MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgss Structured version   Visualization version   GIF version

Theorem itgss 23578
Description: Expand the set of an integral by adding zeroes outside the domain. (Contributed by Mario Carneiro, 11-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
itgss.1 (𝜑𝐴𝐵)
itgss.2 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 = 0)
Assertion
Ref Expression
itgss (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem itgss
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elfzelz 12342 . . . 4 (𝑘 ∈ (0...3) → 𝑘 ∈ ℤ)
2 iffalse 4095 . . . . . . . . . . . . . 14 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = 0)
32ad2antll 765 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℤ) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐴)) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = 0)
4 eldif 3584 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐵𝐴) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
5 itgss.2 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 = 0)
65adantlr 751 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ (𝐵𝐴)) → 𝐶 = 0)
76oveq1d 6665 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ (𝐵𝐴)) → (𝐶 / (i↑𝑘)) = (0 / (i↑𝑘)))
8 ax-icn 9995 . . . . . . . . . . . . . . . . . . . . . 22 i ∈ ℂ
9 ine0 10465 . . . . . . . . . . . . . . . . . . . . . 22 i ≠ 0
10 expclz 12885 . . . . . . . . . . . . . . . . . . . . . 22 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ∈ ℂ)
118, 9, 10mp3an12 1414 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℤ → (i↑𝑘) ∈ ℂ)
12 expne0i 12892 . . . . . . . . . . . . . . . . . . . . . 22 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ≠ 0)
138, 9, 12mp3an12 1414 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℤ → (i↑𝑘) ≠ 0)
1411, 13div0d 10800 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℤ → (0 / (i↑𝑘)) = 0)
1514ad2antlr 763 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ (𝐵𝐴)) → (0 / (i↑𝑘)) = 0)
167, 15eqtrd 2656 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ (𝐵𝐴)) → (𝐶 / (i↑𝑘)) = 0)
1716fveq2d 6195 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ (𝐵𝐴)) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘0))
18 re0 13892 . . . . . . . . . . . . . . . . 17 (ℜ‘0) = 0
1917, 18syl6eq 2672 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ (𝐵𝐴)) → (ℜ‘(𝐶 / (i↑𝑘))) = 0)
2019ifeq1d 4104 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ (𝐵𝐴)) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), 0, 0))
21 ifid 4125 . . . . . . . . . . . . . . 15 if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), 0, 0) = 0
2220, 21syl6eq 2672 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ (𝐵𝐴)) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = 0)
234, 22sylan2br 493 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℤ) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐴)) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = 0)
243, 23eqtr4d 2659 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℤ) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐴)) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
2524expr 643 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥𝐵) → (¬ 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
26 iftrue 4092 . . . . . . . . . . 11 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
2725, 26pm2.61d2 172 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥𝐵) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
28 iftrue 4092 . . . . . . . . . . 11 (𝑥𝐵 → if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
2928adantl 482 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥𝐵) → if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
3027, 29eqtr4d 2659 . . . . . . . . 9 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥𝐵) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))
31 itgss.1 . . . . . . . . . . . . . 14 (𝜑𝐴𝐵)
3231adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℤ) → 𝐴𝐵)
3332sseld 3602 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℤ) → (𝑥𝐴𝑥𝐵))
3433con3dimp 457 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℤ) ∧ ¬ 𝑥𝐵) → ¬ 𝑥𝐴)
3534, 2syl 17 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ ¬ 𝑥𝐵) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = 0)
36 iffalse 4095 . . . . . . . . . . 11 𝑥𝐵 → if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = 0)
3736adantl 482 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ ¬ 𝑥𝐵) → if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = 0)
3835, 37eqtr4d 2659 . . . . . . . . 9 (((𝜑𝑘 ∈ ℤ) ∧ ¬ 𝑥𝐵) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))
3930, 38pm2.61dan 832 . . . . . . . 8 ((𝜑𝑘 ∈ ℤ) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))
40 ifan 4134 . . . . . . . 8 if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)
41 ifan 4134 . . . . . . . 8 if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)
4239, 40, 413eqtr4g 2681 . . . . . . 7 ((𝜑𝑘 ∈ ℤ) → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
4342mpteq2dv 4745 . . . . . 6 ((𝜑𝑘 ∈ ℤ) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
4443fveq2d 6195 . . . . 5 ((𝜑𝑘 ∈ ℤ) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))
4544oveq2d 6666 . . . 4 ((𝜑𝑘 ∈ ℤ) → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) = ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))))
461, 45sylan2 491 . . 3 ((𝜑𝑘 ∈ (0...3)) → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) = ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))))
4746sumeq2dv 14433 . 2 (𝜑 → Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))))
48 eqid 2622 . . 3 (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘)))
4948dfitg 23536 . 2 𝐴𝐶 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))
5048dfitg 23536 . 2 𝐵𝐶 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))
5147, 49, 503eqtr4g 2681 1 (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  cdif 3571  wss 3574  ifcif 4086   class class class wbr 4653  cmpt 4729  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  ici 9938   · cmul 9941  cle 10075   / cdiv 10684  3c3 11071  cz 11377  ...cfz 12326  cexp 12860  cre 13837  Σcsu 14416  2citg2 23385  citg 23387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sum 14417  df-itg 23392
This theorem is referenced by:  itgss2  23579  areacirc  33505
  Copyright terms: Public domain W3C validator