Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xadd0ge Structured version   Visualization version   GIF version

Theorem xadd0ge 39536
Description: A number is less than or equal to itself plus a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
xadd0ge.a (𝜑𝐴 ∈ ℝ*)
xadd0ge.b (𝜑𝐵 ∈ (0[,]+∞))
Assertion
Ref Expression
xadd0ge (𝜑𝐴 ≤ (𝐴 +𝑒 𝐵))

Proof of Theorem xadd0ge
StepHypRef Expression
1 xadd0ge.a . . . 4 (𝜑𝐴 ∈ ℝ*)
2 xaddid1 12072 . . . 4 (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴)
31, 2syl 17 . . 3 (𝜑 → (𝐴 +𝑒 0) = 𝐴)
43eqcomd 2628 . 2 (𝜑𝐴 = (𝐴 +𝑒 0))
5 0xr 10086 . . . . . 6 0 ∈ ℝ*
65a1i 11 . . . . 5 (𝜑 → 0 ∈ ℝ*)
71, 6jca 554 . . . 4 (𝜑 → (𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*))
8 iccssxr 12256 . . . . . 6 (0[,]+∞) ⊆ ℝ*
9 xadd0ge.b . . . . . 6 (𝜑𝐵 ∈ (0[,]+∞))
108, 9sseldi 3601 . . . . 5 (𝜑𝐵 ∈ ℝ*)
111, 10jca 554 . . . 4 (𝜑 → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
127, 11jca 554 . . 3 (𝜑 → ((𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*) ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*)))
13 xrleid 11983 . . . . 5 (𝐴 ∈ ℝ*𝐴𝐴)
141, 13syl 17 . . . 4 (𝜑𝐴𝐴)
15 pnfxr 10092 . . . . . 6 +∞ ∈ ℝ*
1615a1i 11 . . . . 5 (𝜑 → +∞ ∈ ℝ*)
17 iccgelb 12230 . . . . 5 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐵 ∈ (0[,]+∞)) → 0 ≤ 𝐵)
186, 16, 9, 17syl3anc 1326 . . . 4 (𝜑 → 0 ≤ 𝐵)
1914, 18jca 554 . . 3 (𝜑 → (𝐴𝐴 ∧ 0 ≤ 𝐵))
20 xle2add 12089 . . 3 (((𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*) ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*)) → ((𝐴𝐴 ∧ 0 ≤ 𝐵) → (𝐴 +𝑒 0) ≤ (𝐴 +𝑒 𝐵)))
2112, 19, 20sylc 65 . 2 (𝜑 → (𝐴 +𝑒 0) ≤ (𝐴 +𝑒 𝐵))
224, 21eqbrtrd 4675 1 (𝜑𝐴 ≤ (𝐴 +𝑒 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990   class class class wbr 4653  (class class class)co 6650  0cc0 9936  +∞cpnf 10071  *cxr 10073  cle 10075   +𝑒 cxad 11944  [,]cicc 12178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-xadd 11947  df-icc 12182
This theorem is referenced by:  xadd0ge2  39557  sge0xadd  40652  meassle  40680  ovnsubaddlem1  40784
  Copyright terms: Public domain W3C validator