Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbgoldbaltlem1 Structured version   Visualization version   GIF version

Theorem sbgoldbaltlem1 41667
Description: Lemma 1 for sbgoldbalt 41669: If an even number greater than 4 is the sum of two primes, one of the prime summands must be odd, i.e. not 2. (Contributed by AV, 22-Jul-2020.)
Assertion
Ref Expression
sbgoldbaltlem1 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((𝑁 ∈ Even ∧ 4 < 𝑁𝑁 = (𝑃 + 𝑄)) → 𝑄 ∈ Odd ))

Proof of Theorem sbgoldbaltlem1
StepHypRef Expression
1 prmnn 15388 . . . . . 6 (𝑄 ∈ ℙ → 𝑄 ∈ ℕ)
2 nneoALTV 41583 . . . . . . 7 (𝑄 ∈ ℕ → (𝑄 ∈ Even ↔ ¬ 𝑄 ∈ Odd ))
32bicomd 213 . . . . . 6 (𝑄 ∈ ℕ → (¬ 𝑄 ∈ Odd ↔ 𝑄 ∈ Even ))
41, 3syl 17 . . . . 5 (𝑄 ∈ ℙ → (¬ 𝑄 ∈ Odd ↔ 𝑄 ∈ Even ))
5 evenprm2 41623 . . . . 5 (𝑄 ∈ ℙ → (𝑄 ∈ Even ↔ 𝑄 = 2))
64, 5bitrd 268 . . . 4 (𝑄 ∈ ℙ → (¬ 𝑄 ∈ Odd ↔ 𝑄 = 2))
76adantl 482 . . 3 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (¬ 𝑄 ∈ Odd ↔ 𝑄 = 2))
8 oveq2 6658 . . . . . . . . 9 (𝑄 = 2 → (𝑃 + 𝑄) = (𝑃 + 2))
98eqeq2d 2632 . . . . . . . 8 (𝑄 = 2 → (𝑁 = (𝑃 + 𝑄) ↔ 𝑁 = (𝑃 + 2)))
109adantl 482 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑄 = 2) → (𝑁 = (𝑃 + 𝑄) ↔ 𝑁 = (𝑃 + 2)))
11103anbi3d 1405 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑄 = 2) → ((𝑁 ∈ Even ∧ 4 < 𝑁𝑁 = (𝑃 + 𝑄)) ↔ (𝑁 ∈ Even ∧ 4 < 𝑁𝑁 = (𝑃 + 2))))
12 breq2 4657 . . . . . . . . . . . . 13 (𝑁 = (𝑃 + 2) → (4 < 𝑁 ↔ 4 < (𝑃 + 2)))
13 eleq1 2689 . . . . . . . . . . . . 13 (𝑁 = (𝑃 + 2) → (𝑁 ∈ Even ↔ (𝑃 + 2) ∈ Even ))
1412, 13anbi12d 747 . . . . . . . . . . . 12 (𝑁 = (𝑃 + 2) → ((4 < 𝑁𝑁 ∈ Even ) ↔ (4 < (𝑃 + 2) ∧ (𝑃 + 2) ∈ Even )))
15 prmz 15389 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
16 2evenALTV 41603 . . . . . . . . . . . . . . . 16 2 ∈ Even
17 evensumeven 41616 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℤ ∧ 2 ∈ Even ) → (𝑃 ∈ Even ↔ (𝑃 + 2) ∈ Even ))
1815, 16, 17sylancl 694 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → (𝑃 ∈ Even ↔ (𝑃 + 2) ∈ Even ))
19 evenprm2 41623 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℙ → (𝑃 ∈ Even ↔ 𝑃 = 2))
20 oveq1 6657 . . . . . . . . . . . . . . . . . . 19 (𝑃 = 2 → (𝑃 + 2) = (2 + 2))
21 2p2e4 11144 . . . . . . . . . . . . . . . . . . 19 (2 + 2) = 4
2220, 21syl6eq 2672 . . . . . . . . . . . . . . . . . 18 (𝑃 = 2 → (𝑃 + 2) = 4)
2322breq2d 4665 . . . . . . . . . . . . . . . . 17 (𝑃 = 2 → (4 < (𝑃 + 2) ↔ 4 < 4))
