Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supxrunb3 Structured version   Visualization version   GIF version

Theorem supxrunb3 39623
Description: The supremum of an unbounded-above set of extended reals is plus infinity. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Assertion
Ref Expression
supxrunb3 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 ↔ sup(𝐴, ℝ*, < ) = +∞))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem supxrunb3
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 peano2re 10209 . . . . . . . . 9 (𝑤 ∈ ℝ → (𝑤 + 1) ∈ ℝ)
21adantl 482 . . . . . . . 8 ((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦𝑤 ∈ ℝ) → (𝑤 + 1) ∈ ℝ)
3 simpl 473 . . . . . . . 8 ((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦𝑤 ∈ ℝ) → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦)
4 breq1 4656 . . . . . . . . . 10 (𝑥 = (𝑤 + 1) → (𝑥𝑦 ↔ (𝑤 + 1) ≤ 𝑦))
54rexbidv 3052 . . . . . . . . 9 (𝑥 = (𝑤 + 1) → (∃𝑦𝐴 𝑥𝑦 ↔ ∃𝑦𝐴 (𝑤 + 1) ≤ 𝑦))
65rspcva 3307 . . . . . . . 8 (((𝑤 + 1) ∈ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) → ∃𝑦𝐴 (𝑤 + 1) ≤ 𝑦)
72, 3, 6syl2anc 693 . . . . . . 7 ((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦𝑤 ∈ ℝ) → ∃𝑦𝐴 (𝑤 + 1) ≤ 𝑦)
87adantll 750 . . . . . 6 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) ∧ 𝑤 ∈ ℝ) → ∃𝑦𝐴 (𝑤 + 1) ≤ 𝑦)
9 nfv 1843 . . . . . . . . 9 𝑦 𝐴 ⊆ ℝ*
10 nfcv 2764 . . . . . . . . . 10 𝑦
11 nfre1 3005 . . . . . . . . . 10 𝑦𝑦𝐴 𝑥𝑦
1210, 11nfral 2945 . . . . . . . . 9 𝑦𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦
139, 12nfan 1828 . . . . . . . 8 𝑦(𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦)
14 nfv 1843 . . . . . . . 8 𝑦 𝑤 ∈ ℝ
1513, 14nfan 1828 . . . . . . 7 𝑦((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) ∧ 𝑤 ∈ ℝ)
16 simp1r 1086 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴 ∧ (𝑤 + 1) ≤ 𝑦) → 𝑤 ∈ ℝ)
17 rexr 10085 . . . . . . . . . . 11 (𝑤 ∈ ℝ → 𝑤 ∈ ℝ*)
1816, 17syl 17 . . . . . . . . . 10 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴 ∧ (𝑤 + 1) ≤ 𝑦) → 𝑤 ∈ ℝ*)
191rexrd 10089 . . . . . . . . . . 11 (𝑤 ∈ ℝ → (𝑤 + 1) ∈ ℝ*)
2016, 19syl 17 . . . . . . . . . 10 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴 ∧ (𝑤 + 1) ≤ 𝑦) → (𝑤 + 1) ∈ ℝ*)
21 simp1l 1085 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴 ∧ (𝑤 + 1) ≤ 𝑦) → 𝐴 ⊆ ℝ*)
22 simp2 1062 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴 ∧ (𝑤 + 1) ≤ 𝑦) → 𝑦𝐴)
23 ssel2 3598 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ*𝑦𝐴) → 𝑦 ∈ ℝ*)
2421, 22, 23syl2anc 693 . . . . . . . . . 10 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴 ∧ (𝑤 + 1) ≤ 𝑦) → 𝑦 ∈ ℝ*)
2516ltp1d 10954 . . . . . . . . . 10 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴 ∧ (𝑤 + 1) ≤ 𝑦) → 𝑤 < (𝑤 + 1))
26 simp3 1063 . . . . . . . . . 10 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴 ∧ (𝑤 + 1) ≤ 𝑦) → (𝑤 + 1) ≤ 𝑦)
2718, 20, 24, 25, 26xrltletrd 11992 . . . . . . . . 9 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴 ∧ (𝑤 + 1) ≤ 𝑦) → 𝑤 < 𝑦)
28273exp 1264 . . . . . . . 8 ((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) → (𝑦𝐴 → ((𝑤 + 1) ≤ 𝑦𝑤 < 𝑦)))
2928adantlr 751 . . . . . . 7 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) ∧ 𝑤 ∈ ℝ) → (𝑦𝐴 → ((𝑤 + 1) ≤ 𝑦𝑤 < 𝑦)))
3015, 29reximdai 3012 . . . . . 6 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) ∧ 𝑤 ∈ ℝ) → (∃𝑦𝐴 (𝑤 + 1) ≤ 𝑦 → ∃𝑦𝐴 𝑤 < 𝑦))
318, 30mpd 15 . . . . 5 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) ∧ 𝑤 ∈ ℝ) → ∃𝑦𝐴 𝑤 < 𝑦)
3231ralrimiva 2966 . . . 4 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) → ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑤 < 𝑦)
