MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcmplem4 Structured version   Visualization version   GIF version

Theorem ptcmplem4 21859
Description: Lemma for ptcmp 21862. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
ptcmp.1 𝑆 = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
ptcmp.2 𝑋 = X𝑛𝐴 (𝐹𝑛)
ptcmp.3 (𝜑𝐴𝑉)
ptcmp.4 (𝜑𝐹:𝐴⟶Comp)
ptcmp.5 (𝜑𝑋 ∈ (UFL ∩ dom card))
ptcmplem2.5 (𝜑𝑈 ⊆ ran 𝑆)
ptcmplem2.6 (𝜑𝑋 = 𝑈)
ptcmplem2.7 (𝜑 → ¬ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = 𝑧)
ptcmplem3.8 𝐾 = {𝑢 ∈ (𝐹𝑘) ∣ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝑈}
Assertion
Ref Expression
ptcmplem4 ¬ 𝜑
Distinct variable groups:   𝑘,𝑛,𝑢,𝑤,𝑧,𝐴   𝑢,𝐾   𝑆,𝑘,𝑛,𝑢,𝑧   𝜑,𝑘,𝑛,𝑢   𝑈,𝑘,𝑢,𝑧   𝑘,𝑉,𝑛,𝑢,𝑤,𝑧   𝑘,𝐹,𝑛,𝑢,𝑤,𝑧   𝑘,𝑋,𝑛,𝑢,𝑤,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤)   𝑆(𝑤)   𝑈(𝑤,𝑛)   𝐾(𝑧,𝑤,𝑘,𝑛)

Proof of Theorem ptcmplem4
Dummy variables 𝑓 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptcmp.1 . . 3 𝑆 = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
2 ptcmp.2 . . 3 𝑋 = X𝑛𝐴 (𝐹𝑛)
3 ptcmp.3 . . 3 (𝜑𝐴𝑉)
4 ptcmp.4 . . 3 (𝜑𝐹:𝐴⟶Comp)
5 ptcmp.5 . . 3 (𝜑𝑋 ∈ (UFL ∩ dom card))
6 ptcmplem2.5 . . 3 (𝜑𝑈 ⊆ ran 𝑆)
7 ptcmplem2.6 . . 3 (𝜑𝑋 = 𝑈)
8 ptcmplem2.7 . . 3 (𝜑 → ¬ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = 𝑧)
9 ptcmplem3.8 . . 3 𝐾 = {𝑢 ∈ (𝐹𝑘) ∣ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝑈}
101, 2, 3, 4, 5, 6, 7, 8, 9ptcmplem3 21858 . 2 (𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)))
11 simprl 794 . . . . . . . . 9 ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → 𝑓 Fn 𝐴)
12 eldifi 3732 . . . . . . . . . . . 12 ((𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾) → (𝑓𝑘) ∈ (𝐹𝑘))
1312ralimi 2952 . . . . . . . . . . 11 (∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾) → ∀𝑘𝐴 (𝑓𝑘) ∈ (𝐹𝑘))
14 fveq2 6191 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (𝑓𝑛) = (𝑓𝑘))
15 fveq2 6191 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
1615unieqd 4446 . . . . . . . . . . . . 13 (𝑛 = 𝑘 (𝐹𝑛) = (𝐹𝑘))
1714, 16eleq12d 2695 . . . . . . . . . . . 12 (𝑛 = 𝑘 → ((𝑓𝑛) ∈ (𝐹𝑛) ↔ (𝑓𝑘) ∈ (𝐹𝑘)))
1817cbvralv 3171 . . . . . . . . . . 11 (∀𝑛𝐴 (𝑓𝑛) ∈ (𝐹𝑛) ↔ ∀𝑘𝐴 (𝑓𝑘) ∈ (𝐹𝑘))
1913, 18sylibr 224 . . . . . . . . . 10 (∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾) → ∀𝑛𝐴 (𝑓𝑛) ∈ (𝐹𝑛))
2019ad2antll 765 . . . . . . . . 9 ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → ∀𝑛𝐴 (𝑓𝑛) ∈ (𝐹𝑛))
21 vex 3203 . . . . . . . . . 10 𝑓 ∈ V
2221elixp 7915 . . . . . . . . 9 (𝑓X𝑛𝐴 (𝐹𝑛) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑛𝐴 (𝑓𝑛) ∈ (𝐹𝑛)))
2311, 20, 22sylanbrc 698 . . . . . . . 8 ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → 𝑓X𝑛𝐴 (𝐹𝑛))
2423, 2syl6eleqr 2712 . . . . . . 7 ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → 𝑓𝑋)
257adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → 𝑋 = 𝑈)
2624, 25eleqtrd 2703 . . . . . 6 ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → 𝑓 𝑈)
27 eluni2 4440 . . . . . 6 (𝑓 𝑈 ↔ ∃𝑣𝑈 𝑓𝑣)
2826, 27sylib 208 . . . . 5 ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → ∃𝑣𝑈 𝑓𝑣)
29 simplrr 801 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ (𝑘𝐴 ∧ (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → 𝑓𝑣)
3029adantr 481 . . . . . . . . . . . . . . . 16 (((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ (𝑘𝐴 ∧ (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑢 ∈ (𝐹𝑘) ∧ 𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) → 𝑓𝑣)
31 simprr 796 . . . . . . . . . . . . . . . 16 (((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ (𝑘𝐴 ∧ (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑢 ∈ (𝐹𝑘) ∧ 𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) → 𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
