MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bezout Structured version   Visualization version   GIF version

Theorem bezout 15260
Description: Bézout's identity: For any integers 𝐴 and 𝐵, there are integers 𝑥, 𝑦 such that (𝐴 gcd 𝐵) = 𝐴 · 𝑥 + 𝐵 · 𝑦. This is Metamath 100 proof #60. (Contributed by Mario Carneiro, 22-Feb-2014.)
Assertion
Ref Expression
bezout ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem bezout
Dummy variables 𝑡 𝑢 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2626 . . . . . . . 8 (𝑧 = 𝑡 → (𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ 𝑡 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
212rexbidv 3057 . . . . . . 7 (𝑧 = 𝑡 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑡 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
3 oveq2 6658 . . . . . . . . . 10 (𝑥 = 𝑢 → (𝐴 · 𝑥) = (𝐴 · 𝑢))
43oveq1d 6665 . . . . . . . . 9 (𝑥 = 𝑢 → ((𝐴 · 𝑥) + (𝐵 · 𝑦)) = ((𝐴 · 𝑢) + (𝐵 · 𝑦)))
54eqeq2d 2632 . . . . . . . 8 (𝑥 = 𝑢 → (𝑡 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ 𝑡 = ((𝐴 · 𝑢) + (𝐵 · 𝑦))))
6 oveq2 6658 . . . . . . . . . 10 (𝑦 = 𝑣 → (𝐵 · 𝑦) = (𝐵 · 𝑣))
76oveq2d 6666 . . . . . . . . 9 (𝑦 = 𝑣 → ((𝐴 · 𝑢) + (𝐵 · 𝑦)) = ((𝐴 · 𝑢) + (𝐵 · 𝑣)))
87eqeq2d 2632 . . . . . . . 8 (𝑦 = 𝑣 → (𝑡 = ((𝐴 · 𝑢) + (𝐵 · 𝑦)) ↔ 𝑡 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))))
95, 8cbvrex2v 3180 . . . . . . 7 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑡 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑡 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)))
102, 9syl6bb 276 . . . . . 6 (𝑧 = 𝑡 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑡 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))))
1110cbvrabv 3199 . . . . 5 {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))} = {𝑡 ∈ ℕ ∣ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑡 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))}
12 simpll 790 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → 𝐴 ∈ ℤ)
13 simplr 792 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → 𝐵 ∈ ℤ)
14 eqid 2622 . . . . 5 inf({𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))}, ℝ, < ) = inf({𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))}, ℝ, < )
15 simpr 477 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
1611, 12, 13, 14, 15bezoutlem4 15259 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))})
17 eqeq1 2626 . . . . . . 7 (𝑧 = (𝐴 gcd 𝐵) → (𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
18172rexbidv 3057 . . . . . 6 (𝑧 = (𝐴 gcd 𝐵) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
1918elrab 3363 . . . . 5 ((𝐴 gcd 𝐵) ∈ {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))} ↔ ((𝐴 gcd 𝐵) ∈ ℕ ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
2019simprbi 480 . . . 4 ((𝐴 gcd 𝐵) ∈ {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))} → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
2116, 20syl 17 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
2221ex 450 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (¬ (𝐴 = 0 ∧ 𝐵 = 0) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
23 0z 11388 . . . 4 0 ∈ ℤ
24 00id 10211 . . . . 5 (0 + 0) = 0
25 0cn 10032 . . . . . . 7 0 ∈ ℂ
2625mul01i 10226 . . . . . 6 (0 · 0) = 0
2726, 26oveq12i 6662 . . . . 5 ((0 · 0) + (0 · 0)) = (0 + 0)
28 gcd0val 15219 . . . . 5 (0 gcd 0) = 0
2924, 27, 283eqtr4ri 2655 . . . 4 (0 gcd 0) = ((0 · 0) + (0 · 0))
30 oveq2 6658 . . . . . . 7 (𝑥 = 0 → (0 · 𝑥) = (0 · 0))
3130oveq1d 6665 . . . . . 6 (𝑥 = 0 → ((0 · 𝑥) + (0 · 𝑦)) = ((0 · 0) + (0 · 𝑦)))
3231eqeq2d 2632 . . . . 5 (𝑥 = 0 → ((0 gcd 0) = ((0 · 𝑥) + (0 · 𝑦)) ↔ (0 gcd 0) = ((0 · 0) + (0 · 𝑦))))
33 oveq2 6658 . . . . . . 7 (𝑦 = 0 → (0 · 𝑦) = (0 · 0))
3433oveq2d 6666 . . . . . 6 (𝑦 = 0 → ((0 · 0) + (0 · 𝑦)) = ((0 · 0) + (0 · 0)))
3534eqeq2d 2632 . . . . 5 (𝑦 = 0 → ((0 gcd 0) = ((0 · 0) + (0 · 𝑦)) ↔ (0 gcd 0) = ((0 · 0) + (0 · 0))))
3632, 35rspc2ev 3324 . . . 4 ((0 ∈ ℤ ∧ 0 ∈ ℤ ∧ (0 gcd 0) = ((0 · 0) + (0 · 0))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (0 gcd 0) = ((0 · 𝑥) + (0 · 𝑦)))
3723, 23, 29, 36mp3an 1424 . . 3 𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (0 gcd 0) = ((0 · 𝑥) + (0 · 𝑦))
38 oveq12 6659 . . . . 5 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴 gcd 𝐵) = (0 gcd 0))
39 oveq1 6657 . . . . . 6 (𝐴 = 0 → (𝐴 · 𝑥) = (0 · 𝑥))
40 oveq1 6657 . . . . . 6 (𝐵 = 0 → (𝐵 · 𝑦) = (0 · 𝑦))
4139, 40oveqan12d 6669 . . . . 5 ((𝐴 = 0 ∧ 𝐵 = 0) → ((𝐴 · 𝑥) + (𝐵 · 𝑦)) = ((0 · 𝑥) + (0 · 𝑦)))
4238, 41eqeq12d 2637 . . . 4 ((𝐴 = 0 ∧ 𝐵 = 0) → ((𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ (0 gcd 0) = ((0 · 𝑥) + (0 · 𝑦))))
43422rexbidv 3057 . . 3 ((𝐴 = 0 ∧ 𝐵 = 0) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (0 gcd 0) = ((0 · 𝑥) + (0 · 𝑦))))
4437, 43mpbiri 248 . 2 ((𝐴 = 0 ∧ 𝐵 = 0) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
4522, 44pm2.61d2 172 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  wrex 2913  {crab 2916  (class class class)co 6650  infcinf 8347  cr 9935  0cc0 9936   + caddc 9939   · cmul 9941   < clt 10074  cn 11020  cz 11377   gcd cgcd 15216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217
This theorem is referenced by:  dvdsgcd  15261  dvdsmulgcd  15274  lcmgcdlem  15319  divgcdcoprm0  15379  odbezout  17975  ablfacrp  18465  pgpfac1lem3  18476  znunit  19912  2sqb  25157  ostth3  25327
  Copyright terms: Public domain W3C validator