24 4re 11097 . . . . . . . . . . . . . . . . . . 19 4 ∈ ℝ
2524ltnri 10146 . . . . . . . . . . . . . . . . . 18 ¬ 4 < 4
2625pm2.21i 116 . . . . . . . . . . . . . . . . 17 (4 < 4 → 𝑄 ∈ Odd )
2723, 26syl6bi 243 . . . . . . . . . . . . . . . 16 (𝑃 = 2 → (4 < (𝑃 + 2) → 𝑄 ∈ Odd ))
2819, 27syl6bi 243 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → (𝑃 ∈ Even → (4 < (𝑃 + 2) → 𝑄 ∈ Odd )))
2918, 28sylbird 250 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → ((𝑃 + 2) ∈ Even → (4 < (𝑃 + 2) → 𝑄 ∈ Odd )))
3029com13 88 . . . . . . . . . . . . 13 (4 < (𝑃 + 2) → ((𝑃 + 2) ∈ Even → (𝑃 ∈ ℙ → 𝑄 ∈ Odd )))
3130imp 445 . . . . . . . . . . . 12 ((4 < (𝑃 + 2) ∧ (𝑃 + 2) ∈ Even ) → (𝑃 ∈ ℙ → 𝑄 ∈ Odd ))
3214, 31syl6bi 243 . . . . . . . . . . 11 (𝑁 = (𝑃 + 2) → ((4 < 𝑁𝑁 ∈ Even ) → (𝑃 ∈ ℙ → 𝑄 ∈ Odd )))
3332expd 452 . . . . . . . . . 10 (𝑁 = (𝑃 + 2) → (4 < 𝑁 → (𝑁 ∈ Even → (𝑃 ∈ ℙ → 𝑄 ∈ Odd ))))
3433com13 88 . . . . . . . . 9 (𝑁 ∈ Even → (4 < 𝑁 → (𝑁 = (𝑃 + 2) → (𝑃 ∈ ℙ → 𝑄 ∈ Odd ))))
35343imp 1256 . . . . . . . 8 ((𝑁 ∈ Even ∧ 4 < 𝑁𝑁 = (𝑃 + 2)) → (𝑃 ∈ ℙ → 𝑄 ∈ Odd ))
3635com12 32 . . . . . . 7 (𝑃 ∈ ℙ → ((𝑁 ∈ Even ∧ 4 < 𝑁𝑁 = (𝑃 + 2)) → 𝑄 ∈ Odd ))
3736adantr 481 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑄 = 2) → ((𝑁 ∈ Even ∧ 4 < 𝑁𝑁 = (𝑃 + 2)) → 𝑄 ∈ Odd ))
3811, 37sylbid 230 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑄 = 2) → ((𝑁 ∈ Even ∧ 4 < 𝑁𝑁 = (𝑃 + 𝑄)) → 𝑄 ∈ Odd ))
3938ex 450 . . . 4 (𝑃 ∈ ℙ → (𝑄 = 2 → ((𝑁 ∈ Even ∧ 4 < 𝑁𝑁 = (𝑃 + 𝑄)) → 𝑄 ∈ Odd )))
4039adantr 481 . . 3 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑄 = 2 → ((𝑁 ∈ Even ∧ 4 < 𝑁𝑁 = (𝑃 + 𝑄)) → 𝑄 ∈ Odd )))
417, 40sylbid 230 . 2 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (¬ 𝑄 ∈ Odd → ((𝑁 ∈ Even ∧ 4 < 𝑁𝑁 = (𝑃 + 𝑄)) → 𝑄 ∈ Odd )))
42 ax-1 6 . 2 (𝑄 ∈ Odd → ((𝑁 ∈ Even ∧ 4 < 𝑁𝑁 = (𝑃 + 𝑄)) → 𝑄 ∈ Odd ))
4341, 42pm2.61d2 172 1 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((𝑁 ∈ Even ∧ 4 < 𝑁𝑁 = (𝑃 + 𝑄)) → 𝑄 ∈ Odd ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990   class class class wbr 4653  (class class class)co 6650   + caddc 9939   < clt 10074  cn 11020  2c2 11070  4c4 11072  cz 11377  cprime 15385   Even ceven 41537   Odd codd 41538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-prm 15386  df-even 41539  df-odd 41540
This theorem is referenced by:  sbgoldbaltlem2  41668
  Copyright terms: Public domain W3C validator