| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2622 |
. . . . 5
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 2 | 1 | subgss 17595 |
. . . 4
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
| 3 | 2 | 3ad2ant2 1083 |
. . 3
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → 𝑆 ⊆ (Base‘𝐺)) |
| 4 | | subgntr.h |
. . . . . 6
⊢ 𝐽 = (TopOpen‘𝐺) |
| 5 | 4, 1 | tgptopon 21886 |
. . . . 5
⊢ (𝐺 ∈ TopGrp → 𝐽 ∈
(TopOn‘(Base‘𝐺))) |
| 6 | 5 | 3ad2ant1 1082 |
. . . 4
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → 𝐽 ∈ (TopOn‘(Base‘𝐺))) |
| 7 | | toponuni 20719 |
. . . 4
⊢ (𝐽 ∈
(TopOn‘(Base‘𝐺)) → (Base‘𝐺) = ∪ 𝐽) |
| 8 | 6, 7 | syl 17 |
. . 3
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → (Base‘𝐺) = ∪ 𝐽) |
| 9 | 3, 8 | sseqtrd 3641 |
. 2
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → 𝑆 ⊆ ∪ 𝐽) |
| 10 | 8 | difeq1d 3727 |
. . 3
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → ((Base‘𝐺) ∖ 𝑆) = (∪ 𝐽 ∖ 𝑆)) |
| 11 | | df-ima 5127 |
. . . . . . . 8
⊢ ((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g‘𝐺)𝑦)) “ 𝑆) = ran ((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g‘𝐺)𝑦)) ↾ 𝑆) |
| 12 | 3 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → 𝑆 ⊆ (Base‘𝐺)) |
| 13 | 12 | resmptd 5452 |
. . . . . . . . 9
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → ((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g‘𝐺)𝑦)) ↾ 𝑆) = (𝑦 ∈ 𝑆 ↦ (𝑥(+g‘𝐺)𝑦))) |
| 14 | 13 | rneqd 5353 |
. . . . . . . 8
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → ran ((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g‘𝐺)𝑦)) ↾ 𝑆) = ran (𝑦 ∈ 𝑆 ↦ (𝑥(+g‘𝐺)𝑦))) |
| 15 | 11, 14 | syl5eq 2668 |
. . . . . . 7
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → ((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g‘𝐺)𝑦)) “ 𝑆) = ran (𝑦 ∈ 𝑆 ↦ (𝑥(+g‘𝐺)𝑦))) |
| 16 | | simpl1 1064 |
. . . . . . . . 9
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → 𝐺 ∈ TopGrp) |
| 17 | | eldifi 3732 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ((Base‘𝐺) ∖ 𝑆) → 𝑥 ∈ (Base‘𝐺)) |
| 18 | 17 | adantl 482 |
. . . . . . . . 9
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → 𝑥 ∈ (Base‘𝐺)) |
| 19 | | eqid 2622 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g‘𝐺)𝑦)) = (𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g‘𝐺)𝑦)) |
| 20 | | eqid 2622 |
. . . . . . . . . 10
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 21 | 19, 1, 20, 4 | tgplacthmeo 21907 |
. . . . . . . . 9
⊢ ((𝐺 ∈ TopGrp ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g‘𝐺)𝑦)) ∈ (𝐽Homeo𝐽)) |
| 22 | 16, 18, 21 | syl2anc 693 |
. . . . . . . 8
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → (𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g‘𝐺)𝑦)) ∈ (𝐽Homeo𝐽)) |
| 23 | | simpl3 1066 |
. . . . . . . 8
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → 𝑆 ∈ 𝐽) |
| 24 | | hmeoima 21568 |
. . . . . . . 8
⊢ (((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g‘𝐺)𝑦)) ∈ (𝐽Homeo𝐽) ∧ 𝑆 ∈ 𝐽) → ((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g‘𝐺)𝑦)) “ 𝑆) ∈ 𝐽) |
| 25 | 22, 23, 24 | syl2anc 693 |
. . . . . . 7
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → ((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g‘𝐺)𝑦)) “ 𝑆) ∈ 𝐽) |
