MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmneg Structured version   Visualization version   GIF version

Theorem lcmneg 15316
Description: Negating one operand of the lcm operator does not alter the result. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Assertion
Ref Expression
lcmneg ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm -𝑁) = (𝑀 lcm 𝑁))

Proof of Theorem lcmneg
StepHypRef Expression
1 lcm0val 15307 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁 lcm 0) = 0)
2 znegcl 11412 . . . . . . . . 9 (𝑁 ∈ ℤ → -𝑁 ∈ ℤ)
3 lcm0val 15307 . . . . . . . . 9 (-𝑁 ∈ ℤ → (-𝑁 lcm 0) = 0)
42, 3syl 17 . . . . . . . 8 (𝑁 ∈ ℤ → (-𝑁 lcm 0) = 0)
51, 4eqtr4d 2659 . . . . . . 7 (𝑁 ∈ ℤ → (𝑁 lcm 0) = (-𝑁 lcm 0))
65ad2antlr 763 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑁 lcm 0) = (-𝑁 lcm 0))
7 oveq2 6658 . . . . . . . 8 (𝑀 = 0 → (𝑁 lcm 𝑀) = (𝑁 lcm 0))
8 oveq2 6658 . . . . . . . 8 (𝑀 = 0 → (-𝑁 lcm 𝑀) = (-𝑁 lcm 0))
97, 8eqeq12d 2637 . . . . . . 7 (𝑀 = 0 → ((𝑁 lcm 𝑀) = (-𝑁 lcm 𝑀) ↔ (𝑁 lcm 0) = (-𝑁 lcm 0)))
109adantl 482 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → ((𝑁 lcm 𝑀) = (-𝑁 lcm 𝑀) ↔ (𝑁 lcm 0) = (-𝑁 lcm 0)))
116, 10mpbird 247 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑁 lcm 𝑀) = (-𝑁 lcm 𝑀))
12 lcmcom 15306 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = (𝑁 lcm 𝑀))
13 lcmcom 15306 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) → (𝑀 lcm -𝑁) = (-𝑁 lcm 𝑀))
142, 13sylan2 491 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm -𝑁) = (-𝑁 lcm 𝑀))
1512, 14eqeq12d 2637 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 𝑁) = (𝑀 lcm -𝑁) ↔ (𝑁 lcm 𝑀) = (-𝑁 lcm 𝑀)))
1615adantr 481 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → ((𝑀 lcm 𝑁) = (𝑀 lcm -𝑁) ↔ (𝑁 lcm 𝑀) = (-𝑁 lcm 𝑀)))
1711, 16mpbird 247 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑀 lcm 𝑁) = (𝑀 lcm -𝑁))
18 neg0 10327 . . . . . . . 8 -0 = 0
1918oveq2i 6661 . . . . . . 7 (𝑀 lcm -0) = (𝑀 lcm 0)
2019eqcomi 2631 . . . . . 6 (𝑀 lcm 0) = (𝑀 lcm -0)
21 oveq2 6658 . . . . . 6 (𝑁 = 0 → (𝑀 lcm 𝑁) = (𝑀 lcm 0))
22 negeq 10273 . . . . . . 7 (𝑁 = 0 → -𝑁 = -0)
2322oveq2d 6666 . . . . . 6 (𝑁 = 0 → (𝑀 lcm -𝑁) = (𝑀 lcm -0))
2420, 21, 233eqtr4a 2682 . . . . 5 (𝑁 = 0 → (𝑀 lcm 𝑁) = (𝑀 lcm -𝑁))
2524adantl 482 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝑀 lcm 𝑁) = (𝑀 lcm -𝑁))
2617, 25jaodan 826 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) = (𝑀 lcm -𝑁))
27 dvdslcm 15311 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) → (𝑀 ∥ (𝑀 lcm -𝑁) ∧ -𝑁 ∥ (𝑀 lcm -𝑁)))
282, 27sylan2 491 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (𝑀 lcm -𝑁) ∧ -𝑁 ∥ (𝑀 lcm -𝑁)))
29 simpr 477 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
