Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upbdrech Structured version   Visualization version   GIF version

Theorem upbdrech 39519
Description: Choice of an upper bound for a non empty bunded set (image set version). (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
upbdrech.a (𝜑𝐴 ≠ ∅)
upbdrech.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
upbdrech.bd (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
upbdrech.c 𝐶 = sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < )
Assertion
Ref Expression
upbdrech (𝜑 → (𝐶 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝐶))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑦,𝐵,𝑧   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝐵(𝑥)   𝐶(𝑥,𝑦,𝑧)

Proof of Theorem upbdrech
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 upbdrech.c . . 3 𝐶 = sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < )
2 upbdrech.b . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
32ralrimiva 2966 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐵 ∈ ℝ)
4 nfra1 2941 . . . . . . 7 𝑥𝑥𝐴 𝐵 ∈ ℝ
5 nfv 1843 . . . . . . 7 𝑥 𝑧 ∈ ℝ
6 simp3 1063 . . . . . . . . 9 ((∀𝑥𝐴 𝐵 ∈ ℝ ∧ 𝑥𝐴𝑧 = 𝐵) → 𝑧 = 𝐵)
7 rspa 2930 . . . . . . . . . 10 ((∀𝑥𝐴 𝐵 ∈ ℝ ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
873adant3 1081 . . . . . . . . 9 ((∀𝑥𝐴 𝐵 ∈ ℝ ∧ 𝑥𝐴𝑧 = 𝐵) → 𝐵 ∈ ℝ)
96, 8eqeltrd 2701 . . . . . . . 8 ((∀𝑥𝐴 𝐵 ∈ ℝ ∧ 𝑥𝐴𝑧 = 𝐵) → 𝑧 ∈ ℝ)
1093exp 1264 . . . . . . 7 (∀𝑥𝐴 𝐵 ∈ ℝ → (𝑥𝐴 → (𝑧 = 𝐵𝑧 ∈ ℝ)))
114, 5, 10rexlimd 3026 . . . . . 6 (∀𝑥𝐴 𝐵 ∈ ℝ → (∃𝑥𝐴 𝑧 = 𝐵𝑧 ∈ ℝ))
1211abssdv 3676 . . . . 5 (∀𝑥𝐴 𝐵 ∈ ℝ → {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ⊆ ℝ)
133, 12syl 17 . . . 4 (𝜑 → {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ⊆ ℝ)
14 upbdrech.a . . . . . . 7 (𝜑𝐴 ≠ ∅)
15 eqidd 2623 . . . . . . . 8 (𝑥𝐴𝐵 = 𝐵)
1615rgen 2922 . . . . . . 7 𝑥𝐴 𝐵 = 𝐵
17 r19.2z 4060 . . . . . . 7 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 = 𝐵) → ∃𝑥𝐴 𝐵 = 𝐵)
1814, 16, 17sylancl 694 . . . . . 6 (𝜑 → ∃𝑥𝐴 𝐵 = 𝐵)
19 nfv 1843 . . . . . . 7 𝑥𝜑
20 nfre1 3005 . . . . . . . 8 𝑥𝑥𝐴 𝑧 = 𝐵
2120nfex 2154 . . . . . . 7 𝑥𝑧𝑥𝐴 𝑧 = 𝐵
22 simpr 477 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝑥𝐴)
23 elex 3212 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ → 𝐵 ∈ V)
242, 23syl 17 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐵 ∈ V)
25 isset 3207 . . . . . . . . . . . 12 (𝐵 ∈ V ↔ ∃𝑧 𝑧 = 𝐵)
2624, 25sylib 208 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ∃𝑧 𝑧 = 𝐵)
27 rspe 3003 . . . . . . . . . . 11 ((𝑥𝐴 ∧ ∃𝑧 𝑧 = 𝐵) → ∃𝑥𝐴𝑧 𝑧 = 𝐵)
2822, 26, 27syl2anc 693 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ∃𝑥𝐴𝑧 𝑧 = 𝐵)
29 rexcom4 3225 . . . . . . . . . 10 (∃𝑥𝐴𝑧 𝑧 = 𝐵 ↔ ∃𝑧𝑥𝐴 𝑧 = 𝐵)
3028, 29sylib 208 . . . . . . . . 9 ((𝜑𝑥𝐴) → ∃𝑧𝑥𝐴 𝑧 = 𝐵)
31303adant3 1081 . . . . . . . 8 ((𝜑𝑥𝐴𝐵 = 𝐵) → ∃𝑧𝑥𝐴 𝑧 = 𝐵)
32313exp 1264 . . . . . . 7 (𝜑 → (𝑥𝐴 → (𝐵 = 𝐵 → ∃𝑧𝑥𝐴 𝑧 = 𝐵)))
3319, 21, 32rexlimd 3026 . . . . . 6 (𝜑 → (∃𝑥𝐴 𝐵 = 𝐵 → ∃𝑧𝑥𝐴 𝑧 = 𝐵))
3418, 33mpd 15 . . . . 5 (𝜑 → ∃𝑧𝑥𝐴 𝑧 = 𝐵)
35 abn0 3954 . . . . 5 ({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ≠ ∅ ↔ ∃𝑧𝑥𝐴 𝑧 = 𝐵)
3634, 35sylibr 224 . . . 4 (𝜑 → {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ≠ ∅)
37 upbdrech.bd . . . . 5 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
38 vex 3203 . . . . . . . . . . . . 13 𝑤 ∈ V
39 eqeq1 2626 . . . . . . . . . . . . . 14 (𝑧 = 𝑤 → (𝑧 = 𝐵𝑤 = 𝐵))
4039rexbidv 3052 . . . . . . . . . . . . 13 (𝑧 = 𝑤 → (∃𝑥𝐴 𝑧 = 𝐵 ↔ ∃𝑥𝐴 𝑤 = 𝐵))
4138, 40elab 3350 . . . . . . . . . . . 12 (𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ↔ ∃𝑥𝐴 𝑤 = 𝐵)
4241biimpi 206 . . . . . . . . . . 11 (𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} → ∃𝑥𝐴 𝑤 = 𝐵)
4342adantl 482 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}) → ∃𝑥𝐴 𝑤 = 𝐵)
