61 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (Lim
∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)} → (Lim ∩ {𝑥
∈ On ∣ 𝐵 ∈
(𝐴
↑𝑜 𝑥)} ↔ Lim 𝑋)) |
| 63 | 62 | ibi 256 |
. . . . . . . . . . . . . . 15
⊢ (Lim
∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)} → Lim 𝑋) |
| 64 | 19, 63 | anim12i 590 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ Lim ∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)}) → (𝑋 ∈ On ∧ Lim 𝑋)) |
| 65 | | dif20el 7585 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ (On ∖
2𝑜) → ∅ ∈ 𝐴) |
| 66 | 65 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ Lim ∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)}) → ∅ ∈ 𝐴) |
| 67 | | oelim 7614 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ On ∧ (𝑋 ∈ On ∧ Lim 𝑋)) ∧ ∅ ∈ 𝐴) → (𝐴 ↑𝑜 𝑋) = ∪ 𝑦 ∈ 𝑋 (𝐴 ↑𝑜 𝑦)) |
| 68 | 60, 64, 66, 67 | syl21anc 1325 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ Lim ∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)}) → (𝐴 ↑𝑜 𝑋) = ∪ 𝑦 ∈ 𝑋 (𝐴 ↑𝑜 𝑦)) |
| 69 | 59, 68 | eleqtrd 2703 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ Lim ∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)}) → 𝐵 ∈ ∪
𝑦 ∈ 𝑋 (𝐴 ↑𝑜 𝑦)) |
| 70 | | eliun 4524 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ ∪ 𝑦 ∈ 𝑋 (𝐴 ↑𝑜 𝑦) ↔ ∃𝑦 ∈ 𝑋 𝐵 ∈ (𝐴 ↑𝑜 𝑦)) |
| 71 | 69, 70 | sylib 208 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ Lim ∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)}) → ∃𝑦 ∈ 𝑋 𝐵 ∈ (𝐴 ↑𝑜 𝑦)) |
| 72 | 19 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ Lim ∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)}) → 𝑋 ∈ On) |
| 73 | | onss 6990 |
. . . . . . . . . . . . . . 15
⊢ (𝑋 ∈ On → 𝑋 ⊆ On) |
| 74 | 72, 73 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ Lim ∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)}) → 𝑋 ⊆ On) |
| 75 | 74 | sselda 3603 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ Lim ∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)}) ∧ 𝑦 ∈ 𝑋) → 𝑦 ∈ On) |
| 76 | 49 | eleq2d 2687 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ Lim ∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)}) → (𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)} ↔ 𝑦 ∈ 𝑋)) |
| 77 | 76 | biimpar 502 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ Lim ∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)}) ∧ 𝑦 ∈ 𝑋) → 𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)}) |
| 78 | 55 | onnminsb 7004 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ On → (𝑦 ∈ ∩ {𝑥
∈ On ∣ 𝐵 ∈
(𝐴
↑𝑜 𝑥)} → ¬ 𝐵 ∈ (𝐴 ↑𝑜 𝑦))) |
| 79 | 75, 77, 78 | sylc 65 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ Lim ∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)}) ∧ 𝑦 ∈ 𝑋) → ¬ 𝐵 ∈ (𝐴 ↑𝑜 𝑦)) |
| 80 | 79 | nrexdv 3001 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ Lim ∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)}) → ¬ ∃𝑦 ∈ 𝑋 𝐵 ∈ (𝐴 ↑𝑜 𝑦)) |
| 81 | 71, 80 | pm2.65da 600 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ ¬ Lim ∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)}) |
| 82 | | ioran 511 |
. . . . . . . . . 10
⊢ (¬
(∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)} = ∅ ∨ Lim ∩ {𝑥
∈ On ∣ 𝐵 ∈
(𝐴
↑𝑜 𝑥)}) ↔ (¬ ∩ {𝑥
∈ On ∣ 𝐵 ∈
(𝐴
↑𝑜 𝑥)} = ∅ ∧ ¬ Lim ∩ {𝑥
∈ On ∣ 𝐵 ∈
(𝐴
↑𝑜 𝑥)})) |
| 83 | 46, 81, 82 | sylanbrc 698 |
. . . . . . . . 9
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ ¬ (∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)} = ∅ ∨ Lim ∩ {𝑥
∈ On ∣ 𝐵 ∈
(𝐴
↑𝑜 𝑥)})) |
| 84 | | eloni 5733 |
. . . . . . . . . 10
⊢ (∩ {𝑥
∈ On ∣ 𝐵 ∈
(𝐴
↑𝑜 𝑥)} ∈ On → Ord ∩ {𝑥
∈ On ∣ 𝐵 ∈
(𝐴
↑𝑜 𝑥)}) |
| 85 | | unizlim 5844 |
. . . . . . . . . 10
⊢ (Ord
∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)} → (∩ {𝑥
∈ On ∣ 𝐵 ∈
(𝐴
↑𝑜 𝑥)} = ∪ ∩ {𝑥
∈ On ∣ 𝐵 ∈
(𝐴
↑𝑜 𝑥)} ↔ (∩
{𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)} = ∅ ∨ Lim ∩ {𝑥
∈ On ∣ 𝐵 ∈
(𝐴
↑𝑜 𝑥)}))) |
| 86 | 16, 84, 85 | 3syl 18 |
. . . . . . . . 9
