| Step | Hyp | Ref
| Expression |
| 1 | | pcopt.1 |
. . . . . . . . . 10
⊢ 𝑃 = ((0[,]1) × {𝑌}) |
| 2 | 1 | fveq1i 6192 |
. . . . . . . . 9
⊢ (𝑃‘(2 · 𝑥)) = (((0[,]1) × {𝑌})‘(2 · 𝑥)) |
| 3 | | simpr 477 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝐹‘0) = 𝑌) |
| 4 | | iiuni 22684 |
. . . . . . . . . . . . . 14
⊢ (0[,]1) =
∪ II |
| 5 | | eqid 2622 |
. . . . . . . . . . . . . 14
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 6 | 4, 5 | cnf 21050 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ (II Cn 𝐽) → 𝐹:(0[,]1)⟶∪
𝐽) |
| 7 | 6 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → 𝐹:(0[,]1)⟶∪
𝐽) |
| 8 | | 0elunit 12290 |
. . . . . . . . . . . 12
⊢ 0 ∈
(0[,]1) |
| 9 | | ffvelrn 6357 |
. . . . . . . . . . . 12
⊢ ((𝐹:(0[,]1)⟶∪ 𝐽
∧ 0 ∈ (0[,]1)) → (𝐹‘0) ∈ ∪ 𝐽) |
| 10 | 7, 8, 9 | sylancl 694 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝐹‘0) ∈ ∪ 𝐽) |
| 11 | 3, 10 | eqeltrrd 2702 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → 𝑌 ∈ ∪ 𝐽) |
| 12 | | elii1 22734 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (0[,](1 / 2)) ↔
(𝑥 ∈ (0[,]1) ∧
𝑥 ≤ (1 /
2))) |
| 13 | | iihalf1 22730 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (0[,](1 / 2)) → (2
· 𝑥) ∈
(0[,]1)) |
| 14 | 12, 13 | sylbir 225 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2)) → (2
· 𝑥) ∈
(0[,]1)) |
| 15 | | fvconst2g 6467 |
. . . . . . . . . 10
⊢ ((𝑌 ∈ ∪ 𝐽
∧ (2 · 𝑥) ∈
(0[,]1)) → (((0[,]1) × {𝑌})‘(2 · 𝑥)) = 𝑌) |
| 16 | 11, 14, 15 | syl2an 494 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2))) → (((0[,]1) ×
{𝑌})‘(2 ·
𝑥)) = 𝑌) |
| 17 | 2, 16 | syl5eq 2668 |
. . . . . . . 8
⊢ (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2))) → (𝑃‘(2 · 𝑥)) = 𝑌) |
| 18 | | simplr 792 |
. . . . . . . 8
⊢ (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2))) → (𝐹‘0) = 𝑌) |
| 19 | 17, 18 | eqtr4d 2659 |
. . . . . . 7
⊢ (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2))) → (𝑃‘(2 · 𝑥)) = (𝐹‘0)) |
| 20 | 19 | ifeq1d 4104 |
. . . . . 6
⊢ (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2))) → if(𝑥 ≤ (1 / 2), (𝑃‘(2 · 𝑥)), (𝐹‘((2 · 𝑥) − 1))) = if(𝑥 ≤ (1 / 2), (𝐹‘0), (𝐹‘((2 · 𝑥) − 1)))) |
| 21 | 20 | expr 643 |
. . . . 5
⊢ (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ 𝑥 ∈ (0[,]1)) → (𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), (𝑃‘(2 · 𝑥)), (𝐹‘((2 · 𝑥) − 1))) = if(𝑥 ≤ (1 / 2), (𝐹‘0), (𝐹‘((2 · 𝑥) − 1))))) |
| 22 | | iffalse 4095 |
. . . . . 6
⊢ (¬
𝑥 ≤ (1 / 2) →
if(𝑥 ≤ (1 / 2), (𝑃‘(2 · 𝑥)), (𝐹‘((2 · 𝑥) − 1))) = (𝐹‘((2 · 𝑥) − 1))) |
