MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vcm Structured version   Visualization version   GIF version

Theorem vcm 27431
Description: Minus 1 times a vector is the underlying group's inverse element. Equation 2 of [Kreyszig] p. 51. (Contributed by NM, 25-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
vcm.1 𝐺 = (1st𝑊)
vcm.2 𝑆 = (2nd𝑊)
vcm.3 𝑋 = ran 𝐺
vcm.4 𝑀 = (inv‘𝐺)
Assertion
Ref Expression
vcm ((𝑊 ∈ CVecOLD𝐴𝑋) → (-1𝑆𝐴) = (𝑀𝐴))

Proof of Theorem vcm
StepHypRef Expression
1 vcm.1 . . . . 5 𝐺 = (1st𝑊)
21vcgrp 27425 . . . 4 (𝑊 ∈ CVecOLD𝐺 ∈ GrpOp)
32adantr 481 . . 3 ((𝑊 ∈ CVecOLD𝐴𝑋) → 𝐺 ∈ GrpOp)
4 neg1cn 11124 . . . 4 -1 ∈ ℂ
5 vcm.2 . . . . 5 𝑆 = (2nd𝑊)
6 vcm.3 . . . . 5 𝑋 = ran 𝐺
71, 5, 6vccl 27418 . . . 4 ((𝑊 ∈ CVecOLD ∧ -1 ∈ ℂ ∧ 𝐴𝑋) → (-1𝑆𝐴) ∈ 𝑋)
84, 7mp3an2 1412 . . 3 ((𝑊 ∈ CVecOLD𝐴𝑋) → (-1𝑆𝐴) ∈ 𝑋)
9 eqid 2622 . . . 4 (GId‘𝐺) = (GId‘𝐺)
106, 9grporid 27371 . . 3 ((𝐺 ∈ GrpOp ∧ (-1𝑆𝐴) ∈ 𝑋) → ((-1𝑆𝐴)𝐺(GId‘𝐺)) = (-1𝑆𝐴))
113, 8, 10syl2anc 693 . 2 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((-1𝑆𝐴)𝐺(GId‘𝐺)) = (-1𝑆𝐴))
12 simpr 477 . . . . . 6 ((𝑊 ∈ CVecOLD𝐴𝑋) → 𝐴𝑋)
13 vcm.4 . . . . . . . 8 𝑀 = (inv‘𝐺)
146, 13grpoinvcl 27378 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑀𝐴) ∈ 𝑋)
152, 14sylan 488 . . . . . 6 ((𝑊 ∈ CVecOLD𝐴𝑋) → (𝑀𝐴) ∈ 𝑋)
166grpoass 27357 . . . . . 6 ((𝐺 ∈ GrpOp ∧ ((-1𝑆𝐴) ∈ 𝑋𝐴𝑋 ∧ (𝑀𝐴) ∈ 𝑋)) → (((-1𝑆𝐴)𝐺𝐴)𝐺(𝑀𝐴)) = ((-1𝑆𝐴)𝐺(𝐴𝐺(𝑀𝐴))))
173, 8, 12, 15, 16syl13anc 1328 . . . . 5 ((𝑊 ∈ CVecOLD𝐴𝑋) → (((-1𝑆𝐴)𝐺𝐴)𝐺(𝑀𝐴)) = ((-1𝑆𝐴)𝐺(𝐴𝐺(𝑀𝐴))))
181, 5, 6vcidOLD 27419 . . . . . . . 8 ((𝑊 ∈ CVecOLD𝐴𝑋) → (1𝑆𝐴) = 𝐴)
1918oveq2d 6666 . . . . . . 7 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((-1𝑆𝐴)𝐺(1𝑆𝐴)) = ((-1𝑆𝐴)𝐺𝐴))
20 ax-1cn 9994 . . . . . . . . . 10 1 ∈ ℂ
21 1pneg1e0 11129 . . . . . . . . . 10 (1 + -1) = 0
2220, 4, 21addcomli 10228 . . . . . . . . 9 (-1 + 1) = 0
2322oveq1i 6660 . . . . . . . 8 ((-1 + 1)𝑆𝐴) = (0𝑆𝐴)
241, 5, 6vcdir 27421 . . . . . . . . . 10 ((𝑊 ∈ CVecOLD ∧ (-1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴𝑋)) → ((-1 + 1)𝑆𝐴) = ((-1𝑆𝐴)𝐺(1𝑆𝐴)))
254, 24mp3anr1 1421 . . . . . . . . 9 ((𝑊 ∈ CVecOLD ∧ (1 ∈ ℂ ∧ 𝐴𝑋)) → ((-1 + 1)𝑆𝐴) = ((-1𝑆𝐴)𝐺(1𝑆𝐴)))
2620, 25mpanr1 719 . . . . . . . 8 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((-1 + 1)𝑆𝐴) = ((-1𝑆𝐴)𝐺(1𝑆𝐴)))
271, 5, 6, 9vc0 27429 . . . . . . . 8 ((𝑊 ∈ CVecOLD𝐴𝑋) → (0𝑆𝐴) = (GId‘𝐺))
2823, 26, 273eqtr3a 2680 . . . . . . 7 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((-1𝑆𝐴)𝐺(1𝑆𝐴)) = (GId‘𝐺))
2919, 28eqtr3d 2658 . . . . . 6 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((-1𝑆𝐴)𝐺𝐴) = (GId‘𝐺))
3029oveq1d 6665 . . . . 5 ((𝑊 ∈ CVecOLD𝐴𝑋) → (((-1𝑆𝐴)𝐺𝐴)𝐺(𝑀𝐴)) = ((GId‘𝐺)𝐺(𝑀𝐴)))
3117, 30eqtr3d 2658 . . . 4 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((-1𝑆𝐴)𝐺(𝐴𝐺(𝑀𝐴))) = ((GId‘𝐺)𝐺(𝑀𝐴)))
326, 9, 13grporinv 27381 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝐴𝐺(𝑀𝐴)) = (GId‘𝐺))
332, 32sylan 488 . . . . 5 ((𝑊 ∈ CVecOLD𝐴𝑋) → (𝐴𝐺(𝑀𝐴)) = (GId‘𝐺))
3433oveq2d 6666 . . . 4 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((-1𝑆𝐴)𝐺(𝐴𝐺(𝑀𝐴))) = ((-1𝑆𝐴)𝐺(GId‘𝐺)))
3531, 34eqtr3d 2658 . . 3 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((GId‘𝐺)𝐺(𝑀𝐴)) = ((-1𝑆𝐴)𝐺(GId‘𝐺)))
366, 9grpolid 27370 . . . 4 ((𝐺 ∈ GrpOp ∧ (𝑀𝐴) ∈ 𝑋) → ((GId‘𝐺)𝐺(𝑀𝐴)) = (𝑀𝐴))
373, 15, 36syl2anc 693 . . 3 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((GId‘𝐺)𝐺(𝑀𝐴)) = (𝑀𝐴))
3835, 37eqtr3d 2658 . 2 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((-1𝑆𝐴)𝐺(GId‘𝐺)) = (𝑀𝐴))
3911, 38eqtr3d 2658 1 ((𝑊 ∈ CVecOLD𝐴𝑋) → (-1𝑆𝐴) = (𝑀𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  ran crn 5115  cfv 5888  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  cc 9934  0cc0 9936  1c1 9937   + caddc 9939  -cneg 10267  GrpOpcgr 27343  GIdcgi 27344  invcgn 27345  CVecOLDcvc 27413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-sub 10268  df-neg 10269  df-grpo 27347  df-gid 27348  df-ginv 27349  df-ablo 27399  df-vc 27414
This theorem is referenced by:  nvinv  27494
  Copyright terms: Public domain W3C validator