| 26 | 15, 25 | eqeltrrd 2702 |
. . . . . 6
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → ran (𝑦 ∈ 𝑆 ↦ (𝑥(+g‘𝐺)𝑦)) ∈ 𝐽) |
| 27 | | tgpgrp 21882 |
. . . . . . . . 9
⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ Grp) |
| 28 | 16, 27 | syl 17 |
. . . . . . . 8
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → 𝐺 ∈ Grp) |
| 29 | | eqid 2622 |
. . . . . . . . 9
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 30 | 1, 20, 29 | grprid 17453 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑥(+g‘𝐺)(0g‘𝐺)) = 𝑥) |
| 31 | 28, 18, 30 | syl2anc 693 |
. . . . . . 7
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → (𝑥(+g‘𝐺)(0g‘𝐺)) = 𝑥) |
| 32 | | simpl2 1065 |
. . . . . . . . 9
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → 𝑆 ∈ (SubGrp‘𝐺)) |
| 33 | 29 | subg0cl 17602 |
. . . . . . . . 9
⊢ (𝑆 ∈ (SubGrp‘𝐺) →
(0g‘𝐺)
∈ 𝑆) |
| 34 | 32, 33 | syl 17 |
. . . . . . . 8
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → (0g‘𝐺) ∈ 𝑆) |
| 35 | | ovex 6678 |
. . . . . . . 8
⊢ (𝑥(+g‘𝐺)(0g‘𝐺)) ∈ V |
| 36 | | eqid 2622 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝑆 ↦ (𝑥(+g‘𝐺)𝑦)) = (𝑦 ∈ 𝑆 ↦ (𝑥(+g‘𝐺)𝑦)) |
| 37 | | oveq2 6658 |
. . . . . . . . 9
⊢ (𝑦 = (0g‘𝐺) → (𝑥(+g‘𝐺)𝑦) = (𝑥(+g‘𝐺)(0g‘𝐺))) |
| 38 | 36, 37 | elrnmpt1s 5373 |
. . . . . . . 8
⊢
(((0g‘𝐺) ∈ 𝑆 ∧ (𝑥(+g‘𝐺)(0g‘𝐺)) ∈ V) → (𝑥(+g‘𝐺)(0g‘𝐺)) ∈ ran (𝑦 ∈ 𝑆 ↦ (𝑥(+g‘𝐺)𝑦))) |
| 39 | 34, 35, 38 | sylancl 694 |
. . . . . . 7
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → (𝑥(+g‘𝐺)(0g‘𝐺)) ∈ ran (𝑦 ∈ 𝑆 ↦ (𝑥(+g‘𝐺)𝑦))) |
| 40 | 31, 39 | eqeltrrd 2702 |
. . . . . 6
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → 𝑥 ∈ ran (𝑦 ∈ 𝑆 ↦ (𝑥(+g‘𝐺)𝑦))) |
| 41 | 28 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦 ∈ 𝑆) → 𝐺 ∈ Grp) |
| 42 | 18 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦 ∈ 𝑆) → 𝑥 ∈ (Base‘𝐺)) |
| 43 | 12 | sselda 3603 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ (Base‘𝐺)) |
| 44 | 1, 20 | grpcl 17430 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g‘𝐺)𝑦) ∈ (Base‘𝐺)) |
| 45 | 41, 42, 43, 44 | syl3anc 1326 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦 ∈ 𝑆) → (𝑥(+g‘𝐺)𝑦) ∈ (Base‘𝐺)) |
| 46 | | eldifn 3733 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ((Base‘𝐺) ∖ 𝑆) → ¬ 𝑥 ∈ 𝑆) |
| 47 | 46 | ad2antlr 763 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦 ∈ 𝑆) → ¬ 𝑥 ∈ 𝑆) |
| 48 | | eqid 2622 |
. . . . . . . . . . . . . . 15
⊢
(-g‘𝐺) = (-g‘𝐺) |
| 49 | 48 | subgsubcl 17605 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑥(+g‘𝐺)𝑦) ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑦) ∈ 𝑆) |
| 50 | 49 | 3com23 1271 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑦 ∈ 𝑆 ∧ (𝑥(+g‘𝐺)𝑦) ∈ 𝑆) → ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑦) ∈ 𝑆) |
| 51 | 50 | 3expia 1267 |
. . . . . . . . . . . 12
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑦 ∈ 𝑆) → ((𝑥(+g‘𝐺)𝑦) ∈ 𝑆 → ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑦) ∈ 𝑆)) |
| 52 | 32, 51 | sylan 488 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦 ∈ 𝑆) → ((𝑥(+g‘𝐺)𝑦) ∈ 𝑆 → ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑦) ∈ 𝑆)) |
| 53 | 1, 20, 48 | grppncan 17506 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑦) = 𝑥) |
