![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iccpartgtl | Structured version Visualization version GIF version |
Description: If there is a partition, then all intermediate points and the upper bound are strictly greater than the lower bound. (Contributed by AV, 14-Jul-2020.) |
Ref | Expression |
---|---|
iccpartgtprec.m | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
iccpartgtprec.p | ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) |
Ref | Expression |
---|---|
iccpartgtl | ⊢ (𝜑 → ∀𝑖 ∈ (1...𝑀)(𝑃‘0) < (𝑃‘𝑖)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccpartgtprec.m | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
2 | elnnuz 11724 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ ↔ 𝑀 ∈ (ℤ≥‘1)) | |
3 | 1, 2 | sylib 208 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘1)) |
4 | fzisfzounsn 12580 | . . . . . 6 ⊢ (𝑀 ∈ (ℤ≥‘1) → (1...𝑀) = ((1..^𝑀) ∪ {𝑀})) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → (1...𝑀) = ((1..^𝑀) ∪ {𝑀})) |
6 | 5 | eleq2d 2687 | . . . 4 ⊢ (𝜑 → (𝑖 ∈ (1...𝑀) ↔ 𝑖 ∈ ((1..^𝑀) ∪ {𝑀}))) |
7 | elun 3753 | . . . . 5 ⊢ (𝑖 ∈ ((1..^𝑀) ∪ {𝑀}) ↔ (𝑖 ∈ (1..^𝑀) ∨ 𝑖 ∈ {𝑀})) | |
8 | 7 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑖 ∈ ((1..^𝑀) ∪ {𝑀}) ↔ (𝑖 ∈ (1..^𝑀) ∨ 𝑖 ∈ {𝑀}))) |
9 | velsn 4193 | . . . . . 6 ⊢ (𝑖 ∈ {𝑀} ↔ 𝑖 = 𝑀) | |
10 | 9 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑖 ∈ {𝑀} ↔ 𝑖 = 𝑀)) |
11 | 10 | orbi2d 738 | . . . 4 ⊢ (𝜑 → ((𝑖 ∈ (1..^𝑀) ∨ 𝑖 ∈ {𝑀}) ↔ (𝑖 ∈ (1..^𝑀) ∨ 𝑖 = 𝑀))) |
12 | 6, 8, 11 | 3bitrd 294 | . . 3 ⊢ (𝜑 → (𝑖 ∈ (1...𝑀) ↔ (𝑖 ∈ (1..^𝑀) ∨ 𝑖 = 𝑀))) |
13 | fveq2 6191 | . . . . . . . 8 ⊢ (𝑘 = 𝑖 → (𝑃‘𝑘) = (𝑃‘𝑖)) | |
14 | 13 | breq2d 4665 | . . . . . . 7 ⊢ (𝑘 = 𝑖 → ((𝑃‘0) < (𝑃‘𝑘) ↔ (𝑃‘0) < (𝑃‘𝑖))) |
15 | 14 | rspccv 3306 | . . . . . 6 ⊢ (∀𝑘 ∈ (1..^𝑀)(𝑃‘0) < (𝑃‘𝑘) → (𝑖 ∈ (1..^𝑀) → (𝑃‘0) < (𝑃‘𝑖))) |
16 | iccpartgtprec.p | . . . . . . 7 ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) | |
17 | 1, 16 | iccpartigtl 41359 | . . . . . 6 ⊢ (𝜑 → ∀𝑘 ∈ (1..^𝑀)(𝑃‘0) < (𝑃‘𝑘)) |
18 | 15, 17 | syl11 33 | . . . . 5 ⊢ (𝑖 ∈ (1..^𝑀) → (𝜑 → (𝑃‘0) < (𝑃‘𝑖))) |
19 | 1, 16 | iccpartlt 41360 | . . . . . . . 8 ⊢ (𝜑 → (𝑃‘0) < (𝑃‘𝑀)) |
20 | 19 | adantl 482 | . . . . . . 7 ⊢ ((𝑖 = 𝑀 ∧ 𝜑) → (𝑃‘0) < (𝑃‘𝑀)) |
21 | fveq2 6191 | . . . . . . . 8 ⊢ (𝑖 = 𝑀 → (𝑃‘𝑖) = (𝑃‘𝑀)) | |
22 | 21 | adantr 481 | . . . . . . 7 ⊢ ((𝑖 = 𝑀 ∧ 𝜑) → (𝑃‘𝑖) = (𝑃‘𝑀)) |
23 | 20, 22 | breqtrrd 4681 | . . . . . 6 ⊢ ((𝑖 = 𝑀 ∧ 𝜑) → (𝑃‘0) < (𝑃‘𝑖)) |
24 | 23 | ex 450 | . . . . 5 ⊢ (𝑖 = 𝑀 → (𝜑 → (𝑃‘0) < (𝑃‘𝑖))) |
25 | 18, 24 | jaoi 394 | . . . 4 ⊢ ((𝑖 ∈ (1..^𝑀) ∨ 𝑖 = 𝑀) → (𝜑 → (𝑃‘0) < (𝑃‘𝑖))) |
26 | 25 | com12 32 | . . 3 ⊢ (𝜑 → ((𝑖 ∈ (1..^𝑀) ∨ 𝑖 = 𝑀) → (𝑃‘0) < (𝑃‘𝑖))) |
27 | 12, 26 | sylbid 230 | . 2 ⊢ (𝜑 → (𝑖 ∈ (1...𝑀) → (𝑃‘0) < (𝑃‘𝑖))) |
28 | 27 | ralrimiv 2965 | 1 ⊢ (𝜑 → ∀𝑖 ∈ (1...𝑀)(𝑃‘0) < (𝑃‘𝑖)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∨ wo 383 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ∪ cun 3572 {csn 4177 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 0cc0 9936 1c1 9937 < clt 10074 ℕcn 11020 ℤ≥cuz 11687 ...cfz 12326 ..^cfzo 12465 RePartciccp 41349 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-fzo 12466 df-iccp 41350 |
This theorem is referenced by: iccpartgel 41365 |
Copyright terms: Public domain | W3C validator |