![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexr | Structured version Visualization version GIF version |
Description: A standard real is an extended real. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
rexr | ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressxr 10083 | . 2 ⊢ ℝ ⊆ ℝ* | |
2 | 1 | sseli 3599 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1990 ℝcr 9935 ℝ*cxr 10073 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-un 3579 df-in 3581 df-ss 3588 df-xr 10078 |
This theorem is referenced by: rexri 10097 lenlt 10116 ltpnf 11954 mnflt 11957 xrltnsym 11970 xrlttr 11973 xrre 12000 xrre3 12002 max1 12016 max2 12018 min1 12020 min2 12021 maxle 12022 lemin 12023 maxlt 12024 ltmin 12025 max0sub 12027 qbtwnxr 12031 xralrple 12036 alrple 12037 xltnegi 12047 rexadd 12063 xaddnemnf 12067 xaddnepnf 12068 xaddcom 12071 xnegdi 12078 xpncan 12081 xnpcan 12082 xleadd1a 12083 xleadd1 12085 xltadd1 12086 xltadd2 12087 xsubge0 12091 rexmul 12101 xadddilem 12124 xadddir 12126 xrsupsslem 12137 xrinfmsslem 12138 xrub 12142 supxrun 12146 supxrunb1 12149 supxrunb2 12150 supxrbnd1 12151 supxrbnd2 12152 xrsup0 12153 supxrbnd 12158 infmremnf 12173 elioo4g 12234 elioc2 12236 elico2 12237 elicc2 12238 iccss 12241 iooshf 12252 iooneg 12292 icoshft 12294 difreicc 12304 hashbnd 13123 elicc4abs 14059 icodiamlt 14174 limsupgord 14203 pcadd 15593 ramubcl 15722 lt6abl 18296 xrsmcmn 19769 xrs1mnd 19784 xrs10 19785 xrsdsreval 19791 psmetge0 22117 xmetge0 22149 imasdsf1olem 22178 bl2in 22205 blssps 22229 blss 22230 blcld 22310 icopnfcld 22571 iocmnfcld 22572 bl2ioo 22595 blssioo 22598 xrtgioo 22609 xrsblre 22614 iccntr 22624 icccmplem2 22626 icccmp 22628 reconnlem2 22630 xrge0tsms 22637 icoopnst 22738 iocopnst 22739 ovolfioo 23236 ovolicc2lem1 23285 ovolicc2lem5 23289 voliunlem3 23320 icombl1 23331 icombl 23332 iccvolcl 23335 ovolioo 23336 ioovolcl 23338 uniiccdif 23346 volsup2 23373 mbfimasn 23401 ismbf3d 23421 mbfsup 23431 itg2seq 23509 dvlip2 23758 ply1remlem 23922 abelthlem3 24187 abelth 24195 sincosq2sgn 24251 sincosq3sgn 24252 sinq12ge0 24260 sincos6thpi 24267 sineq0 24273 efif1olem1 24288 efif1olem2 24289 efif1o 24292 eff1o 24295 loglesqrt 24499 basellem1 24807 pntlemo 25296 nmobndi 27630 nmopub2tALT 28768 nmfnleub2 28785 nmopcoadji 28960 rexdiv 29634 xrge0tsmsd 29785 pnfneige0 29997 lmxrge0 29998 hashf2 30146 sxbrsigalem0 30333 omssubadd 30362 orvcgteel 30529 orvclteel 30534 sgnclre 30601 sgnneg 30602 signstfvneq0 30649 ivthALT 32330 icorempt2 33199 icoreunrn 33207 iooelexlt 33210 relowlssretop 33211 relowlpssretop 33212 poimir 33442 mblfinlem2 33447 iblabsnclem 33473 bddiblnc 33480 ftc1anclem1 33485 ftc1anclem6 33490 areacirclem5 33504 areacirc 33505 blbnd 33586 iocmbl 37798 supxrre3 39541 supxrgere 39549 infrpge 39567 infxrunb2 39584 infxrbnd2 39585 infleinflem2 39587 xrralrecnnle 39602 supxrunb3 39623 supminfxr2 39699 ioomidp 39740 limsupre 39873 limsupub 39936 limsuppnflem 39942 limsupre3lem 39964 liminfgord 39986 liminflelimsuplem 40007 limsupgtlem 40009 xlimmnfvlem2 40059 xlimmnfv 40060 xlimpnfvlem2 40063 xlimpnfv 40064 icccncfext 40100 volioc 40188 volico 40200 fourierdlem113 40436 meaiuninclem 40697 icoresmbl 40757 ovolval5lem1 40866 mbfresmf 40948 cnfsmf 40949 incsmf 40951 smfconst 40958 decsmf 40975 smfres 40997 smfco 41009 issmfle2d 41015 bgoldbtbndlem3 41695 |
Copyright terms: Public domain | W3C validator |