3332ex 450 . . 3 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 → ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑤 < 𝑦))
34 breq1 4656 . . . . . . . 8 (𝑤 = 𝑥 → (𝑤 < 𝑦𝑥 < 𝑦))
3534rexbidv 3052 . . . . . . 7 (𝑤 = 𝑥 → (∃𝑦𝐴 𝑤 < 𝑦 ↔ ∃𝑦𝐴 𝑥 < 𝑦))
3635cbvralv 3171 . . . . . 6 (∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑤 < 𝑦 ↔ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦)
3736biimpi 206 . . . . 5 (∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑤 < 𝑦 → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦)
38 nfv 1843 . . . . . . 7 𝑥 𝐴 ⊆ ℝ*
39 nfra1 2941 . . . . . . 7 𝑥𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦
4038, 39nfan 1828 . . . . . 6 𝑥(𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦)
41 simpll 790 . . . . . . . 8 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦) ∧ 𝑥 ∈ ℝ) → 𝐴 ⊆ ℝ*)
42 simpr 477 . . . . . . . 8 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
43 rspa 2930 . . . . . . . . . 10 ((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦𝑥 ∈ ℝ) → ∃𝑦𝐴 𝑥 < 𝑦)
4443adantll 750 . . . . . . . . 9 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦) ∧ 𝑥 ∈ ℝ) → ∃𝑦𝐴 𝑥 < 𝑦)
45 rexr 10085 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
4645ad3antlr 767 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℝ*)
4723adantr 481 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ*𝑦𝐴) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℝ*)
4847adantllr 755 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℝ*)
49 simpr 477 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑥 < 𝑦) → 𝑥 < 𝑦)
5046, 48, 49xrltled 39486 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑥 < 𝑦) → 𝑥𝑦)
5150ex 450 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) → (𝑥 < 𝑦𝑥𝑦))
5251reximdva 3017 . . . . . . . . . 10 ((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) → (∃𝑦𝐴 𝑥 < 𝑦 → ∃𝑦𝐴 𝑥𝑦))
5352adantlr 751 . . . . . . . . 9 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦) ∧ 𝑥 ∈ ℝ) → (∃𝑦𝐴 𝑥 < 𝑦 → ∃𝑦𝐴 𝑥𝑦))
5444, 53mpd 15 . . . . . . . 8 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦) ∧ 𝑥 ∈ ℝ) → ∃𝑦𝐴 𝑥𝑦)
55 simpr 477 . . . . . . . 8 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ ∃𝑦𝐴 𝑥𝑦) → ∃𝑦𝐴 𝑥𝑦)
5641, 42, 54, 55syl21anc 1325 . . . . . . 7 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦) ∧ 𝑥 ∈ ℝ) → ∃𝑦𝐴 𝑥𝑦)
5756ex 450 . . . . . 6 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦) → (𝑥 ∈ ℝ → ∃𝑦𝐴 𝑥𝑦))
5840, 57ralrimi 2957 . . . . 5 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦) → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦)
5937, 58sylan2 491 . . . 4 ((𝐴 ⊆ ℝ* ∧ ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑤 < 𝑦) → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦)
6059ex 450 . . 3 (𝐴 ⊆ ℝ* → (∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑤 < 𝑦 → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦))
6133, 60impbid 202 . 2 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 ↔ ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑤 < 𝑦))
62 supxrunb2 12150 . 2 (𝐴 ⊆ ℝ* → (∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑤 < 𝑦 ↔ sup(𝐴, ℝ*, < ) = +∞))
6361, 62bitrd 268 1 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 ↔ sup(𝐴, ℝ*, < ) = +∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  wss 3574   class class class wbr 4653  (class class class)co 6650  supcsup 8346  cr 9935  1c1 9937   + caddc 9939  +∞cpnf 10071  *cxr 10073   < clt 10074  cle 10075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269
This theorem is referenced by:  limsuppnfdlem  39933
  Copyright terms: Public domain W3C validator