3230, 31eleqtrd 2703 . . . . . . . . . . . . . . 15 (((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ (𝑘𝐴 ∧ (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑢 ∈ (𝐹𝑘) ∧ 𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) → 𝑓 ∈ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
33 fveq1 6190 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑓 → (𝑤𝑘) = (𝑓𝑘))
3433eleq1d 2686 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑓 → ((𝑤𝑘) ∈ 𝑢 ↔ (𝑓𝑘) ∈ 𝑢))
35 eqid 2622 . . . . . . . . . . . . . . . . . 18 (𝑤𝑋 ↦ (𝑤𝑘)) = (𝑤𝑋 ↦ (𝑤𝑘))
3635mptpreima 5628 . . . . . . . . . . . . . . . . 17 ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) = {𝑤𝑋 ∣ (𝑤𝑘) ∈ 𝑢}
3734, 36elrab2 3366 . . . . . . . . . . . . . . . 16 (𝑓 ∈ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ↔ (𝑓𝑋 ∧ (𝑓𝑘) ∈ 𝑢))
3837simprbi 480 . . . . . . . . . . . . . . 15 (𝑓 ∈ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) → (𝑓𝑘) ∈ 𝑢)
3932, 38syl 17 . . . . . . . . . . . . . 14 (((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ (𝑘𝐴 ∧ (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑢 ∈ (𝐹𝑘) ∧ 𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) → (𝑓𝑘) ∈ 𝑢)
40 simprl 794 . . . . . . . . . . . . . . . 16 (((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ (𝑘𝐴 ∧ (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑢 ∈ (𝐹𝑘) ∧ 𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) → 𝑢 ∈ (𝐹𝑘))
41 simplrl 800 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ (𝑘𝐴 ∧ (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → 𝑣𝑈)
4241adantr 481 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ (𝑘𝐴 ∧ (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑢 ∈ (𝐹𝑘) ∧ 𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) → 𝑣𝑈)
4331, 42eqeltrrd 2702 . . . . . . . . . . . . . . . 16 (((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ (𝑘𝐴 ∧ (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑢 ∈ (𝐹𝑘) ∧ 𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) → ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝑈)
44 rabid 3116 . . . . . . . . . . . . . . . 16 (𝑢 ∈ {𝑢 ∈ (𝐹𝑘) ∣ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝑈} ↔ (𝑢 ∈ (𝐹𝑘) ∧ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝑈))
4540, 43, 44sylanbrc 698 . . . . . . . . . . . . . . 15 (((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ (𝑘𝐴 ∧ (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑢 ∈ (𝐹𝑘) ∧ 𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) → 𝑢 ∈ {𝑢 ∈ (𝐹𝑘) ∣ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝑈})
4645, 9syl6eleqr 2712 . . . . . . . . . . . . . 14 (((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ (𝑘𝐴 ∧ (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑢 ∈ (𝐹𝑘) ∧ 𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) → 𝑢𝐾)
47 elunii 4441 . . . . . . . . . . . . . 14 (((𝑓𝑘) ∈ 𝑢𝑢𝐾) → (𝑓𝑘) ∈ 𝐾)
4839, 46, 47syl2anc 693 . . . . . . . . . . . . 13 (((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ (𝑘𝐴 ∧ (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑢 ∈ (𝐹𝑘) ∧ 𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) → (𝑓𝑘) ∈ 𝐾)
4948rexlimdvaa 3032 . . . . . . . . . . . 12 ((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ (𝑘𝐴 ∧ (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → (∃𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) → (𝑓𝑘) ∈ 𝐾))