30 lcmcl 15314 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) → (𝑀 lcm -𝑁) ∈ ℕ0)
312, 30sylan2 491 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm -𝑁) ∈ ℕ0)
3231nn0zd 11480 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm -𝑁) ∈ ℤ)
33 negdvdsb 14998 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑀 lcm -𝑁) ∈ ℤ) → (𝑁 ∥ (𝑀 lcm -𝑁) ↔ -𝑁 ∥ (𝑀 lcm -𝑁)))
3429, 32, 33syl2anc 693 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∥ (𝑀 lcm -𝑁) ↔ -𝑁 ∥ (𝑀 lcm -𝑁)))
3534anbi2d 740 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 ∥ (𝑀 lcm -𝑁) ∧ 𝑁 ∥ (𝑀 lcm -𝑁)) ↔ (𝑀 ∥ (𝑀 lcm -𝑁) ∧ -𝑁 ∥ (𝑀 lcm -𝑁))))
3628, 35mpbird 247 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (𝑀 lcm -𝑁) ∧ 𝑁 ∥ (𝑀 lcm -𝑁)))
3736adantr 481 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 ∥ (𝑀 lcm -𝑁) ∧ 𝑁 ∥ (𝑀 lcm -𝑁)))
38 zcn 11382 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
3938negeq0d 10384 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (𝑁 = 0 ↔ -𝑁 = 0))
4039orbi2d 738 . . . . . . . . . . 11 (𝑁 ∈ ℤ → ((𝑀 = 0 ∨ 𝑁 = 0) ↔ (𝑀 = 0 ∨ -𝑁 = 0)))
4140notbid 308 . . . . . . . . . 10 (𝑁 ∈ ℤ → (¬ (𝑀 = 0 ∨ 𝑁 = 0) ↔ ¬ (𝑀 = 0 ∨ -𝑁 = 0)))
4241biimpa 501 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ¬ (𝑀 = 0 ∨ -𝑁 = 0))
4342adantll 750 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ¬ (𝑀 = 0 ∨ -𝑁 = 0))
44 lcmn0cl 15310 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ -𝑁 = 0)) → (𝑀 lcm -𝑁) ∈ ℕ)
452, 44sylanl2 683 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ -𝑁 = 0)) → (𝑀 lcm -𝑁) ∈ ℕ)
4643, 45syldan 487 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm -𝑁) ∈ ℕ)
47 simpl 473 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
48 3anass 1042 . . . . . . 7 (((𝑀 lcm -𝑁) ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ↔ ((𝑀 lcm -𝑁) ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)))
4946, 47, 48sylanbrc 698 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 lcm -𝑁) ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
50 simpr 477 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ¬ (𝑀 = 0 ∨ 𝑁 = 0))
51 lcmledvds 15312 . . . . . 6 ((((𝑀 lcm -𝑁) ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 ∥ (𝑀 lcm -𝑁) ∧ 𝑁 ∥ (𝑀 lcm -𝑁)) → (𝑀 lcm 𝑁) ≤ (𝑀 lcm -𝑁)))
5249, 50, 51syl2anc 693 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 ∥ (𝑀 lcm -𝑁) ∧ 𝑁 ∥ (𝑀 lcm -𝑁)) → (𝑀 lcm 𝑁) ≤ (𝑀 lcm -𝑁)))
5337, 52mpd 15 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) ≤ (𝑀 lcm -𝑁))
54 dvdslcm 15311 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁)))
5554adantr 481 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁)))
56 simplr 792 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → 𝑁 ∈ ℤ)
57 lcmn0cl 15310 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) ∈ ℕ)