| 54 | 41, 42, 43, 53 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦 ∈ 𝑆) → ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑦) = 𝑥) |
| 55 | 54 | eleq1d 2686 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦 ∈ 𝑆) → (((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑦) ∈ 𝑆 ↔ 𝑥 ∈ 𝑆)) |
| 56 | 52, 55 | sylibd 229 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦 ∈ 𝑆) → ((𝑥(+g‘𝐺)𝑦) ∈ 𝑆 → 𝑥 ∈ 𝑆)) |
| 57 | 47, 56 | mtod 189 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦 ∈ 𝑆) → ¬ (𝑥(+g‘𝐺)𝑦) ∈ 𝑆) |
| 58 | 45, 57 | eldifd 3585 |
. . . . . . . 8
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦 ∈ 𝑆) → (𝑥(+g‘𝐺)𝑦) ∈ ((Base‘𝐺) ∖ 𝑆)) |
| 59 | 58, 36 | fmptd 6385 |
. . . . . . 7
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → (𝑦 ∈ 𝑆 ↦ (𝑥(+g‘𝐺)𝑦)):𝑆⟶((Base‘𝐺) ∖ 𝑆)) |
| 60 | | frn 6053 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝑆 ↦ (𝑥(+g‘𝐺)𝑦)):𝑆⟶((Base‘𝐺) ∖ 𝑆) → ran (𝑦 ∈ 𝑆 ↦ (𝑥(+g‘𝐺)𝑦)) ⊆ ((Base‘𝐺) ∖ 𝑆)) |
| 61 | 59, 60 | syl 17 |
. . . . . 6
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → ran (𝑦 ∈ 𝑆 ↦ (𝑥(+g‘𝐺)𝑦)) ⊆ ((Base‘𝐺) ∖ 𝑆)) |
| 62 | | eleq2 2690 |
. . . . . . . 8
⊢ (𝑢 = ran (𝑦 ∈ 𝑆 ↦ (𝑥(+g‘𝐺)𝑦)) → (𝑥 ∈ 𝑢 ↔ 𝑥 ∈ ran (𝑦 ∈ 𝑆 ↦ (𝑥(+g‘𝐺)𝑦)))) |
| 63 | | sseq1 3626 |
. . . . . . . 8
⊢ (𝑢 = ran (𝑦 ∈ 𝑆 ↦ (𝑥(+g‘𝐺)𝑦)) → (𝑢 ⊆ ((Base‘𝐺) ∖ 𝑆) ↔ ran (𝑦 ∈ 𝑆 ↦ (𝑥(+g‘𝐺)𝑦)) ⊆ ((Base‘𝐺) ∖ 𝑆))) |
| 64 | 62, 63 | anbi12d 747 |
. . . . . . 7
⊢ (𝑢 = ran (𝑦 ∈ 𝑆 ↦ (𝑥(+g‘𝐺)𝑦)) → ((𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ ((Base‘𝐺) ∖ 𝑆)) ↔ (𝑥 ∈ ran (𝑦 ∈ 𝑆 ↦ (𝑥(+g‘𝐺)𝑦)) ∧ ran (𝑦 ∈ 𝑆 ↦ (𝑥(+g‘𝐺)𝑦)) ⊆ ((Base‘𝐺) ∖ 𝑆)))) |
| 65 | 64 | rspcev 3309 |
. . . . . 6
⊢ ((ran
(𝑦 ∈ 𝑆 ↦ (𝑥(+g‘𝐺)𝑦)) ∈ 𝐽 ∧ (𝑥 ∈ ran (𝑦 ∈ 𝑆 ↦ (𝑥(+g‘𝐺)𝑦)) ∧ ran (𝑦 ∈ 𝑆 ↦ (𝑥(+g‘𝐺)𝑦)) ⊆ ((Base‘𝐺) ∖ 𝑆))) → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ ((Base‘𝐺) ∖ 𝑆))) |
| 66 | 26, 40, 61, 65 | syl12anc 1324 |
. . . . 5
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ ((Base‘𝐺) ∖ 𝑆))) |
| 67 | 66 | ralrimiva 2966 |
. . . 4
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → ∀𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ ((Base‘𝐺) ∖ 𝑆))) |
| 68 | | topontop 20718 |
. . . . . 6
⊢ (𝐽 ∈
(TopOn‘(Base‘𝐺)) → 𝐽 ∈ Top) |
| 69 | 6, 68 | syl 17 |
. . . . 5
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → 𝐽 ∈ Top) |
| 70 | | eltop2 20779 |
. . . . 5
⊢ (𝐽 ∈ Top →
(((Base‘𝐺) ∖
𝑆) ∈ 𝐽 ↔ ∀𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ ((Base‘𝐺) ∖ 𝑆)))) |
| 71 | 69, 70 | syl 17 |
. . . 4
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → (((Base‘𝐺) ∖ 𝑆) ∈ 𝐽 ↔ ∀𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ ((Base‘𝐺) ∖ 𝑆)))) |
| 72 | 67, 71 | mpbird 247 |
. . 3
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → ((Base‘𝐺) ∖ 𝑆) ∈ 𝐽) |
| 73 | 10, 72 | eqeltrrd 2702 |
. 2
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → (∪ 𝐽 ∖ 𝑆) ∈ 𝐽) |
| 74 | | eqid 2622 |
. . . 4
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 75 | 74 | iscld 20831 |
. . 3
⊢ (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 ⊆ ∪ 𝐽 ∧ (∪ 𝐽
∖ 𝑆) ∈ 𝐽))) |
| 76 | 69, 75 | syl 17 |
. 2
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 ⊆ ∪ 𝐽 ∧ (∪ 𝐽
∖ 𝑆) ∈ 𝐽))) |
| 77 | 9, 73, 76 | mpbir2and 957 |
1
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → 𝑆 ∈ (Clsd‘𝐽)) |