Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem5 Structured version   Visualization version   GIF version

Theorem stoweidlem5 40222
Description: There exists a δ as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 90: 0 < δ < 1 , p >= δ on 𝑇𝑈. Here 𝐷 is used to represent δ in the paper and 𝑄 to represent 𝑇𝑈 in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem5.1 𝑡𝜑
stoweidlem5.2 𝐷 = if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2))
stoweidlem5.3 (𝜑𝑃:𝑇⟶ℝ)
stoweidlem5.4 (𝜑𝑄𝑇)
stoweidlem5.5 (𝜑𝐶 ∈ ℝ+)
stoweidlem5.6 (𝜑 → ∀𝑡𝑄 𝐶 ≤ (𝑃𝑡))
Assertion
Ref Expression
stoweidlem5 (𝜑 → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡𝑄 𝑑 ≤ (𝑃𝑡)))
Distinct variable groups:   𝑡,𝑑,𝐷   𝑃,𝑑   𝑄,𝑑
Allowed substitution hints:   𝜑(𝑡,𝑑)   𝐶(𝑡,𝑑)   𝑃(𝑡)   𝑄(𝑡)   𝑇(𝑡,𝑑)

Proof of Theorem stoweidlem5
StepHypRef Expression
1 stoweidlem5.2 . . 3 𝐷 = if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2))
2 stoweidlem5.5 . . . 4 (𝜑𝐶 ∈ ℝ+)
3 halfre 11246 . . . . 5 (1 / 2) ∈ ℝ
4 halfgt0 11248 . . . . 5 0 < (1 / 2)
53, 4elrpii 11835 . . . 4 (1 / 2) ∈ ℝ+
6 ifcl 4130 . . . 4 ((𝐶 ∈ ℝ+ ∧ (1 / 2) ∈ ℝ+) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ∈ ℝ+)
72, 5, 6sylancl 694 . . 3 (𝜑 → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ∈ ℝ+)
81, 7syl5eqel 2705 . 2 (𝜑𝐷 ∈ ℝ+)
98rpred 11872 . . 3 (𝜑𝐷 ∈ ℝ)
103a1i 11 . . 3 (𝜑 → (1 / 2) ∈ ℝ)
11 1red 10055 . . 3 (𝜑 → 1 ∈ ℝ)
122rpred 11872 . . . . 5 (𝜑𝐶 ∈ ℝ)
13 min2 12021 . . . . 5 ((𝐶 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ (1 / 2))
1412, 3, 13sylancl 694 . . . 4 (𝜑 → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ (1 / 2))
151, 14syl5eqbr 4688 . . 3 (𝜑𝐷 ≤ (1 / 2))
16 halflt1 11250 . . . 4 (1 / 2) < 1
1716a1i 11 . . 3 (𝜑 → (1 / 2) < 1)
189, 10, 11, 15, 17lelttrd 10195 . 2 (𝜑𝐷 < 1)
19 stoweidlem5.1 . . 3 𝑡𝜑
207rpred 11872 . . . . . . 7 (𝜑 → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ∈ ℝ)
2120adantr 481 . . . . . 6 ((𝜑𝑡𝑄) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ∈ ℝ)
2212adantr 481 . . . . . 6 ((𝜑𝑡𝑄) → 𝐶 ∈ ℝ)
23 stoweidlem5.3 . . . . . . . 8 (𝜑𝑃:𝑇⟶ℝ)
2423adantr 481 . . . . . . 7 ((𝜑𝑡𝑄) → 𝑃:𝑇⟶ℝ)
25 stoweidlem5.4 . . . . . . . 8 (𝜑𝑄𝑇)
2625sselda 3603 . . . . . . 7 ((𝜑𝑡𝑄) → 𝑡𝑇)
2724, 26ffvelrnd 6360 . . . . . 6 ((𝜑𝑡𝑄) → (𝑃𝑡) ∈ ℝ)
28 min1 12020 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ 𝐶)
2912, 3, 28sylancl 694 . . . . . . 7 (𝜑 → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ 𝐶)
3029adantr 481 . . . . . 6 ((𝜑𝑡𝑄) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ 𝐶)
31 stoweidlem5.6 . . . . . . 7 (𝜑 → ∀𝑡𝑄 𝐶 ≤ (𝑃𝑡))
3231r19.21bi 2932 . . . . . 6 ((𝜑𝑡𝑄) → 𝐶 ≤ (𝑃𝑡))
3321, 22, 27, 30, 32letrd 10194 . . . . 5 ((𝜑𝑡𝑄) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ (𝑃𝑡))
341, 33syl5eqbr 4688 . . . 4 ((𝜑𝑡𝑄) → 𝐷 ≤ (𝑃𝑡))
3534ex 450 . . 3 (𝜑 → (𝑡𝑄𝐷 ≤ (𝑃𝑡)))
3619, 35ralrimi 2957 . 2 (𝜑 → ∀𝑡𝑄 𝐷 ≤ (𝑃𝑡))
37 eleq1 2689 . . . . 5 (𝑑 = 𝐷 → (𝑑 ∈ ℝ+𝐷 ∈ ℝ+))
38 breq1 4656 . . . . 5 (𝑑 = 𝐷 → (𝑑 < 1 ↔ 𝐷 < 1))
39 breq1 4656 . . . . . 6 (𝑑 = 𝐷 → (𝑑 ≤ (𝑃𝑡) ↔ 𝐷 ≤ (𝑃𝑡)))
4039ralbidv 2986 . . . . 5 (𝑑 = 𝐷 → (∀𝑡𝑄 𝑑 ≤ (𝑃𝑡) ↔ ∀𝑡𝑄 𝐷 ≤ (𝑃𝑡)))
4137, 38, 403anbi123d 1399 . . . 4 (𝑑 = 𝐷 → ((𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡𝑄 𝑑 ≤ (𝑃𝑡)) ↔ (𝐷 ∈ ℝ+𝐷 < 1 ∧ ∀𝑡𝑄 𝐷 ≤ (𝑃𝑡))))
4241spcegv 3294 . . 3 (𝐷 ∈ ℝ+ → ((𝐷 ∈ ℝ+𝐷 < 1 ∧ ∀𝑡𝑄 𝐷 ≤ (𝑃𝑡)) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡𝑄 𝑑 ≤ (𝑃𝑡))))
438, 42syl 17 . 2 (𝜑 → ((𝐷 ∈ ℝ+𝐷 < 1 ∧ ∀𝑡𝑄 𝐷 ≤ (𝑃𝑡)) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡𝑄 𝑑 ≤ (𝑃𝑡))))
448, 18, 36, 43mp3and 1427 1 (𝜑 → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡𝑄 𝑑 ≤ (𝑃𝑡)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wex 1704  wnf 1708  wcel 1990  wral 2912  wss 3574  ifcif 4086   class class class wbr 4653  wf 5884  cfv 5888  (class class class)co 6650  cr 9935  1c1 9937   < clt 10074  cle 10075   / cdiv 10684  2c2 11070  +crp 11832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-rp 11833
This theorem is referenced by:  stoweidlem28  40245
  Copyright terms: Public domain W3C validator