Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofdivrec Structured version   Visualization version   GIF version

Theorem ofdivrec 38525
Description: Function analogue of divrec 10701, a division analogue of ofnegsub 11018. (Contributed by Steve Rodriguez, 3-Nov-2015.)
Assertion
Ref Expression
ofdivrec ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → (𝐹𝑓 · ((𝐴 × {1}) ∘𝑓 / 𝐺)) = (𝐹𝑓 / 𝐺))

Proof of Theorem ofdivrec
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp1 1061 . 2 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → 𝐴𝑉)
2 simp2 1062 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → 𝐹:𝐴⟶ℂ)
3 ffn 6045 . . 3 (𝐹:𝐴⟶ℂ → 𝐹 Fn 𝐴)
42, 3syl 17 . 2 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → 𝐹 Fn 𝐴)
5 ax-1cn 9994 . . . 4 1 ∈ ℂ
6 fnconstg 6093 . . . 4 (1 ∈ ℂ → (𝐴 × {1}) Fn 𝐴)
75, 6mp1i 13 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → (𝐴 × {1}) Fn 𝐴)
8 simp3 1063 . . . 4 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → 𝐺:𝐴⟶(ℂ ∖ {0}))
9 ffn 6045 . . . 4 (𝐺:𝐴⟶(ℂ ∖ {0}) → 𝐺 Fn 𝐴)
108, 9syl 17 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → 𝐺 Fn 𝐴)
11 inidm 3822 . . 3 (𝐴𝐴) = 𝐴
127, 10, 1, 1, 11offn 6908 . 2 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → ((𝐴 × {1}) ∘𝑓 / 𝐺) Fn 𝐴)
134, 10, 1, 1, 11offn 6908 . 2 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → (𝐹𝑓 / 𝐺) Fn 𝐴)
14 eqidd 2623 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
15 1cnd 10056 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → 1 ∈ ℂ)
16 eqidd 2623 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) ∧ 𝑥𝐴) → (𝐺𝑥) = (𝐺𝑥))
171, 15, 10, 16ofc1 6920 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) ∧ 𝑥𝐴) → (((𝐴 × {1}) ∘𝑓 / 𝐺)‘𝑥) = (1 / (𝐺𝑥)))
18 ffvelrn 6357 . . . . 5 ((𝐹:𝐴⟶ℂ ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
192, 18sylan 488 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
20 ffvelrn 6357 . . . . . 6 ((𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝑥𝐴) → (𝐺𝑥) ∈ (ℂ ∖ {0}))
21 eldifsn 4317 . . . . . 6 ((𝐺𝑥) ∈ (ℂ ∖ {0}) ↔ ((𝐺𝑥) ∈ ℂ ∧ (𝐺𝑥) ≠ 0))
2220, 21sylib 208 . . . . 5 ((𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝑥𝐴) → ((𝐺𝑥) ∈ ℂ ∧ (𝐺𝑥) ≠ 0))
238, 22sylan 488 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) ∧ 𝑥𝐴) → ((𝐺𝑥) ∈ ℂ ∧ (𝐺𝑥) ≠ 0))
24 divrec 10701 . . . . . 6 (((𝐹𝑥) ∈ ℂ ∧ (𝐺𝑥) ∈ ℂ ∧ (𝐺𝑥) ≠ 0) → ((𝐹𝑥) / (𝐺𝑥)) = ((𝐹𝑥) · (1 / (𝐺𝑥))))
2524eqcomd 2628 . . . . 5 (((𝐹𝑥) ∈ ℂ ∧ (𝐺𝑥) ∈ ℂ ∧ (𝐺𝑥) ≠ 0) → ((𝐹𝑥) · (1 / (𝐺𝑥))) = ((𝐹𝑥) / (𝐺𝑥)))
26253expb 1266 . . . 4 (((𝐹𝑥) ∈ ℂ ∧ ((𝐺𝑥) ∈ ℂ ∧ (𝐺𝑥) ≠ 0)) → ((𝐹𝑥) · (1 / (𝐺𝑥))) = ((𝐹𝑥) / (𝐺𝑥)))
2719, 23, 26syl2anc 693 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) ∧ 𝑥𝐴) → ((𝐹𝑥) · (1 / (𝐺𝑥))) = ((𝐹𝑥) / (𝐺𝑥)))
284, 10, 1, 1, 11, 14, 16ofval 6906 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) ∧ 𝑥𝐴) → ((𝐹𝑓 / 𝐺)‘𝑥) = ((𝐹𝑥) / (𝐺𝑥)))
2927, 28eqtr4d 2659 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) ∧ 𝑥𝐴) → ((𝐹𝑥) · (1 / (𝐺𝑥))) = ((𝐹𝑓 / 𝐺)‘𝑥))
301, 4, 12, 13, 14, 17, 29offveq 6918 1 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → (𝐹𝑓 · ((𝐴 × {1}) ∘𝑓 / 𝐺)) = (𝐹𝑓 / 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  cdif 3571  {csn 4177   × cxp 5112   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  𝑓 cof 6895  cc 9934  0cc0 9936  1c1 9937   · cmul 9941   / cdiv 10684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator