Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fperiodmul Structured version   Visualization version   GIF version

Theorem fperiodmul 39518
Description: A function with period T is also periodic with period multiple of T. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fperiodmul.f (𝜑𝐹:ℝ⟶ℂ)
fperiodmul.t (𝜑𝑇 ∈ ℝ)
fperiodmul.n (𝜑𝑁 ∈ ℤ)
fperiodmul.x (𝜑𝑋 ∈ ℝ)
fperiodmul.per ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
Assertion
Ref Expression
fperiodmul (𝜑 → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹𝑋))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑁   𝑥,𝑇   𝑥,𝑋   𝜑,𝑥

Proof of Theorem fperiodmul
StepHypRef Expression
1 fperiodmul.f . . . 4 (𝜑𝐹:ℝ⟶ℂ)
21adantr 481 . . 3 ((𝜑𝑁 ∈ ℕ0) → 𝐹:ℝ⟶ℂ)
3 fperiodmul.t . . . 4 (𝜑𝑇 ∈ ℝ)
43adantr 481 . . 3 ((𝜑𝑁 ∈ ℕ0) → 𝑇 ∈ ℝ)
5 simpr 477 . . 3 ((𝜑𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
6 fperiodmul.x . . . 4 (𝜑𝑋 ∈ ℝ)
76adantr 481 . . 3 ((𝜑𝑁 ∈ ℕ0) → 𝑋 ∈ ℝ)
8 fperiodmul.per . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
98adantlr 751 . . 3 (((𝜑𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
102, 4, 5, 7, 9fperiodmullem 39517 . 2 ((𝜑𝑁 ∈ ℕ0) → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹𝑋))
116recnd 10068 . . . . . . 7 (𝜑𝑋 ∈ ℂ)
12 fperiodmul.n . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
1312zcnd 11483 . . . . . . . 8 (𝜑𝑁 ∈ ℂ)
143recnd 10068 . . . . . . . 8 (𝜑𝑇 ∈ ℂ)
1513, 14mulcld 10060 . . . . . . 7 (𝜑 → (𝑁 · 𝑇) ∈ ℂ)
1611, 15subnegd 10399 . . . . . 6 (𝜑 → (𝑋 − -(𝑁 · 𝑇)) = (𝑋 + (𝑁 · 𝑇)))
1713, 14mulneg1d 10483 . . . . . . . 8 (𝜑 → (-𝑁 · 𝑇) = -(𝑁 · 𝑇))
1817eqcomd 2628 . . . . . . 7 (𝜑 → -(𝑁 · 𝑇) = (-𝑁 · 𝑇))
1918oveq2d 6666 . . . . . 6 (𝜑 → (𝑋 − -(𝑁 · 𝑇)) = (𝑋 − (-𝑁 · 𝑇)))
2016, 19eqtr3d 2658 . . . . 5 (𝜑 → (𝑋 + (𝑁 · 𝑇)) = (𝑋 − (-𝑁 · 𝑇)))
2120fveq2d 6195 . . . 4 (𝜑 → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹‘(𝑋 − (-𝑁 · 𝑇))))
2221adantr 481 . . 3 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹‘(𝑋 − (-𝑁 · 𝑇))))
231adantr 481 . . . 4 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝐹:ℝ⟶ℂ)
243adantr 481 . . . 4 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑇 ∈ ℝ)
25 znnn0nn 11489 . . . . . 6 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ0) → -𝑁 ∈ ℕ)
2612, 25sylan 488 . . . . 5 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → -𝑁 ∈ ℕ)
2726nnnn0d 11351 . . . 4 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → -𝑁 ∈ ℕ0)
286adantr 481 . . . . 5 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑋 ∈ ℝ)
2912adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
3029zred 11482 . . . . . . 7 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ)
3130renegcld 10457 . . . . . 6 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → -𝑁 ∈ ℝ)
3231, 24remulcld 10070 . . . . 5 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (-𝑁 · 𝑇) ∈ ℝ)
3328, 32resubcld 10458 . . . 4 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (𝑋 − (-𝑁 · 𝑇)) ∈ ℝ)
348adantlr 751 . . . 4 (((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
3523, 24, 27, 33, 34fperiodmullem 39517 . . 3 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (𝐹‘((𝑋 − (-𝑁 · 𝑇)) + (-𝑁 · 𝑇))) = (𝐹‘(𝑋 − (-𝑁 · 𝑇))))
3628recnd 10068 . . . . 5 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑋 ∈ ℂ)
3730recnd 10068 . . . . . . 7 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
3837negcld 10379 . . . . . 6 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → -𝑁 ∈ ℂ)
3924recnd 10068 . . . . . 6 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑇 ∈ ℂ)
4038, 39mulcld 10060 . . . . 5 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (-𝑁 · 𝑇) ∈ ℂ)
4136, 40npcand 10396 . . . 4 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → ((𝑋 − (-𝑁 · 𝑇)) + (-𝑁 · 𝑇)) = 𝑋)
4241fveq2d 6195 . . 3 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (𝐹‘((𝑋 − (-𝑁 · 𝑇)) + (-𝑁 · 𝑇))) = (𝐹𝑋))
4322, 35, 423eqtr2d 2662 . 2 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹𝑋))
4410, 43pm2.61dan 832 1 (𝜑 → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  cr 9935   + caddc 9939   · cmul 9941  cmin 10266  -cneg 10267  cn 11020  0cn0 11292  cz 11377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378
This theorem is referenced by:  fourierdlem89  40412  fourierdlem90  40413  fourierdlem91  40414  fourierdlem94  40417  fourierdlem97  40420  fourierdlem113  40436
  Copyright terms: Public domain W3C validator