| 23 | | iffalse 4095 |
. . . . . 6
⊢ (¬
𝑥 ≤ (1 / 2) →
if(𝑥 ≤ (1 / 2), (𝐹‘0), (𝐹‘((2 · 𝑥) − 1))) = (𝐹‘((2 · 𝑥) − 1))) |
| 24 | 22, 23 | eqtr4d 2659 |
. . . . 5
⊢ (¬
𝑥 ≤ (1 / 2) →
if(𝑥 ≤ (1 / 2), (𝑃‘(2 · 𝑥)), (𝐹‘((2 · 𝑥) − 1))) = if(𝑥 ≤ (1 / 2), (𝐹‘0), (𝐹‘((2 · 𝑥) − 1)))) |
| 25 | 21, 24 | pm2.61d1 171 |
. . . 4
⊢ (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ 𝑥 ∈ (0[,]1)) → if(𝑥 ≤ (1 / 2), (𝑃‘(2 · 𝑥)), (𝐹‘((2 · 𝑥) − 1))) = if(𝑥 ≤ (1 / 2), (𝐹‘0), (𝐹‘((2 · 𝑥) − 1)))) |
| 26 | 25 | mpteq2dva 4744 |
. . 3
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑃‘(2 · 𝑥)), (𝐹‘((2 · 𝑥) − 1)))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘0), (𝐹‘((2 · 𝑥) − 1))))) |
| 27 | | cntop2 21045 |
. . . . . . . 8
⊢ (𝐹 ∈ (II Cn 𝐽) → 𝐽 ∈ Top) |
| 28 | 27 | adantr 481 |
. . . . . . 7
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → 𝐽 ∈ Top) |
| 29 | 5 | toptopon 20722 |
. . . . . . 7
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 30 | 28, 29 | sylib 208 |
. . . . . 6
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 31 | 1 | pcoptcl 22821 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽)
∧ 𝑌 ∈ ∪ 𝐽)
→ (𝑃 ∈ (II Cn
𝐽) ∧ (𝑃‘0) = 𝑌 ∧ (𝑃‘1) = 𝑌)) |
| 32 | 30, 11, 31 | syl2anc 693 |
. . . . 5
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑃 ∈ (II Cn 𝐽) ∧ (𝑃‘0) = 𝑌 ∧ (𝑃‘1) = 𝑌)) |
| 33 | 32 | simp1d 1073 |
. . . 4
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → 𝑃 ∈ (II Cn 𝐽)) |
| 34 | | simpl 473 |
. . . 4
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → 𝐹 ∈ (II Cn 𝐽)) |
| 35 | 33, 34 | pcoval 22811 |
. . 3
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑃(*𝑝‘𝐽)𝐹) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑃‘(2 · 𝑥)), (𝐹‘((2 · 𝑥) − 1))))) |
| 36 | | iffalse 4095 |
. . . . . . . . 9
⊢ (¬
𝑥 ≤ (1 / 2) →
if(𝑥 ≤ (1 / 2), 0, ((2
· 𝑥) − 1)) =
((2 · 𝑥) −
1)) |
| 37 | 36 | adantl 482 |
. . . . . . . 8
⊢ ((𝑥 ∈ (0[,]1) ∧ ¬
𝑥 ≤ (1 / 2)) →
if(𝑥 ≤ (1 / 2), 0, ((2
· 𝑥) − 1)) =
((2 · 𝑥) −
1)) |
| 38 | | elii2 22735 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (0[,]1) ∧ ¬
𝑥 ≤ (1 / 2)) →
𝑥 ∈ ((1 /
2)[,]1)) |
| 39 | | iihalf2 22732 |
. . . . . . . . 9
⊢ (𝑥 ∈ ((1 / 2)[,]1) → ((2
· 𝑥) − 1)
∈ (0[,]1)) |
| 40 | 38, 39 | syl 17 |
. . . . . . . 8
⊢ ((𝑥 ∈ (0[,]1) ∧ ¬
𝑥 ≤ (1 / 2)) → ((2
· 𝑥) − 1)
∈ (0[,]1)) |
| 41 | 37, 40 | eqeltrd 2701 |
. . . . . . 7
⊢ ((𝑥 ∈ (0[,]1) ∧ ¬
𝑥 ≤ (1 / 2)) →
if(𝑥 ≤ (1 / 2), 0, ((2
· 𝑥) − 1))
∈ (0[,]1)) |
| 42 | 41 | ex 450 |
. . . . . 6
⊢ (𝑥 ∈ (0[,]1) → (¬
𝑥 ≤ (1 / 2) →
