MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xltnegi Structured version   Visualization version   GIF version

Theorem xltnegi 12047
Description: Forward direction of xltneg 12048. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xltnegi ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → -𝑒𝐵 < -𝑒𝐴)

Proof of Theorem xltnegi
StepHypRef Expression
1 elxr 11950 . . 3 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 elxr 11950 . . . . . 6 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
3 ltneg 10528 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ -𝐵 < -𝐴))
4 rexneg 12042 . . . . . . . . . 10 (𝐵 ∈ ℝ → -𝑒𝐵 = -𝐵)
5 rexneg 12042 . . . . . . . . . 10 (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴)
64, 5breqan12rd 4670 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝑒𝐵 < -𝑒𝐴 ↔ -𝐵 < -𝐴))
73, 6bitr4d 271 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ -𝑒𝐵 < -𝑒𝐴))
87biimpd 219 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → -𝑒𝐵 < -𝑒𝐴))
9 xnegeq 12038 . . . . . . . . . . 11 (𝐵 = +∞ → -𝑒𝐵 = -𝑒+∞)
10 xnegpnf 12040 . . . . . . . . . . 11 -𝑒+∞ = -∞
119, 10syl6eq 2672 . . . . . . . . . 10 (𝐵 = +∞ → -𝑒𝐵 = -∞)
1211adantl 482 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → -𝑒𝐵 = -∞)
13 renegcl 10344 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
145, 13eqeltrd 2701 . . . . . . . . . . 11 (𝐴 ∈ ℝ → -𝑒𝐴 ∈ ℝ)
15 mnflt 11957 . . . . . . . . . . 11 (-𝑒𝐴 ∈ ℝ → -∞ < -𝑒𝐴)
1614, 15syl 17 . . . . . . . . . 10 (𝐴 ∈ ℝ → -∞ < -𝑒𝐴)
1716adantr 481 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → -∞ < -𝑒𝐴)
1812, 17eqbrtrd 4675 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → -𝑒𝐵 < -𝑒𝐴)
1918a1d 25 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 → -𝑒𝐵 < -𝑒𝐴))
20 simpr 477 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → 𝐵 = -∞)
2120breq2d 4665 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 < 𝐵𝐴 < -∞))
22 rexr 10085 . . . . . . . . . . 11 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
23 nltmnf 11963 . . . . . . . . . . 11 (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞)
2422, 23syl 17 . . . . . . . . . 10 (𝐴 ∈ ℝ → ¬ 𝐴 < -∞)
2524adantr 481 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → ¬ 𝐴 < -∞)
2625pm2.21d 118 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 < -∞ → -𝑒𝐵 < -𝑒𝐴))
2721, 26sylbid 230 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 → -𝑒𝐵 < -𝑒𝐴))
288, 19, 273jaodan 1394 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (𝐴 < 𝐵 → -𝑒𝐵 < -𝑒𝐴))
292, 28sylan2b 492 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → -𝑒𝐵 < -𝑒𝐴))
3029expimpd 629 . . . 4 (𝐴 ∈ ℝ → ((𝐵 ∈ ℝ*𝐴 < 𝐵) → -𝑒𝐵 < -𝑒𝐴))
31 simpl 473 . . . . . . 7 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → 𝐴 = +∞)