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ (∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)} = ∪ ∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)} ↔ (∩ {𝑥
∈ On ∣ 𝐵 ∈
(𝐴
↑𝑜 𝑥)} = ∅ ∨ Lim ∩ {𝑥
∈ On ∣ 𝐵 ∈
(𝐴
↑𝑜 𝑥)}))) |
| 87 | 83, 86 | mtbird 315 |
. . . . . . . 8
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ ¬ ∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)} = ∪ ∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)}) |
| 88 | | orduniorsuc 7030 |
. . . . . . . . . 10
⊢ (Ord
∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)} → (∩ {𝑥
∈ On ∣ 𝐵 ∈
(𝐴
↑𝑜 𝑥)} = ∪ ∩ {𝑥
∈ On ∣ 𝐵 ∈
(𝐴
↑𝑜 𝑥)} ∨ ∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)} = suc ∪ ∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)})) |
| 89 | 16, 84, 88 | 3syl 18 |
. . . . . . . . 9
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ (∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)} = ∪ ∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)} ∨ ∩ {𝑥
∈ On ∣ 𝐵 ∈
(𝐴
↑𝑜 𝑥)} = suc ∪ ∩ {𝑥
∈ On ∣ 𝐵 ∈
(𝐴
↑𝑜 𝑥)})) |
| 90 | 89 | ord 392 |
. . . . . . . 8
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ (¬ ∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)} = ∪ ∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)} → ∩ {𝑥
∈ On ∣ 𝐵 ∈
(𝐴
↑𝑜 𝑥)} = suc ∪ ∩ {𝑥
∈ On ∣ 𝐵 ∈
(𝐴
↑𝑜 𝑥)})) |
| 91 | 87, 90 | mpd 15 |
. . . . . . 7
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ ∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)} = suc ∪ ∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)}) |
| 92 | | suceq 5790 |
. . . . . . . 8
⊢ (𝑋 = ∪
∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)} → suc 𝑋 = suc ∪ ∩ {𝑥
∈ On ∣ 𝐵 ∈
(𝐴
↑𝑜 𝑥)}) |
| 93 | 1, 92 | ax-mp 5 |
. . . . . . 7
⊢ suc 𝑋 = suc ∪ ∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)} |
| 94 | 91, 93 | syl6reqr 2675 |
. . . . . 6
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ suc 𝑋 = ∩ {𝑥
∈ On ∣ 𝐵 ∈
(𝐴
↑𝑜 𝑥)}) |
| 95 | 21, 94 | eleqtrd 2703 |
. . . . 5
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ 𝑋 ∈ ∩ {𝑥
∈ On ∣ 𝐵 ∈
(𝐴
↑𝑜 𝑥)}) |
| 96 | 56 | inteqi 4479 |
. . . . 5
⊢ ∩ {𝑥
∈ On ∣ 𝐵 ∈
(𝐴
↑𝑜 𝑥)} = ∩ {𝑦 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑦)} |
| 97 | 95, 96 | syl6eleq 2711 |
. . . 4
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ 𝑋 ∈ ∩ {𝑦
∈ On ∣ 𝐵 ∈
(𝐴
↑𝑜 𝑦)}) |
| 98 | 53 | onnminsb 7004 |
. . . 4
⊢ (𝑋 ∈ On → (𝑋 ∈ ∩ {𝑦
∈ On ∣ 𝐵 ∈
(𝐴
↑𝑜 𝑦)} → ¬ 𝐵 ∈ (𝐴 ↑𝑜 𝑋))) |
| 99 | 19, 97, 98 | sylc 65 |
. . 3
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ ¬ 𝐵 ∈
(𝐴
↑𝑜 𝑋)) |
| 100 | | oecl 7617 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝑋 ∈ On) → (𝐴 ↑𝑜
𝑋) ∈
On) |
| 101 | 37, 19, 100 | syl2anc 693 |
. . . 4
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ (𝐴
↑𝑜 𝑋) ∈ On) |
| 102 | | ontri1 5757 |
. . . 4
⊢ (((𝐴 ↑𝑜
𝑋) ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ↑𝑜
𝑋) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ (𝐴 ↑𝑜 𝑋))) |
| 103 | 101, 3, 102 | syl2anc 693 |
. . 3
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ ((𝐴
↑𝑜 𝑋) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ (𝐴 ↑𝑜 𝑋))) |
| 104 | 99, 103 | mpbird 247 |
. 2
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ (𝐴
↑𝑜 𝑋) ⊆ 𝐵) |
| 105 | 94, 29 | eqeltrd 2701 |
. . 3
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ suc 𝑋 ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)}) |
| 106 | | oveq2 6658 |
. . . . . 6
⊢ (𝑦 = suc 𝑋 → (𝐴 ↑𝑜 𝑦) = (𝐴 ↑𝑜 suc 𝑋)) |
| 107 | 106 | eleq2d 2687 |
. . . . 5
⊢ (𝑦 = suc 𝑋 → (𝐵 ∈ (𝐴 ↑𝑜 𝑦) ↔ 𝐵 ∈ (𝐴 ↑𝑜 suc 𝑋))) |
| 108 | 107, 56 | elrab2 3366 |
. . . 4
⊢ (suc
𝑋 ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)} ↔ (suc 𝑋 ∈ On ∧ 𝐵 ∈ (𝐴 ↑𝑜 suc 𝑋))) |
| 109 | 108 | simprbi 480 |
. . 3
⊢ (suc
𝑋 ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)} → 𝐵 ∈ (𝐴 ↑𝑜 suc 𝑋)) |
| 110 | 105, 109 | syl 17 |
. 2
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ 𝐵 ∈ (𝐴 ↑𝑜 suc
𝑋)) |
| 111 | 19, 104, 110 | 3jca 1242 |
1
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ (𝑋 ∈ On ∧
(𝐴
↑𝑜 𝑋) ⊆ 𝐵 ∧ 𝐵 ∈ (𝐴 ↑𝑜 suc 𝑋))) |