if(𝑥 ≤ (1 / 2), 0, ((2
· 𝑥) − 1))
∈ (0[,]1))) |
| 43 | | iftrue 4092 |
. . . . . . 7
⊢ (𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), 0, ((2 ·
𝑥) − 1)) =
0) |
| 44 | 43, 8 | syl6eqel 2709 |
. . . . . 6
⊢ (𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), 0, ((2 ·
𝑥) − 1)) ∈
(0[,]1)) |
| 45 | 42, 44 | pm2.61d2 172 |
. . . . 5
⊢ (𝑥 ∈ (0[,]1) → if(𝑥 ≤ (1 / 2), 0, ((2 ·
𝑥) − 1)) ∈
(0[,]1)) |
| 46 | 45 | adantl 482 |
. . . 4
⊢ (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ 𝑥 ∈ (0[,]1)) → if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) ∈
(0[,]1)) |
| 47 | | eqid 2622 |
. . . . 5
⊢ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 ·
𝑥) − 1))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 ·
𝑥) −
1))) |
| 48 | 47 | a1i 11 |
. . . 4
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 ·
𝑥) −
1)))) |
| 49 | 7 | feqmptd 6249 |
. . . 4
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → 𝐹 = (𝑦 ∈ (0[,]1) ↦ (𝐹‘𝑦))) |
| 50 | | fveq2 6191 |
. . . . 5
⊢ (𝑦 = if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) → (𝐹‘𝑦) = (𝐹‘if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)))) |
| 51 | | fvif 6204 |
. . . . 5
⊢ (𝐹‘if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1))) = if(𝑥 ≤ (1 / 2), (𝐹‘0), (𝐹‘((2 · 𝑥) − 1))) |
| 52 | 50, 51 | syl6eq 2672 |
. . . 4
⊢ (𝑦 = if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) → (𝐹‘𝑦) = if(𝑥 ≤ (1 / 2), (𝐹‘0), (𝐹‘((2 · 𝑥) − 1)))) |
| 53 | 46, 48, 49, 52 | fmptco 6396 |
. . 3
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝐹 ∘ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘0), (𝐹‘((2 · 𝑥) − 1))))) |
| 54 | 26, 35, 53 | 3eqtr4d 2666 |
. 2
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑃(*𝑝‘𝐽)𝐹) = (𝐹 ∘ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) −
1))))) |
| 55 | | iitopon 22682 |
. . . . 5
⊢ II ∈
(TopOn‘(0[,]1)) |
| 56 | 55 | a1i 11 |
. . . 4
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → II ∈
(TopOn‘(0[,]1))) |
| 57 | 56 | cnmptid 21464 |
. . . 4
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑥 ∈ (0[,]1) ↦ 𝑥) ∈ (II Cn II)) |
| 58 | 8 | a1i 11 |
. . . . 5
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → 0 ∈ (0[,]1)) |
| 59 | 56, 56, 58 | cnmptc 21465 |
. . . 4
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑥 ∈ (0[,]1) ↦ 0) ∈ (II Cn
II)) |
| 60 | | eqid 2622 |
. . . . 5
⊢
(topGen‘ran (,)) = (topGen‘ran (,)) |
| 61 | | eqid 2622 |
. . . . 5
⊢
((topGen‘ran (,)) ↾t (0[,](1 / 2))) =
((topGen‘ran (,)) ↾t (0[,](1 / 2))) |