3231breq1d 4663 . . . . . 6 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ +∞ < 𝐵))
33 pnfnlt 11962 . . . . . . . 8 (𝐵 ∈ ℝ* → ¬ +∞ < 𝐵)
3433adantl 482 . . . . . . 7 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → ¬ +∞ < 𝐵)
3534pm2.21d 118 . . . . . 6 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (+∞ < 𝐵 → -𝑒𝐵 < -𝑒𝐴))
3632, 35sylbid 230 . . . . 5 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → -𝑒𝐵 < -𝑒𝐴))
3736expimpd 629 . . . 4 (𝐴 = +∞ → ((𝐵 ∈ ℝ*𝐴 < 𝐵) → -𝑒𝐵 < -𝑒𝐴))
38 breq1 4656 . . . . . 6 (𝐴 = -∞ → (𝐴 < 𝐵 ↔ -∞ < 𝐵))
3938anbi2d 740 . . . . 5 (𝐴 = -∞ → ((𝐵 ∈ ℝ*𝐴 < 𝐵) ↔ (𝐵 ∈ ℝ* ∧ -∞ < 𝐵)))
40 renegcl 10344 . . . . . . . . . . 11 (𝐵 ∈ ℝ → -𝐵 ∈ ℝ)
414, 40eqeltrd 2701 . . . . . . . . . 10 (𝐵 ∈ ℝ → -𝑒𝐵 ∈ ℝ)
4241adantr 481 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ -∞ < 𝐵) → -𝑒𝐵 ∈ ℝ)
43 ltpnf 11954 . . . . . . . . 9 (-𝑒𝐵 ∈ ℝ → -𝑒𝐵 < +∞)
4442, 43syl 17 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ -∞ < 𝐵) → -𝑒𝐵 < +∞)
4511adantr 481 . . . . . . . . 9 ((𝐵 = +∞ ∧ -∞ < 𝐵) → -𝑒𝐵 = -∞)
46 mnfltpnf 11960 . . . . . . . . 9 -∞ < +∞
4745, 46syl6eqbr 4692 . . . . . . . 8 ((𝐵 = +∞ ∧ -∞ < 𝐵) → -𝑒𝐵 < +∞)
48 breq2 4657 . . . . . . . . . 10 (𝐵 = -∞ → (-∞ < 𝐵 ↔ -∞ < -∞))
49 mnfxr 10096 . . . . . . . . . . . 12 -∞ ∈ ℝ*
50 nltmnf 11963 . . . . . . . . . . . 12 (-∞ ∈ ℝ* → ¬ -∞ < -∞)
5149, 50ax-mp 5 . . . . . . . . . . 11 ¬ -∞ < -∞
5251pm2.21i 116 . . . . . . . . . 10 (-∞ < -∞ → -𝑒𝐵 < +∞)
5348, 52syl6bi 243 . . . . . . . . 9 (𝐵 = -∞ → (-∞ < 𝐵 → -𝑒𝐵 < +∞))
5453imp 445 . . . . . . . 8 ((𝐵 = -∞ ∧ -∞ < 𝐵) → -𝑒𝐵 < +∞)
5544, 47, 543jaoian 1393 . . . . . . 7 (((𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞) ∧ -∞ < 𝐵) → -𝑒𝐵 < +∞)
562, 55sylanb 489 . . . . . 6 ((𝐵 ∈ ℝ* ∧ -∞ < 𝐵) → -𝑒𝐵 < +∞)
57 xnegeq 12038 . . . . . . . 8 (𝐴 = -∞ → -𝑒𝐴 = -𝑒-∞)
58 xnegmnf 12041 . . . . . . . 8 -𝑒-∞ = +∞
5957, 58syl6eq 2672 . . . . . . 7 (𝐴 = -∞ → -𝑒𝐴 = +∞)
6059breq2d 4665 . . . . . 6 (𝐴 = -∞ → (-𝑒𝐵 < -𝑒𝐴 ↔ -𝑒𝐵 < +∞))
6156, 60syl5ibr 236 . . . . 5 (𝐴 = -∞ → ((𝐵 ∈ ℝ* ∧ -∞ < 𝐵) → -𝑒𝐵 < -𝑒𝐴))
6239, 61sylbid 230 . . . 4 (𝐴 = -∞ → ((𝐵 ∈ ℝ*𝐴 < 𝐵) → -𝑒𝐵 < -𝑒𝐴))
6330, 37, 623jaoi 1391 . . 3 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → ((𝐵 ∈ ℝ*𝐴 < 𝐵) → -𝑒𝐵 < -𝑒𝐴))
641, 63sylbi 207 . 2 (𝐴 ∈ ℝ* → ((𝐵 ∈ ℝ*𝐴 < 𝐵) → -𝑒𝐵 < -𝑒𝐴))
65643impib 1262 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → -𝑒𝐵 < -𝑒𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3o 1036  w3a 1037   = wceq 1483  wcel 1990   class class class wbr 4653  cr 9935  +∞cpnf 10071  -∞cmnf 10072  *cxr 10073   < clt 10074  -cneg 10267  -𝑒cxne 11943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-xneg 11946
This theorem is referenced by:  xltneg  12048  xrsdsreclblem  19792
  Copyright terms: Public domain W3C validator