MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeworde Structured version   Visualization version   GIF version

Theorem oeworde 7673
Description: Ordinal exponentiation compared to its exponent. Proposition 8.37 of [TakeutiZaring] p. 68. (Contributed by NM, 7-Jan-2005.) (Revised by Mario Carneiro, 24-May-2015.)
Assertion
Ref Expression
oeworde ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (𝐴𝑜 𝐵))

Proof of Theorem oeworde
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4 (𝑥 = ∅ → 𝑥 = ∅)
2 oveq2 6658 . . . 4 (𝑥 = ∅ → (𝐴𝑜 𝑥) = (𝐴𝑜 ∅))
31, 2sseq12d 3634 . . 3 (𝑥 = ∅ → (𝑥 ⊆ (𝐴𝑜 𝑥) ↔ ∅ ⊆ (𝐴𝑜 ∅)))
4 id 22 . . . 4 (𝑥 = 𝑦𝑥 = 𝑦)
5 oveq2 6658 . . . 4 (𝑥 = 𝑦 → (𝐴𝑜 𝑥) = (𝐴𝑜 𝑦))
64, 5sseq12d 3634 . . 3 (𝑥 = 𝑦 → (𝑥 ⊆ (𝐴𝑜 𝑥) ↔ 𝑦 ⊆ (𝐴𝑜 𝑦)))
7 id 22 . . . 4 (𝑥 = suc 𝑦𝑥 = suc 𝑦)
8 oveq2 6658 . . . 4 (𝑥 = suc 𝑦 → (𝐴𝑜 𝑥) = (𝐴𝑜 suc 𝑦))
97, 8sseq12d 3634 . . 3 (𝑥 = suc 𝑦 → (𝑥 ⊆ (𝐴𝑜 𝑥) ↔ suc 𝑦 ⊆ (𝐴𝑜 suc 𝑦)))
10 id 22 . . . 4 (𝑥 = 𝐵𝑥 = 𝐵)
11 oveq2 6658 . . . 4 (𝑥 = 𝐵 → (𝐴𝑜 𝑥) = (𝐴𝑜 𝐵))
1210, 11sseq12d 3634 . . 3 (𝑥 = 𝐵 → (𝑥 ⊆ (𝐴𝑜 𝑥) ↔ 𝐵 ⊆ (𝐴𝑜 𝐵)))
13 0ss 3972 . . . 4 ∅ ⊆ (𝐴𝑜 ∅)
1413a1i 11 . . 3 (𝐴 ∈ (On ∖ 2𝑜) → ∅ ⊆ (𝐴𝑜 ∅))
15 eloni 5733 . . . . . . 7 (𝑦 ∈ On → Ord 𝑦)
1615adantl 482 . . . . . 6 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝑦 ∈ On) → Ord 𝑦)
17 eldifi 3732 . . . . . . . 8 (𝐴 ∈ (On ∖ 2𝑜) → 𝐴 ∈ On)
18 oecl 7617 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴𝑜 𝑦) ∈ On)
1917, 18sylan 488 . . . . . . 7 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝑦 ∈ On) → (𝐴𝑜 𝑦) ∈ On)
20 eloni 5733 . . . . . . 7 ((𝐴𝑜 𝑦) ∈ On → Ord (𝐴𝑜 𝑦))
2119, 20syl 17 . . . . . 6 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝑦 ∈ On) → Ord (𝐴𝑜 𝑦))
22 ordsucsssuc 7023 . . . . . 6 ((Ord 𝑦 ∧ Ord (𝐴𝑜 𝑦)) → (𝑦 ⊆ (𝐴𝑜 𝑦) ↔ suc 𝑦 ⊆ suc (𝐴𝑜 𝑦)))
2316, 21, 22syl2anc 693 . . . . 5 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝑦 ∈ On) → (𝑦 ⊆ (𝐴𝑜 𝑦) ↔ suc 𝑦 ⊆ suc (𝐴𝑜 𝑦)))
24 suceloni 7013 . . . . . . . . 9 (𝑦 ∈ On → suc 𝑦 ∈ On)
25 oecl 7617 . . . . . . . . 9 ((𝐴 ∈ On ∧ suc 𝑦 ∈ On) → (𝐴𝑜 suc 𝑦) ∈ On)
2617, 24, 25syl2an 494 . . . . . . . 8 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝑦 ∈ On) → (𝐴𝑜 suc 𝑦) ∈ On)
27 eloni 5733 . . . . . . . 8 ((𝐴𝑜 suc 𝑦) ∈ On → Ord (𝐴𝑜 suc 𝑦))
2826, 27syl 17 . . . . . . 7 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝑦 ∈ On) → Ord (𝐴𝑜 suc 𝑦))
29 id 22 . . . . . . . 8 (𝐴 ∈ (On ∖ 2𝑜) → 𝐴 ∈ (On ∖ 2𝑜))
30 vex 3203 . . . . . . . . . 10 𝑦 ∈ V
3130sucid 5804 . . . . . . . . 9 𝑦 ∈ suc 𝑦
32 oeordi 7667 . . . . . . . . 9 ((suc 𝑦 ∈ On ∧ 𝐴 ∈ (On ∖ 2𝑜)) → (𝑦 ∈ suc 𝑦 → (𝐴𝑜 𝑦) ∈ (𝐴𝑜 suc 𝑦)))
3331, 32mpi 20 . . . . . . . 8 ((suc 𝑦 ∈ On ∧ 𝐴 ∈ (On ∖ 2𝑜)) → (𝐴𝑜 𝑦) ∈ (𝐴𝑜 suc 𝑦))