| 62 | | eqid 2622 |
. . . . 5
⊢
((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) =
((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) |
| 63 | | dfii2 22685 |
. . . . 5
⊢ II =
((topGen‘ran (,)) ↾t (0[,]1)) |
| 64 | | 0re 10040 |
. . . . . 6
⊢ 0 ∈
ℝ |
| 65 | 64 | a1i 11 |
. . . . 5
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → 0 ∈ ℝ) |
| 66 | | 1re 10039 |
. . . . . 6
⊢ 1 ∈
ℝ |
| 67 | 66 | a1i 11 |
. . . . 5
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → 1 ∈ ℝ) |
| 68 | | halfre 11246 |
. . . . . . 7
⊢ (1 / 2)
∈ ℝ |
| 69 | | halfgt0 11248 |
. . . . . . . 8
⊢ 0 < (1
/ 2) |
| 70 | 64, 68, 69 | ltleii 10160 |
. . . . . . 7
⊢ 0 ≤ (1
/ 2) |
| 71 | | halflt1 11250 |
. . . . . . . 8
⊢ (1 / 2)
< 1 |
| 72 | 68, 66, 71 | ltleii 10160 |
. . . . . . 7
⊢ (1 / 2)
≤ 1 |
| 73 | 64, 66 | elicc2i 12239 |
. . . . . . 7
⊢ ((1 / 2)
∈ (0[,]1) ↔ ((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2) ∧ (1 /
2) ≤ 1)) |
| 74 | 68, 70, 72, 73 | mpbir3an 1244 |
. . . . . 6
⊢ (1 / 2)
∈ (0[,]1) |
| 75 | 74 | a1i 11 |
. . . . 5
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (1 / 2) ∈
(0[,]1)) |
| 76 | | simprl 794 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → 𝑦 = (1 / 2)) |
| 77 | 76 | oveq2d 6666 |
. . . . . . . 8
⊢ (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (2 · 𝑦) = (2 · (1 /
2))) |
| 78 | | 2cn 11091 |
. . . . . . . . 9
⊢ 2 ∈
ℂ |
| 79 | | 2ne0 11113 |
. . . . . . . . 9
⊢ 2 ≠
0 |
| 80 | 78, 79 | recidi 10756 |
. . . . . . . 8
⊢ (2
· (1 / 2)) = 1 |
| 81 | 77, 80 | syl6eq 2672 |
. . . . . . 7
⊢ (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (2 · 𝑦) = 1) |
| 82 | 81 | oveq1d 6665 |
. . . . . 6
⊢ (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → ((2 · 𝑦) − 1) = (1 −
1)) |
| 83 | | 1m1e0 11089 |
. . . . . 6
⊢ (1
− 1) = 0 |
| 84 | 82, 83 | syl6req 2673 |
. . . . 5
⊢ (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → 0 = ((2 ·
𝑦) −
1)) |
| 85 | | retopon 22567 |
. . . . . . . 8
⊢
(topGen‘ran (,)) ∈ (TopOn‘ℝ) |
| 86 | | iccssre 12255 |
. . . . . . . . 9
⊢ ((0
∈ ℝ ∧ (1 / 2) ∈ ℝ) → (0[,](1 / 2)) ⊆
ℝ) |
| 87 | 64, 68, 86 | mp2an 708 |
. . . . . . . 8
⊢ (0[,](1 /
2)) ⊆ ℝ |
| 88 | | resttopon 20965 |
. . . . . . . 8
⊢
(((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ (0[,](1 /
2)) ⊆ ℝ) → ((topGen‘ran (,)) ↾t (0[,](1
/ 2))) ∈ (TopOn‘(0[,](1 / 2)))) |
| 89 | 85, 87, 88 | mp2an 708 |
. . . . . . 7
⊢
((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈
(TopOn‘(0[,](1 / 2))) |
