MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1sdom Structured version   Visualization version   Unicode version

Theorem r1sdom 8637
Description: Each stage in the cumulative hierarchy is strictly larger than the last. (Contributed by Mario Carneiro, 19-Apr-2013.)
Assertion
Ref Expression
r1sdom  |-  ( ( A  e.  On  /\  B  e.  A )  ->  ( R1 `  B
)  ~<  ( R1 `  A ) )

Proof of Theorem r1sdom
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2690 . . . 4  |-  ( x  =  (/)  ->  ( B  e.  x  <->  B  e.  (/) ) )
2 fveq2 6191 . . . . 5  |-  ( x  =  (/)  ->  ( R1
`  x )  =  ( R1 `  (/) ) )
32breq2d 4665 . . . 4  |-  ( x  =  (/)  ->  ( ( R1 `  B ) 
~<  ( R1 `  x
)  <->  ( R1 `  B )  ~<  ( R1 `  (/) ) ) )
41, 3imbi12d 334 . . 3  |-  ( x  =  (/)  ->  ( ( B  e.  x  -> 
( R1 `  B
)  ~<  ( R1 `  x ) )  <->  ( B  e.  (/)  ->  ( R1 `  B )  ~<  ( R1 `  (/) ) ) ) )
5 eleq2 2690 . . . 4  |-  ( x  =  y  ->  ( B  e.  x  <->  B  e.  y ) )
6 fveq2 6191 . . . . 5  |-  ( x  =  y  ->  ( R1 `  x )  =  ( R1 `  y
) )
76breq2d 4665 . . . 4  |-  ( x  =  y  ->  (
( R1 `  B
)  ~<  ( R1 `  x )  <->  ( R1 `  B )  ~<  ( R1 `  y ) ) )
85, 7imbi12d 334 . . 3  |-  ( x  =  y  ->  (
( B  e.  x  ->  ( R1 `  B
)  ~<  ( R1 `  x ) )  <->  ( B  e.  y  ->  ( R1
`  B )  ~< 
( R1 `  y
) ) ) )
9 eleq2 2690 . . . 4  |-  ( x  =  suc  y  -> 
( B  e.  x  <->  B  e.  suc  y ) )
10 fveq2 6191 . . . . 5  |-  ( x  =  suc  y  -> 
( R1 `  x
)  =  ( R1
`  suc  y )
)
1110breq2d 4665 . . . 4  |-  ( x  =  suc  y  -> 
( ( R1 `  B )  ~<  ( R1 `  x )  <->  ( R1 `  B )  ~<  ( R1 `  suc  y ) ) )
129, 11imbi12d 334 . . 3  |-  ( x  =  suc  y  -> 
( ( B  e.  x  ->  ( R1 `  B )  ~<  ( R1 `  x ) )  <-> 
( B  e.  suc  y  ->  ( R1 `  B )  ~<  ( R1 `  suc  y ) ) ) )
13 eleq2 2690 . . . 4  |-  ( x  =  A  ->  ( B  e.  x  <->  B  e.  A ) )
14 fveq2 6191 . . . . 5  |-  ( x  =  A  ->  ( R1 `  x )  =  ( R1 `  A
) )
1514breq2d 4665 . . . 4  |-  ( x  =  A  ->  (
( R1 `  B
)  ~<  ( R1 `  x )  <->  ( R1 `  B )  ~<  ( R1 `  A ) ) )
1613, 15imbi12d 334 . . 3  |-  ( x  =  A  ->  (
( B  e.  x  ->  ( R1 `  B
)  ~<  ( R1 `  x ) )  <->  ( B  e.  A  ->  ( R1
`  B )  ~< 
( R1 `  A
) ) ) )
17 noel 3919 . . . 4  |-  -.  B  e.  (/)
1817pm2.21i 116 . . 3  |-  ( B  e.  (/)  ->  ( R1 `  B )  ~<  ( R1 `  (/) ) )
19 elsuci 5791 . . . . 5  |-  ( B  e.  suc  y  -> 
( B  e.  y  \/  B  =  y ) )
20 sdomtr 8098 . . . . . . . . 9  |-  ( ( ( R1 `  B
)  ~<  ( R1 `  y )  /\  ( R1 `  y )  ~< 
( R1 `  suc  y ) )  -> 
( R1 `  B
)  ~<  ( R1 `  suc  y ) )
2120expcom 451 . . . . . . . 8  |-  ( ( R1 `  y ) 
~<  ( R1 `  suc  y )  ->  (
( R1 `  B
)  ~<  ( R1 `  y )  ->  ( R1 `  B )  ~< 
( R1 `  suc  y ) ) )
22 fvex 6201 . . . . . . . . . 10  |-  ( R1
`  y )  e. 