5049expr 643 . . . . . . . . . . 11 ((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ 𝑘𝐴) → ((𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾) → (∃𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) → (𝑓𝑘) ∈ 𝐾)))
5150ralimdva 2962 . . . . . . . . . 10 (((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) → (∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾) → ∀𝑘𝐴 (∃𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) → (𝑓𝑘) ∈ 𝐾)))
5251ex 450 . . . . . . . . 9 ((𝜑𝑓 Fn 𝐴) → ((𝑣𝑈𝑓𝑣) → (∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾) → ∀𝑘𝐴 (∃𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) → (𝑓𝑘) ∈ 𝐾))))
5352com23 86 . . . . . . . 8 ((𝜑𝑓 Fn 𝐴) → (∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾) → ((𝑣𝑈𝑓𝑣) → ∀𝑘𝐴 (∃𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) → (𝑓𝑘) ∈ 𝐾))))
5453impr 649 . . . . . . 7 ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → ((𝑣𝑈𝑓𝑣) → ∀𝑘𝐴 (∃𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) → (𝑓𝑘) ∈ 𝐾)))
5554imp 445 . . . . . 6 (((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑣𝑈𝑓𝑣)) → ∀𝑘𝐴 (∃𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) → (𝑓𝑘) ∈ 𝐾))
566adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → 𝑈 ⊆ ran 𝑆)
5756sselda 3603 . . . . . . . . 9 (((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ 𝑣𝑈) → 𝑣 ∈ ran 𝑆)
5857adantrr 753 . . . . . . . 8 (((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑣𝑈𝑓𝑣)) → 𝑣 ∈ ran 𝑆)
591rnmpt2 6770 . . . . . . . 8 ran 𝑆 = {𝑣 ∣ ∃𝑘𝐴𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)}
6058, 59syl6eleq 2711 . . . . . . 7 (((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑣𝑈𝑓𝑣)) → 𝑣 ∈ {𝑣 ∣ ∃𝑘𝐴𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)})
61 abid 2610 . . . . . . 7 (𝑣 ∈ {𝑣 ∣ ∃𝑘𝐴𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)} ↔ ∃𝑘𝐴𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
6260, 61sylib 208 . . . . . 6 (((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑣𝑈𝑓𝑣)) → ∃𝑘𝐴𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
63 rexim 3008 . . . . . 6 (∀𝑘𝐴 (∃𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) → (𝑓𝑘) ∈ 𝐾) → (∃𝑘𝐴𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) → ∃𝑘𝐴 (𝑓𝑘) ∈ 𝐾))
6455, 62, 63sylc 65 . . . . 5 (((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑣𝑈𝑓𝑣)) → ∃𝑘𝐴 (𝑓𝑘) ∈ 𝐾)
6528, 64rexlimddv 3035 . . . 4 ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → ∃𝑘𝐴 (𝑓𝑘) ∈ 𝐾)
66 eldifn 3733 . . . . . . 7 ((𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾) → ¬ (𝑓𝑘) ∈ 𝐾)
6766ralimi 2952 . . . . . 6 (∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾) → ∀𝑘𝐴 ¬ (𝑓𝑘) ∈ 𝐾)
6867ad2antll 765 . . . . 5 ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → ∀𝑘𝐴 ¬ (𝑓𝑘) ∈ 𝐾)
69 ralnex 2992 . . . . 5 (∀𝑘𝐴 ¬ (𝑓𝑘) ∈ 𝐾 ↔ ¬ ∃𝑘𝐴 (𝑓𝑘) ∈ 𝐾)
7068, 69sylib 208 . . . 4 ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → ¬ ∃𝑘𝐴 (𝑓𝑘) ∈ 𝐾)
7165, 70pm2.65da 600 . . 3 (𝜑 → ¬ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)))
7271nexdv 1864 . 2 (𝜑 → ¬ ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)))
7310, 72pm2.65i 185 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wex 1704  wcel 1990  {cab 2608  wral 2912  wrex 2913  {crab 2916  cdif 3571  cin 3573  wss 3574  𝒫 cpw 4158   cuni 4436  cmpt 4729  ccnv 5113  dom cdm 5114  ran crn 5115  cima 5117   Fn wfn 5883  wf 5884  cfv 5888  cmpt2 6652  Xcixp 7908  Fincfn 7955  cardccrd 8761  Compccmp 21189  UFLcufl 21704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-fin 7959  df-wdom 8464  df-card 8765  df-acn 8768  df-cmp 21190
This theorem is referenced by:  ptcmplem5  21860
  Copyright terms: Public domain W3C validator