MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgplacthmeo Structured version   Visualization version   Unicode version

Theorem tgplacthmeo 21907
Description: The left group action of element  A in a topological group  G is a homeomorphism from the group to itself. (Contributed by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
tgplacthmeo.1  |-  F  =  ( x  e.  X  |->  ( A  .+  x
) )
tgplacthmeo.2  |-  X  =  ( Base `  G
)
tgplacthmeo.3  |-  .+  =  ( +g  `  G )
tgplacthmeo.4  |-  J  =  ( TopOpen `  G )
Assertion
Ref Expression
tgplacthmeo  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  F  e.  ( J Homeo J ) )
Distinct variable groups:    x, A    x, G    x, J    x,  .+    x, X
Allowed substitution hint:    F( x)

Proof of Theorem tgplacthmeo
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 tgptmd 21883 . . 3  |-  ( G  e.  TopGrp  ->  G  e. TopMnd )
2 tgplacthmeo.1 . . . 4  |-  F  =  ( x  e.  X  |->  ( A  .+  x
) )
3 tgplacthmeo.2 . . . 4  |-  X  =  ( Base `  G
)
4 tgplacthmeo.3 . . . 4  |-  .+  =  ( +g  `  G )
5 tgplacthmeo.4 . . . 4  |-  J  =  ( TopOpen `  G )
62, 3, 4, 5tmdlactcn 21906 . . 3  |-  ( ( G  e. TopMnd  /\  A  e.  X )  ->  F  e.  ( J  Cn  J
) )
71, 6sylan 488 . 2  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  F  e.  ( J  Cn  J
) )
8 tgpgrp 21882 . . . . . 6  |-  ( G  e.  TopGrp  ->  G  e.  Grp )
9 eqid 2622 . . . . . . 7  |-  ( g  e.  X  |->  ( x  e.  X  |->  ( g 
.+  x ) ) )  =  ( g  e.  X  |->  ( x  e.  X  |->  ( g 
.+  x ) ) )
10 eqid 2622 . . . . . . 7  |-  ( invg `  G )  =  ( invg `  G )
119, 3, 4, 10grplactcnv 17518 . . . . . 6  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( ( g  e.  X  |->  ( x  e.  X  |->  ( g 
.+  x ) ) ) `  A ) : X -1-1-onto-> X  /\  `' ( ( g  e.  X  |->  ( x  e.  X  |->  ( g  .+  x
) ) ) `  A )  =  ( ( g  e.  X  |->  ( x  e.  X  |->  ( g  .+  x
) ) ) `  ( ( invg `  G ) `  A
) ) ) )
128, 11sylan 488 . . . . 5  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  (
( ( g  e.  X  |->  ( x  e.  X  |->  ( g  .+  x ) ) ) `
 A ) : X -1-1-onto-> X  /\  `' ( ( g  e.  X  |->  ( x  e.  X  |->  ( g  .+  x
) ) ) `  A )  =  ( ( g  e.  X  |->  ( x  e.  X  |->  ( g  .+  x
) ) ) `  ( ( invg `  G ) `  A
) ) ) )
1312simprd 479 . . . 4  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  `' ( ( g  e.  X  |->  ( x  e.  X  |->  ( g  .+  x ) ) ) `
 A )  =  ( ( g  e.  X  |->  ( x  e.  X  |->  ( g  .+  x ) ) ) `
 ( ( invg `  G ) `
 A ) ) )
149, 3grplactfval 17516 . . . . . . 7  |-  ( A  e.  X  ->  (
( g  e.  X  |->  ( x  e.  X  |->  ( g  .+  x
) ) ) `  A )  =  ( x  e.  X  |->  ( A  .+  x ) ) )
1514adantl 482 . . . . . 6  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  (
( g  e.  X  |->  ( x  e.  X  |->  ( g  .+  x
) ) ) `  A )  =  ( x  e.  X  |->  ( A  .+  x ) ) )
1615, 2syl6eqr 2674 . . . . 5  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  (
( g  e.  X  |->  ( x  e.  X  |->  ( g  .+  x
) ) ) `  A )  =  F )
1716cnveqd 5298 . . . 4  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  `' ( ( g  e.  X  |->  ( x  e.  X  |->  ( g  .+  x ) ) ) `
 A )  =  `' F )
183, 10grpinvcl 17467 . . . . . 6  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( invg `  G ) `  A
)  e.  X )
198, 18sylan 488 . . . . 5  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  (
( invg `  G ) `  A
)  e.  X )
209, 3grplactfval 17516 . . . . 5  |-  ( ( ( invg `  G ) `  A
)  e.  X  -> 
( ( g  e.  X  |->  ( x  e.  X  |->  ( g  .+  x ) ) ) `
 ( ( invg `  G ) `
 A ) )  =  ( x  e.  X  |->  ( ( ( invg `  G
) `  A )  .+  x ) ) )
2119, 20syl 17 . . . 4  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  (
( g  e.  X  |->  ( x  e.  X  |->  ( g  .+  x
) ) ) `  ( ( invg `  G ) `  A
) )  =  ( x  e.  X  |->  ( ( ( invg `  G ) `  A
)  .+  x )
) )
2213, 17, 213eqtr3d 2664 . . 3  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  `' F  =  ( x  e.  X  |->  ( ( ( invg `  G ) `  A
)  .+  x )
) )
23 eqid 2622 . . . . . 6  |-  ( x  e.  X  |->  ( ( ( invg `  G ) `  A
)  .+  x )
)  =  ( x  e.  X  |->  ( ( ( invg `  G ) `  A
)  .+  x )
)
2423, 3, 4, 5tmdlactcn 21906 . . . . 5  |-  ( ( G  e. TopMnd  /\  (
( invg `  G ) `  A
)  e.  X )  ->  ( x  e.  X  |->  ( ( ( invg `  G
) `  A )  .+  x ) )  e.  ( J  Cn  J
) )
251, 24sylan 488 . . . 4  |-  ( ( G  e.  TopGrp  /\  (
( invg `  G ) `  A
)  e.  X )  ->  ( x  e.  X  |->  ( ( ( invg `  G
) `  A )  .+  x ) )  e.  ( J  Cn  J
) )
2619, 25syldan 487 . . 3  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  (
x  e.  X  |->  ( ( ( invg `  G ) `  A
)  .+  x )
)  e.  ( J  Cn  J ) )
2722, 26eqeltrd 2701 . 2  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  `' F  e.  ( J  Cn  J ) )
28 ishmeo 21562 . 2  |-  ( F  e.  ( J Homeo J )  <->  ( F  e.  ( J  Cn  J
)  /\  `' F  e.  ( J  Cn  J
) ) )
297, 27, 28sylanbrc 698 1  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  F  e.  ( J Homeo J ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    |-> cmpt 4729   `'ccnv 5113   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   TopOpenctopn 16082   Grpcgrp 17422   invgcminusg 17423    Cn ccn 21028   Homeochmeo 21556  TopMndctmd 21874   TopGrpctgp 21875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-0g 16102  df-topgen 16104  df-plusf 17241  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cn 21031  df-cnp 21032  df-tx 21365  df-hmeo 21558  df-tmd 21876  df-tgp 21877
This theorem is referenced by:  subgntr  21910  opnsubg  21911  cldsubg  21914  tgpconncompeqg  21915  tgpconncomp  21916  snclseqg  21919  qustgpopn  21923  tsmsxplem1  21956
  Copyright terms: Public domain W3C validator