| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordtopn1 | Structured version Visualization version Unicode version | ||
| Description: An upward ray |
| Ref | Expression |
|---|---|
| ordttopon.3 |
|
| Ref | Expression |
|---|---|
| ordtopn1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordttopon.3 |
. . . . . . . . 9
| |
| 2 | eqid 2622 |
. . . . . . . . 9
| |
| 3 | eqid 2622 |
. . . . . . . . 9
| |
| 4 | 1, 2, 3 | ordtuni 20994 |
. . . . . . . 8
|
| 5 | 4 | adantr 481 |
. . . . . . 7
|
| 6 | dmexg 7097 |
. . . . . . . . 9
| |
| 7 | 1, 6 | syl5eqel 2705 |
. . . . . . . 8
|
| 8 | 7 | adantr 481 |
. . . . . . 7
|
| 9 | 5, 8 | eqeltrrd 2702 |
. . . . . 6
|
| 10 | uniexb 6973 |
. . . . . 6
| |
| 11 | 9, 10 | sylibr 224 |
. . . . 5
|
| 12 | ssfii 8325 |
. . . . 5
| |
| 13 | 11, 12 | syl 17 |
. . . 4
|
| 14 | fibas 20781 |
. . . . 5
| |
| 15 | bastg 20770 |
. . . . 5
| |
| 16 | 14, 15 | ax-mp 5 |
. . . 4
|
| 17 | 13, 16 | syl6ss 3615 |
. . 3
|
| 18 | 1, 2, 3 | ordtval 20993 |
. . . 4
|
| 19 | 18 | adantr 481 |
. . 3
|
| 20 | 17, 19 | sseqtr4d 3642 |
. 2
|
| 21 | ssun2 3777 |
. . 3
| |
| 22 | ssun1 3776 |
. . . 4
| |
| 23 | simpr 477 |
. . . . . 6
| |
| 24 | eqidd 2623 |
. . . . . 6
| |
| 25 | breq2 4657 |
. . . . . . . . . 10
| |
| 26 | 25 | notbid 308 |
. . . . . . . . 9
|
| 27 | 26 | rabbidv 3189 |
. . . . . . . 8
|
| 28 | 27 | eqeq2d 2632 |
. . . . . . 7
|
| 29 | 28 | rspcev 3309 |
. . . . . 6
|
| 30 | 23, 24, 29 | syl2anc 693 |
. . . . 5
|
| 31 | rabexg 4812 |
. . . . . 6
| |
| 32 | eqid 2622 |
. . . . . . 7
| |
| 33 | 32 | elrnmpt 5372 |
. . . . . 6
|
| 34 | 8, 31, 33 | 3syl 18 |
. . . . 5
|
| 35 | 30, 34 | mpbird 247 |
. . . 4
|
| 36 | 22, 35 | sseldi 3601 |
. . 3
|
| 37 | 21, 36 | sseldi 3601 |
. 2
|
| 38 | 20, 37 | sseldd 3604 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-fin 7959 df-fi 8317 df-topgen 16104 df-ordt 16161 df-bases 20750 |
| This theorem is referenced by: ordtopn3 21000 ordtcld1 21001 ordtrest 21006 ordtrest2lem 21007 ordthauslem 21187 ordthmeolem 21604 ordtrestNEW 29967 ordtrest2NEWlem 29968 |
| Copyright terms: Public domain | W3C validator |