44 nfra1 2941 . . . . . . . . . . . . 13 𝑥𝑥𝐴 𝐵𝑦
4519, 44nfan 1828 . . . . . . . . . . . 12 𝑥(𝜑 ∧ ∀𝑥𝐴 𝐵𝑦)
4620nfsab 2614 . . . . . . . . . . . 12 𝑥 𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}
4745, 46nfan 1828 . . . . . . . . . . 11 𝑥((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵})
48 nfv 1843 . . . . . . . . . . 11 𝑥 𝑤𝑦
49 simp3 1063 . . . . . . . . . . . . . 14 (((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑥𝐴𝑤 = 𝐵) → 𝑤 = 𝐵)
50 simp1r 1086 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑥𝐴𝑤 = 𝐵) → ∀𝑥𝐴 𝐵𝑦)
51 simp2 1062 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑥𝐴𝑤 = 𝐵) → 𝑥𝐴)
52 rspa 2930 . . . . . . . . . . . . . . 15 ((∀𝑥𝐴 𝐵𝑦𝑥𝐴) → 𝐵𝑦)
5350, 51, 52syl2anc 693 . . . . . . . . . . . . . 14 (((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑥𝐴𝑤 = 𝐵) → 𝐵𝑦)
5449, 53eqbrtrd 4675 . . . . . . . . . . . . 13 (((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑥𝐴𝑤 = 𝐵) → 𝑤𝑦)
55543exp 1264 . . . . . . . . . . . 12 ((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) → (𝑥𝐴 → (𝑤 = 𝐵𝑤𝑦)))
5655adantr 481 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}) → (𝑥𝐴 → (𝑤 = 𝐵𝑤𝑦)))
5747, 48, 56rexlimd 3026 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}) → (∃𝑥𝐴 𝑤 = 𝐵𝑤𝑦))
5843, 57mpd 15 . . . . . . . . 9 (((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}) → 𝑤𝑦)
5958ralrimiva 2966 . . . . . . . 8 ((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) → ∀𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑤𝑦)
60593adant2 1080 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝑦) → ∀𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑤𝑦)
61603exp 1264 . . . . . 6 (𝜑 → (𝑦 ∈ ℝ → (∀𝑥𝐴 𝐵𝑦 → ∀𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑤𝑦)))
6261reximdvai 3015 . . . . 5 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦 → ∃𝑦 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑤𝑦))
6337, 62mpd 15 . . . 4 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑤𝑦)
64 suprcl 10983 . . . 4 (({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ⊆ ℝ ∧ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑤𝑦) → sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < ) ∈ ℝ)
6513, 36, 63, 64syl3anc 1326 . . 3 (𝜑 → sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < ) ∈ ℝ)
661, 65syl5eqel 2705 . 2 (𝜑𝐶 ∈ ℝ)
6713adantr 481 . . . . 5 ((𝜑𝑥𝐴) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ⊆ ℝ)
6830, 35sylibr 224 . . . . 5 ((𝜑𝑥𝐴) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ≠ ∅)
6963adantr 481 . . . . 5 ((𝜑𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑤𝑦)
70 elabrexg 39206 . . . . . 6 ((𝑥𝐴𝐵 ∈ ℝ) → 𝐵 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵})
7122, 2, 70syl2anc 693 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵})
72 suprub 10984 . . . . 5 ((({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ⊆ ℝ ∧ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑤𝑦) ∧ 𝐵 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}) → 𝐵 ≤ sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < ))
7367, 68, 69, 71, 72syl31anc 1329 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ≤ sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < ))
7473, 1syl6breqr 4695 . . 3 ((𝜑𝑥𝐴) → 𝐵𝐶)
7574ralrimiva 2966 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
7666, 75jca 554 1 (𝜑 → (𝐶 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  {cab 2608  wne 2794  wral 2912  wrex 2913  Vcvv 3200  wss 3574  c0 3915   class class class wbr 4653  supcsup 8346  cr 9935   < clt 10074  cle 10075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269
This theorem is referenced by:  upbdrech2  39522
  Copyright terms: Public domain W3C validator