_V
2322canth2 8113 . . . . . . . . 9  |-  ( R1
`  y )  ~<  ~P ( R1 `  y
)
24 r1suc 8633 . . . . . . . . 9  |-  ( y  e.  On  ->  ( R1 `  suc  y )  =  ~P ( R1
`  y ) )
2523, 24syl5breqr 4691 . . . . . . . 8  |-  ( y  e.  On  ->  ( R1 `  y )  ~< 
( R1 `  suc  y ) )
2621, 25syl11 33 . . . . . . 7  |-  ( ( R1 `  B ) 
~<  ( R1 `  y
)  ->  ( y  e.  On  ->  ( R1 `  B )  ~<  ( R1 `  suc  y ) ) )
2726imim2i 16 . . . . . 6  |-  ( ( B  e.  y  -> 
( R1 `  B
)  ~<  ( R1 `  y ) )  -> 
( B  e.  y  ->  ( y  e.  On  ->  ( R1 `  B )  ~<  ( R1 `  suc  y ) ) ) )
28 fveq2 6191 . . . . . . . . 9  |-  ( B  =  y  ->  ( R1 `  B )  =  ( R1 `  y
) )
2928breq1d 4663 . . . . . . . 8  |-  ( B  =  y  ->  (
( R1 `  B
)  ~<  ( R1 `  suc  y )  <->  ( R1 `  y )  ~<  ( R1 `  suc  y ) ) )
3025, 29syl5ibr 236 . . . . . . 7  |-  ( B  =  y  ->  (
y  e.  On  ->  ( R1 `  B ) 
~<  ( R1 `  suc  y ) ) )
3130a1i 11 . . . . . 6  |-  ( ( B  e.  y  -> 
( R1 `  B
)  ~<  ( R1 `  y ) )  -> 
( B  =  y  ->  ( y  e.  On  ->  ( R1 `  B )  ~<  ( R1 `  suc  y ) ) ) )
3227, 31jaod 395 . . . . 5  |-  ( ( B  e.  y  -> 
( R1 `  B
)  ~<  ( R1 `  y ) )  -> 
( ( B  e.  y  \/  B  =  y )  ->  (
y  e.  On  ->  ( R1 `  B ) 
~<  ( R1 `  suc  y ) ) ) )
3319, 32syl5 34 . . . 4  |-  ( ( B  e.  y  -> 
( R1 `  B
)  ~<  ( R1 `  y ) )  -> 
( B  e.  suc  y  ->  ( y  e.  On  ->  ( R1 `  B )  ~<  ( R1 `  suc  y ) ) ) )
3433com3r 87 . . 3  |-  ( y  e.  On  ->  (
( B  e.  y  ->  ( R1 `  B )  ~<  ( R1 `  y ) )  ->  ( B  e. 
suc  y  ->  ( R1 `  B )  ~< 
( R1 `  suc  y ) ) ) )
35 limuni 5785 . . . . . . 7  |-  ( Lim  x  ->  x  =  U. x )
3635eleq2d 2687 . . . . . 6  |-  ( Lim  x  ->  ( B  e.  x  <->  B  e.  U. x
) )
37 eluni2 4440 . . . . . 6  |-  ( B  e.  U. x  <->  E. y  e.  x  B  e.  y )
3836, 37syl6bb 276 . . . . 5  |-  ( Lim  x  ->  ( B  e.  x  <->  E. y  e.  x  B  e.  y )
)
39 r19.29 3072 . . . . . . 7  |-  ( ( A. y  e.  x  ( B  e.  y  ->  ( R1 `  B
)  ~<  ( R1 `  y ) )  /\  E. y  e.  x  B  e.  y )  ->  E. y  e.  x  ( ( B  e.  y  ->  ( R1 `  B )  ~<  ( R1 `  y ) )  /\  B  e.  y ) )
40 fvex 6201 . . . . . . . . . . 11  |-  ( R1
`  x )  e. 
_V
4140a1i 11 . . . . . . . . . 10  |-  ( Lim  x  ->  ( R1 `  x )  e.  _V )
42 ssiun2 4563 . . . . . . . . . . 11  |-  ( y  e.  x  ->  ( R1 `  y )  C_  U_ y  e.  x  ( R1 `  y ) )
43 vex 3203 . . . . . . . . . . . . 13  |-  x  e. 
