| Step | Hyp | Ref
| Expression |
| 1 | | simp1 1061 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → 𝐴 ∈ 𝑉) |
| 2 | | simp2 1062 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → 𝐹:𝐴⟶ℂ) |
| 3 | | ffn 6045 |
. . 3
⊢ (𝐹:𝐴⟶ℂ → 𝐹 Fn 𝐴) |
| 4 | 2, 3 | syl 17 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → 𝐹 Fn 𝐴) |
| 5 | | ax-1cn 9994 |
. . . 4
⊢ 1 ∈
ℂ |
| 6 | | fnconstg 6093 |
. . . 4
⊢ (1 ∈
ℂ → (𝐴 ×
{1}) Fn 𝐴) |
| 7 | 5, 6 | mp1i 13 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → (𝐴 × {1}) Fn 𝐴) |
| 8 | | simp3 1063 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → 𝐺:𝐴⟶(ℂ ∖
{0})) |
| 9 | | ffn 6045 |
. . . 4
⊢ (𝐺:𝐴⟶(ℂ ∖ {0}) → 𝐺 Fn 𝐴) |
| 10 | 8, 9 | syl 17 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → 𝐺 Fn 𝐴) |
| 11 | | inidm 3822 |
. . 3
⊢ (𝐴 ∩ 𝐴) = 𝐴 |
| 12 | 7, 10, 1, 1, 11 | offn 6908 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) →
((𝐴 × {1})
∘𝑓 / 𝐺) Fn 𝐴) |
| 13 | 4, 10, 1, 1, 11 | offn 6908 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → (𝐹 ∘𝑓 /
𝐺) Fn 𝐴) |
| 14 | | eqidd 2623 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) |
| 15 | | 1cnd 10056 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → 1
∈ ℂ) |
| 16 | | eqidd 2623 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = (𝐺‘𝑥)) |
| 17 | 1, 15, 10, 16 | ofc1 6920 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) ∧ 𝑥 ∈ 𝐴) → (((𝐴 × {1}) ∘𝑓 /
𝐺)‘𝑥) = (1 / (𝐺‘𝑥))) |
| 18 | | ffvelrn 6357 |
. . . . 5
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℂ) |
| 19 | 2, 18 | sylan 488 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℂ) |
| 20 | | ffvelrn 6357 |
. . . . . 6
⊢ ((𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ (ℂ ∖
{0})) |
| 21 | | eldifsn 4317 |
. . . . . 6
⊢ ((𝐺‘𝑥) ∈ (ℂ ∖ {0}) ↔ ((𝐺‘𝑥) ∈ ℂ ∧ (𝐺‘𝑥) ≠ 0)) |
| 22 | 20, 21 | sylib 208 |
. . . . 5
⊢ ((𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝑥 ∈ 𝐴) → ((𝐺‘𝑥) ∈ ℂ ∧ (𝐺‘𝑥) ≠ 0)) |
| 23 | 8, 22 | sylan 488 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) ∧ 𝑥 ∈ 𝐴) → ((𝐺‘𝑥) ∈ ℂ ∧ (𝐺‘𝑥) ≠ 0)) |
| 24 | | divrec 10701 |
. . . . . 6
⊢ (((𝐹‘𝑥) ∈ ℂ ∧ (𝐺‘𝑥) ∈ ℂ ∧ (𝐺‘𝑥) ≠ 0) → ((𝐹‘𝑥) / (𝐺‘𝑥)) = ((𝐹‘𝑥) · (1 / (𝐺‘𝑥)))) |
| 25 | 24 | eqcomd 2628 |
. . . . 5
⊢ (((𝐹‘𝑥) ∈ ℂ ∧ (𝐺‘𝑥) ∈ ℂ ∧ (𝐺‘𝑥) ≠ 0) → ((𝐹‘𝑥) · (1 / (𝐺‘𝑥))) = ((𝐹‘𝑥) / (𝐺‘𝑥))) |
| 26 | 25 | 3expb 1266 |
. . . 4
⊢ (((𝐹‘𝑥) ∈ ℂ ∧ ((𝐺‘𝑥) ∈ ℂ ∧ (𝐺‘𝑥) ≠ 0)) → ((𝐹‘𝑥) · (1 / (𝐺‘𝑥))) = ((𝐹‘𝑥) / (𝐺‘𝑥))) |
| 27 | 19, 23, 26 | syl2anc 693 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) · (1 / (𝐺‘𝑥))) = ((𝐹‘𝑥) / (𝐺‘𝑥))) |
| 28 | 4, 10, 1, 1, 11, 14, 16 | ofval 6906 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) ∧ 𝑥 ∈ 𝐴) → ((𝐹 ∘𝑓 / 𝐺)‘𝑥) = ((𝐹‘𝑥) / (𝐺‘𝑥))) |
| 29 | 27, 28 | eqtr4d 2659 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) · (1 / (𝐺‘𝑥))) = ((𝐹 ∘𝑓 / 𝐺)‘𝑥)) |
| 30 | 1, 4, 12, 13, 14, 17, 29 | offveq 6918 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → (𝐹 ∘𝑓
· ((𝐴 × {1})
∘𝑓 / 𝐺)) = (𝐹 ∘𝑓 / 𝐺)) |