| 90 | 89 | a1i 11 |
. . . . . 6
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → ((topGen‘ran (,))
↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 /
2)))) |
| 91 | 90, 56, 56, 58 | cnmpt2c 21473 |
. . . . 5
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑦 ∈ (0[,](1 / 2)), 𝑧 ∈ (0[,]1) ↦ 0) ∈
((((topGen‘ran (,)) ↾t (0[,](1 / 2)))
×t II) Cn II)) |
| 92 | | iccssre 12255 |
. . . . . . . . 9
⊢ (((1 / 2)
∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 2)[,]1) ⊆
ℝ) |
| 93 | 68, 66, 92 | mp2an 708 |
. . . . . . . 8
⊢ ((1 /
2)[,]1) ⊆ ℝ |
| 94 | | resttopon 20965 |
. . . . . . . 8
⊢
(((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ ((1 /
2)[,]1) ⊆ ℝ) → ((topGen‘ran (,)) ↾t ((1
/ 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1))) |
| 95 | 85, 93, 94 | mp2an 708 |
. . . . . . 7
⊢
((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈
(TopOn‘((1 / 2)[,]1)) |
| 96 | 95 | a1i 11 |
. . . . . 6
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → ((topGen‘ran (,))
↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 /
2)[,]1))) |
| 97 | 96, 56 | cnmpt1st 21471 |
. . . . . 6
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑦 ∈ ((1 / 2)[,]1), 𝑧 ∈ (0[,]1) ↦ 𝑦) ∈ ((((topGen‘ran (,))
↾t ((1 / 2)[,]1)) ×t II) Cn
((topGen‘ran (,)) ↾t ((1 / 2)[,]1)))) |
| 98 | 62 | iihalf2cn 22733 |
. . . . . . 7
⊢ (𝑥 ∈ ((1 / 2)[,]1) ↦
((2 · 𝑥) − 1))
∈ (((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) Cn
II) |
| 99 | 98 | a1i 11 |
. . . . . 6
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑥 ∈ ((1 / 2)[,]1) ↦ ((2 ·
𝑥) − 1)) ∈
(((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) Cn
II)) |
| 100 | | oveq2 6658 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (2 · 𝑥) = (2 · 𝑦)) |
| 101 | 100 | oveq1d 6665 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((2 · 𝑥) − 1) = ((2 · 𝑦) − 1)) |
| 102 | 96, 56, 97, 96, 99, 101 | cnmpt21 21474 |
. . . . 5
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑦 ∈ ((1 / 2)[,]1), 𝑧 ∈ (0[,]1) ↦ ((2 · 𝑦) − 1)) ∈
((((topGen‘ran (,)) ↾t ((1 / 2)[,]1))
×t II) Cn II)) |
| 103 | 60, 61, 62, 63, 65, 67, 75, 56, 84, 91, 102 | cnmpt2pc 22727 |
. . . 4
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑦 ∈ (0[,]1), 𝑧 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), 0, ((2 · 𝑦) − 1))) ∈ ((II
×t II) Cn II)) |
| 104 | | breq1 4656 |
. . . . . 6
⊢ (𝑦 = 𝑥 → (𝑦 ≤ (1 / 2) ↔ 𝑥 ≤ (1 / 2))) |
| 105 | | oveq2 6658 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → (2 · 𝑦) = (2 · 𝑥)) |