5857nnzd 11481 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) ∈ ℤ)
59 negdvdsb 14998 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝑀 lcm 𝑁) ∈ ℤ) → (𝑁 ∥ (𝑀 lcm 𝑁) ↔ -𝑁 ∥ (𝑀 lcm 𝑁)))
6056, 58, 59syl2anc 693 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑁 ∥ (𝑀 lcm 𝑁) ↔ -𝑁 ∥ (𝑀 lcm 𝑁)))
6160anbi2d 740 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁)) ↔ (𝑀 ∥ (𝑀 lcm 𝑁) ∧ -𝑁 ∥ (𝑀 lcm 𝑁))))
62 lcmledvds 15312 . . . . . . . . . 10 ((((𝑀 lcm 𝑁) ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ -𝑁 = 0)) → ((𝑀 ∥ (𝑀 lcm 𝑁) ∧ -𝑁 ∥ (𝑀 lcm 𝑁)) → (𝑀 lcm -𝑁) ≤ (𝑀 lcm 𝑁)))
6362ex 450 . . . . . . . . 9 (((𝑀 lcm 𝑁) ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∨ -𝑁 = 0) → ((𝑀 ∥ (𝑀 lcm 𝑁) ∧ -𝑁 ∥ (𝑀 lcm 𝑁)) → (𝑀 lcm -𝑁) ≤ (𝑀 lcm 𝑁))))
642, 63syl3an3 1361 . . . . . . . 8 (((𝑀 lcm 𝑁) ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∨ -𝑁 = 0) → ((𝑀 ∥ (𝑀 lcm 𝑁) ∧ -𝑁 ∥ (𝑀 lcm 𝑁)) → (𝑀 lcm -𝑁) ≤ (𝑀 lcm 𝑁))))
65643expib 1268 . . . . . . 7 ((𝑀 lcm 𝑁) ∈ ℕ → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∨ -𝑁 = 0) → ((𝑀 ∥ (𝑀 lcm 𝑁) ∧ -𝑁 ∥ (𝑀 lcm 𝑁)) → (𝑀 lcm -𝑁) ≤ (𝑀 lcm 𝑁)))))
6657, 47, 43, 65syl3c 66 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 ∥ (𝑀 lcm 𝑁) ∧ -𝑁 ∥ (𝑀 lcm 𝑁)) → (𝑀 lcm -𝑁) ≤ (𝑀 lcm 𝑁)))
6761, 66sylbid 230 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁)) → (𝑀 lcm -𝑁) ≤ (𝑀 lcm 𝑁)))
6855, 67mpd 15 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm -𝑁) ≤ (𝑀 lcm 𝑁))
69 lcmcl 15314 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℕ0)
7069nn0red 11352 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℝ)
7130nn0red 11352 . . . . . . 7 ((𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) → (𝑀 lcm -𝑁) ∈ ℝ)
722, 71sylan2 491 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm -𝑁) ∈ ℝ)
7370, 72letri3d 10179 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 𝑁) = (𝑀 lcm -𝑁) ↔ ((𝑀 lcm 𝑁) ≤ (𝑀 lcm -𝑁) ∧ (𝑀 lcm -𝑁) ≤ (𝑀 lcm 𝑁))))
7473adantr 481 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 lcm 𝑁) = (𝑀 lcm -𝑁) ↔ ((𝑀 lcm 𝑁) ≤ (𝑀 lcm -𝑁) ∧ (𝑀 lcm -𝑁) ≤ (𝑀 lcm 𝑁))))
7553, 68, 74mpbir2and 957 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) = (𝑀 lcm -𝑁))
7626, 75pm2.61dan 832 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = (𝑀 lcm -𝑁))
7776eqcomd 2628 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm -𝑁) = (𝑀 lcm 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990   class class class wbr 4653  (class class class)co 6650  cr 9935  0cc0 9936  cle 10075  -cneg 10267  cn 11020  0cn0 11292  cz 11377  cdvds 14983   lcm clcm 15301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-lcm 15303
This theorem is referenced by:  neglcm  15317  lcmabs  15318
  Copyright terms: Public domain W3C validator