_V
44 r1lim 8635 . . . . . . . . . . . . 13  |-  ( ( x  e.  _V  /\  Lim  x )  ->  ( R1 `  x )  = 
U_ y  e.  x  ( R1 `  y ) )
4543, 44mpan 706 . . . . . . . . . . . 12  |-  ( Lim  x  ->  ( R1 `  x )  =  U_ y  e.  x  ( R1 `  y ) )
4645sseq2d 3633 . . . . . . . . . . 11  |-  ( Lim  x  ->  ( ( R1 `  y )  C_  ( R1 `  x )  <-> 
( R1 `  y
)  C_  U_ y  e.  x  ( R1 `  y ) ) )
4742, 46syl5ibr 236 . . . . . . . . . 10  |-  ( Lim  x  ->  ( y  e.  x  ->  ( R1
`  y )  C_  ( R1 `  x ) ) )
48 ssdomg 8001 . . . . . . . . . 10  |-  ( ( R1 `  x )  e.  _V  ->  (
( R1 `  y
)  C_  ( R1 `  x )  ->  ( R1 `  y )  ~<_  ( R1 `  x ) ) )
4941, 47, 48sylsyld 61 . . . . . . . . 9  |-  ( Lim  x  ->  ( y  e.  x  ->  ( R1
`  y )  ~<_  ( R1 `  x ) ) )
50 id 22 . . . . . . . . . . 11  |-  ( ( B  e.  y  -> 
( R1 `  B
)  ~<  ( R1 `  y ) )  -> 
( B  e.  y  ->  ( R1 `  B )  ~<  ( R1 `  y ) ) )
5150imp 445 . . . . . . . . . 10  |-  ( ( ( B  e.  y  ->  ( R1 `  B )  ~<  ( R1 `  y ) )  /\  B  e.  y )  ->  ( R1 `  B )  ~<  ( R1 `  y ) )
52 sdomdomtr 8093 . . . . . . . . . . 11  |-  ( ( ( R1 `  B
)  ~<  ( R1 `  y )  /\  ( R1 `  y )  ~<_  ( R1 `  x ) )  ->  ( R1 `  B )  ~<  ( R1 `  x ) )
5352expcom 451 . . . . . . . . . 10  |-  ( ( R1 `  y )  ~<_  ( R1 `  x
)  ->  ( ( R1 `  B )  ~< 
( R1 `  y
)  ->  ( R1 `  B )  ~<  ( R1 `  x ) ) )
5451, 53syl5 34 . . . . . . . . 9  |-  ( ( R1 `  y )  ~<_  ( R1 `  x
)  ->  ( (
( B  e.  y  ->  ( R1 `  B )  ~<  ( R1 `  y ) )  /\  B  e.  y )  ->  ( R1 `  B )  ~<  ( R1 `  x ) ) )
5549, 54syl6 35 . . . . . . . 8  |-  ( Lim  x  ->  ( y  e.  x  ->  ( ( ( B  e.  y  ->  ( R1 `  B )  ~<  ( R1 `  y ) )  /\  B  e.  y )  ->  ( R1 `  B )  ~<  ( R1 `  x ) ) ) )
5655rexlimdv 3030 . . . . . . 7  |-  ( Lim  x  ->  ( E. y  e.  x  (
( B  e.  y  ->  ( R1 `  B )  ~<  ( R1 `  y ) )  /\  B  e.  y )  ->  ( R1 `  B )  ~<  ( R1 `  x ) ) )
5739, 56syl5 34 . . . . . 6  |-  ( Lim  x  ->  ( ( A. y  e.  x  ( B  e.  y  ->  ( R1 `  B
)  ~<  ( R1 `  y ) )  /\  E. y  e.  x  B  e.  y )  -> 
( R1 `  B
)  ~<  ( R1 `  x ) ) )
5857expcomd 454 . . . . 5  |-  ( Lim  x  ->  ( E. y  e.  x  B  e.  y  ->  ( A. y  e.  x  ( B  e.  y  ->  ( R1 `  B ) 
~<  ( R1 `  y
) )  ->  ( R1 `  B )  ~< 
( R1 `  x
) ) ) )
5938, 58sylbid 230 . . . 4  |-  ( Lim  x  ->  ( B  e.  x  ->  ( A. y  e.  x  ( B  e.  y  ->  ( R1 `  B ) 
~<  ( R1 `  y
) )  ->  ( R1 `  B )  ~< 
( R1 `  x
) ) ) )
6059com23 86 . . 3  |-  ( Lim  x  ->  ( A. y  e.  x  ( B  e.  y  ->  ( R1 `  B ) 
~<  ( R1 `  y
) )  ->  ( B  e.  x  ->  ( R1 `  B ) 
~<  ( R1 `  x
) ) ) )
614, 8, 12, 16, 18, 34, 60tfinds 7059 . 2  |-  ( A  e.  On  ->  ( B  e.  A  ->  ( R1 `  B ) 
~<  ( R1 `  A
) ) )
6261imp 445 1  |-  ( ( A  e.  On  /\  B  e.  A )  ->  ( R1 `  B
)  ~<  ( R1 `  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   U.cuni 4436   U_ciun 4520   class class class wbr 4653   Oncon0 5723   Lim wlim 5724   suc csuc 5725   ` cfv 5888    ~<_ cdom 7953    ~< csdm 7954   R1cr1 8625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-r1 8627
This theorem is referenced by:  r111  8638  smobeth  9408  r1tskina  9604
  Copyright terms: Public domain W3C validator