| 106 | 105 | oveq1d 6665 |
. . . . . 6
⊢ (𝑦 = 𝑥 → ((2 · 𝑦) − 1) = ((2 · 𝑥) − 1)) |
| 107 | 104, 106 | ifbieq2d 4111 |
. . . . 5
⊢ (𝑦 = 𝑥 → if(𝑦 ≤ (1 / 2), 0, ((2 · 𝑦) − 1)) = if(𝑥 ≤ (1 / 2), 0, ((2 ·
𝑥) −
1))) |
| 108 | 107 | adantr 481 |
. . . 4
⊢ ((𝑦 = 𝑥 ∧ 𝑧 = 0) → if(𝑦 ≤ (1 / 2), 0, ((2 · 𝑦) − 1)) = if(𝑥 ≤ (1 / 2), 0, ((2 ·
𝑥) −
1))) |
| 109 | 56, 57, 59, 56, 56, 103, 108 | cnmpt12 21470 |
. . 3
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1))) ∈ (II Cn
II)) |
| 110 | | id 22 |
. . . . . . 7
⊢ (𝑥 = 0 → 𝑥 = 0) |
| 111 | 110, 70 | syl6eqbr 4692 |
. . . . . 6
⊢ (𝑥 = 0 → 𝑥 ≤ (1 / 2)) |
| 112 | 111, 43 | syl 17 |
. . . . 5
⊢ (𝑥 = 0 → if(𝑥 ≤ (1 / 2), 0, ((2 ·
𝑥) − 1)) =
0) |
| 113 | | c0ex 10034 |
. . . . 5
⊢ 0 ∈
V |
| 114 | 112, 47, 113 | fvmpt 6282 |
. . . 4
⊢ (0 ∈
(0[,]1) → ((𝑥 ∈
(0[,]1) ↦ if(𝑥 ≤
(1 / 2), 0, ((2 · 𝑥)
− 1)))‘0) = 0) |
| 115 | 8, 114 | mp1i 13 |
. . 3
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)))‘0) =
0) |
| 116 | | 1elunit 12291 |
. . . 4
⊢ 1 ∈
(0[,]1) |
| 117 | 68, 66 | ltnlei 10158 |
. . . . . . . . 9
⊢ ((1 / 2)
< 1 ↔ ¬ 1 ≤ (1 / 2)) |
| 118 | 71, 117 | mpbi 220 |
. . . . . . . 8
⊢ ¬ 1
≤ (1 / 2) |
| 119 | | breq1 4656 |
. . . . . . . 8
⊢ (𝑥 = 1 → (𝑥 ≤ (1 / 2) ↔ 1 ≤ (1 /
2))) |
| 120 | 118, 119 | mtbiri 317 |
. . . . . . 7
⊢ (𝑥 = 1 → ¬ 𝑥 ≤ (1 / 2)) |
| 121 | 120, 36 | syl 17 |
. . . . . 6
⊢ (𝑥 = 1 → if(𝑥 ≤ (1 / 2), 0, ((2 ·
𝑥) − 1)) = ((2
· 𝑥) −
1)) |
| 122 | | oveq2 6658 |
. . . . . . . . 9
⊢ (𝑥 = 1 → (2 · 𝑥) = (2 ·
1)) |
| 123 | | 2t1e2 11176 |
. . . . . . . . 9
⊢ (2
· 1) = 2 |
| 124 | 122, 123 | syl6eq 2672 |
. . . . . . . 8
⊢ (𝑥 = 1 → (2 · 𝑥) = 2) |
| 125 | 124 | oveq1d 6665 |
. . . . . . 7
⊢ (𝑥 = 1 → ((2 · 𝑥) − 1) = (2 −
1)) |
| 126 | | 2m1e1 11135 |
. . . . . . 7
⊢ (2
− 1) = 1 |
| 127 | 125, 126 | syl6eq 2672 |
. . . . . 6
⊢ (𝑥 = 1 → ((2 · 𝑥) − 1) =
1) |
| 128 | 121, 127 | eqtrd 2656 |
. . . . 5
⊢ (𝑥 = 1 → if(𝑥 ≤ (1 / 2), 0, ((2 ·
𝑥) − 1)) =
1) |
| 129 | | 1ex 10035 |
. . . . 5
⊢ 1 ∈
V |
| 130 | 128, 47, 129 | fvmpt 6282 |
. . . 4
⊢ (1 ∈
(0[,]1) → ((𝑥 ∈
(0[,]1) ↦ if(𝑥 ≤
(1 / 2), 0, ((2 · 𝑥)
− 1)))‘1) = 1) |
| 131 | 116, 130 | mp1i 13 |
. . 3
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)))‘1) =
1) |
| 132 | 34, 109, 115, 131 | reparpht 22798 |
. 2
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝐹 ∘ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1))))(
≃ph‘𝐽)𝐹) |
| 133 | 54, 132 | eqbrtrd 4675 |
1
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑃(*𝑝‘𝐽)𝐹)( ≃ph‘𝐽)𝐹) |