3424, 29, 33syl2anr 495 . . . . . . 7 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝑦 ∈ On) → (𝐴𝑜 𝑦) ∈ (𝐴𝑜 suc 𝑦))
35 ordsucss 7018 . . . . . . 7 (Ord (𝐴𝑜 suc 𝑦) → ((𝐴𝑜 𝑦) ∈ (𝐴𝑜 suc 𝑦) → suc (𝐴𝑜 𝑦) ⊆ (𝐴𝑜 suc 𝑦)))
3628, 34, 35sylc 65 . . . . . 6 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝑦 ∈ On) → suc (𝐴𝑜 𝑦) ⊆ (𝐴𝑜 suc 𝑦))
37 sstr2 3610 . . . . . 6 (suc 𝑦 ⊆ suc (𝐴𝑜 𝑦) → (suc (𝐴𝑜 𝑦) ⊆ (𝐴𝑜 suc 𝑦) → suc 𝑦 ⊆ (𝐴𝑜 suc 𝑦)))
3836, 37syl5com 31 . . . . 5 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝑦 ∈ On) → (suc 𝑦 ⊆ suc (𝐴𝑜 𝑦) → suc 𝑦 ⊆ (𝐴𝑜 suc 𝑦)))
3923, 38sylbid 230 . . . 4 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝑦 ∈ On) → (𝑦 ⊆ (𝐴𝑜 𝑦) → suc 𝑦 ⊆ (𝐴𝑜 suc 𝑦)))
4039expcom 451 . . 3 (𝑦 ∈ On → (𝐴 ∈ (On ∖ 2𝑜) → (𝑦 ⊆ (𝐴𝑜 𝑦) → suc 𝑦 ⊆ (𝐴𝑜 suc 𝑦))))
41 dif20el 7585 . . . . 5 (𝐴 ∈ (On ∖ 2𝑜) → ∅ ∈ 𝐴)
4217, 41jca 554 . . . 4 (𝐴 ∈ (On ∖ 2𝑜) → (𝐴 ∈ On ∧ ∅ ∈ 𝐴))
43 ss2iun 4536 . . . . . 6 (∀𝑦𝑥 𝑦 ⊆ (𝐴𝑜 𝑦) → 𝑦𝑥 𝑦 𝑦𝑥 (𝐴𝑜 𝑦))
44 limuni 5785 . . . . . . . . 9 (Lim 𝑥𝑥 = 𝑥)
45 uniiun 4573 . . . . . . . . 9 𝑥 = 𝑦𝑥 𝑦
4644, 45syl6eq 2672 . . . . . . . 8 (Lim 𝑥𝑥 = 𝑦𝑥 𝑦)
4746adantr 481 . . . . . . 7 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → 𝑥 = 𝑦𝑥 𝑦)
48 vex 3203 . . . . . . . . . 10 𝑥 ∈ V
49 oelim 7614 . . . . . . . . . 10 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ 𝐴) → (𝐴𝑜 𝑥) = 𝑦𝑥 (𝐴𝑜 𝑦))
5048, 49mpanlr1 722 . . . . . . . . 9 (((𝐴 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐴) → (𝐴𝑜 𝑥) = 𝑦𝑥 (𝐴𝑜 𝑦))
5150anasss 679 . . . . . . . 8 ((𝐴 ∈ On ∧ (Lim 𝑥 ∧ ∅ ∈ 𝐴)) → (𝐴𝑜 𝑥) = 𝑦𝑥 (𝐴𝑜 𝑦))
5251an12s 843 . . . . . . 7 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → (𝐴𝑜 𝑥) = 𝑦𝑥 (𝐴𝑜 𝑦))
5347, 52sseq12d 3634 . . . . . 6 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → (𝑥 ⊆ (𝐴𝑜 𝑥) ↔ 𝑦𝑥 𝑦 𝑦𝑥 (𝐴𝑜 𝑦)))
5443, 53syl5ibr 236 . . . . 5 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → (∀𝑦𝑥 𝑦 ⊆ (𝐴𝑜 𝑦) → 𝑥 ⊆ (𝐴𝑜 𝑥)))
5554ex 450 . . . 4 (Lim 𝑥 → ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (∀𝑦𝑥 𝑦 ⊆ (𝐴𝑜 𝑦) → 𝑥 ⊆ (𝐴𝑜 𝑥))))
5642, 55syl5 34 . . 3 (Lim 𝑥 → (𝐴 ∈ (On ∖ 2𝑜) → (∀𝑦𝑥 𝑦 ⊆ (𝐴𝑜 𝑦) → 𝑥 ⊆ (𝐴𝑜 𝑥))))
573, 6, 9, 12, 14, 40, 56tfinds3 7064 . 2 (𝐵 ∈ On → (𝐴 ∈ (On ∖ 2𝑜) → 𝐵 ⊆ (𝐴𝑜 𝐵)))
5857impcom 446 1 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (𝐴𝑜 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  cdif 3571  wss 3574  c0 3915   cuni 4436   ciun 4520  Ord word 5722  Oncon0 5723  Lim wlim 5724  suc csuc 5725  (class class class)co 6650  2𝑜c2o 7554  𝑜 coe 7559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-oexp 7566
This theorem is referenced by:  oeeulem  7681  cnfcom3clem  8602
  Copyright terms: Public domain W3C validator