MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsvsca Structured version   Visualization version   GIF version

Theorem xpsvsca 16239
Description: Value of the scalar multiplication function in a binary structure product. (Contributed by Mario Carneiro, 15-Aug-2015.)
Hypotheses
Ref Expression
xpssca.t 𝑇 = (𝑅 ×s 𝑆)
xpssca.g 𝐺 = (Scalar‘𝑅)
xpssca.1 (𝜑𝑅𝑉)
xpssca.2 (𝜑𝑆𝑊)
xpsvsca.x 𝑋 = (Base‘𝑅)
xpsvsca.y 𝑌 = (Base‘𝑆)
xpsvsca.k 𝐾 = (Base‘𝐺)
xpsvsca.m · = ( ·𝑠𝑅)
xpsvsca.n × = ( ·𝑠𝑆)
xpsvsca.p = ( ·𝑠𝑇)
xpsvsca.3 (𝜑𝐴𝐾)
xpsvsca.4 (𝜑𝐵𝑋)
xpsvsca.5 (𝜑𝐶𝑌)
xpsvsca.6 (𝜑 → (𝐴 · 𝐵) ∈ 𝑋)
xpsvsca.7 (𝜑 → (𝐴 × 𝐶) ∈ 𝑌)
Assertion
Ref Expression
xpsvsca (𝜑 → (𝐴 𝐵, 𝐶⟩) = ⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩)

Proof of Theorem xpsvsca
Dummy variables 𝑘 𝑎 𝑥 𝑦 𝑐 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpsvsca.3 . . 3 (𝜑𝐴𝐾)
2 df-ov 6653 . . . . 5 (𝐵(𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))𝐶) = ((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))‘⟨𝐵, 𝐶⟩)
3 xpsvsca.4 . . . . . 6 (𝜑𝐵𝑋)
4 xpsvsca.5 . . . . . 6 (𝜑𝐶𝑌)
5 eqid 2622 . . . . . . 7 (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})) = (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))
65xpsfval 16227 . . . . . 6 ((𝐵𝑋𝐶𝑌) → (𝐵(𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))𝐶) = ({𝐵} +𝑐 {𝐶}))
73, 4, 6syl2anc 693 . . . . 5 (𝜑 → (𝐵(𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))𝐶) = ({𝐵} +𝑐 {𝐶}))
82, 7syl5eqr 2670 . . . 4 (𝜑 → ((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))‘⟨𝐵, 𝐶⟩) = ({𝐵} +𝑐 {𝐶}))
9 opelxpi 5148 . . . . . 6 ((𝐵𝑋𝐶𝑌) → ⟨𝐵, 𝐶⟩ ∈ (𝑋 × 𝑌))
103, 4, 9syl2anc 693 . . . . 5 (𝜑 → ⟨𝐵, 𝐶⟩ ∈ (𝑋 × 𝑌))
115xpsff1o2 16231 . . . . . . 7 (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))
12 f1of 6137 . . . . . . 7 ((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})) → (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})):(𝑋 × 𝑌)⟶ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})))
1311, 12ax-mp 5 . . . . . 6 (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})):(𝑋 × 𝑌)⟶ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))
1413ffvelrni 6358 . . . . 5 (⟨𝐵, 𝐶⟩ ∈ (𝑋 × 𝑌) → ((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))‘⟨𝐵, 𝐶⟩) ∈ ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})))
1510, 14syl 17 . . . 4 (𝜑 → ((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))‘⟨𝐵, 𝐶⟩) ∈ ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})))
168, 15eqeltrrd 2702 . . 3 (𝜑({𝐵} +𝑐 {𝐶}) ∈ ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})))
17 xpssca.t . . . . 5 𝑇 = (𝑅 ×s 𝑆)
18 xpsvsca.x . . . . 5 𝑋 = (Base‘𝑅)
19 xpsvsca.y . . . . 5 𝑌 = (Base‘𝑆)
20 xpssca.1 . . . . 5 (𝜑𝑅𝑉)
21 xpssca.2 . . . . 5 (𝜑𝑆𝑊)
22 xpssca.g . . . . 5 𝐺 = (Scalar‘𝑅)
23 eqid 2622 . . . . 5 (𝐺Xs({𝑅} +𝑐 {𝑆})) = (𝐺Xs({𝑅} +𝑐 {𝑆}))
2417, 18, 19, 20, 21, 5, 22, 23xpsval 16232 . . . 4 (𝜑𝑇 = ((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})) “s (𝐺Xs({𝑅} +𝑐 {𝑆}))))
2517, 18, 19, 20, 21, 5, 22, 23xpslem 16233 . . . 4 (𝜑 → ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})) = (Base‘(𝐺Xs({𝑅} +𝑐 {𝑆}))))
26 f1ocnv 6149 . . . . . 6 ((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})) → (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})):ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))–1-1-onto→(𝑋 × 𝑌))
2711, 26mp1i 13 . . . . 5 (𝜑(𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})):ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))–1-1-onto→(𝑋 × 𝑌))
28 f1ofo 6144 . . . . 5 ((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})):ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))–1-1-onto→(𝑋 × 𝑌) → (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})):ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))–onto→(𝑋 × 𝑌))
2927, 28syl 17 . . . 4 (𝜑(𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})):ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))–onto→(𝑋 × 𝑌))
30 ovexd 6680 . . . 4 (𝜑 → (𝐺Xs({𝑅} +𝑐 {𝑆})) ∈ V)
31 fvex 6201 . . . . . . . 8 (Scalar‘𝑅) ∈ V
3222, 31eqeltri 2697 . . . . . . 7 𝐺 ∈ V
3332a1i 11 . . . . . 6 (⊤ → 𝐺 ∈ V)
34 ovex 6678 . . . . . . . 8 ({𝑅} +𝑐 {𝑆}) ∈ V
3534cnvex 7113 . . . . . . 7 ({𝑅} +𝑐 {𝑆}) ∈ V
3635a1i 11 . . . . . 6 (⊤ → ({𝑅} +𝑐 {𝑆}) ∈ V)
3723, 33, 36prdssca 16116 . . . . 5 (⊤ → 𝐺 = (Scalar‘(𝐺Xs({𝑅} +𝑐 {𝑆}))))
3837trud 1493 . . . 4 𝐺 = (Scalar‘(𝐺Xs({𝑅} +𝑐 {𝑆})))
39 xpsvsca.k . . . 4 𝐾 = (Base‘𝐺)
40 eqid 2622 . . . 4 ( ·𝑠 ‘(𝐺Xs({𝑅} +𝑐 {𝑆}))) = ( ·𝑠 ‘(𝐺Xs({𝑅} +𝑐 {𝑆})))
41 xpsvsca.p . . . 4 = ( ·𝑠𝑇)
4227f1ovscpbl 16186 . . . 4 ((𝜑 ∧ (𝑎𝐾𝑏 ∈ ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})) ∧ 𝑐 ∈ ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})))) → (((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))‘𝑏) = ((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))‘𝑐) → ((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))‘(𝑎( ·𝑠 ‘(𝐺Xs({𝑅} +𝑐 {𝑆})))𝑏)) = ((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))‘(𝑎( ·𝑠 ‘(𝐺Xs({𝑅} +𝑐 {𝑆})))𝑐))))
4324, 25, 29, 30, 38, 39, 40, 41, 42imasvscaval 16198 . . 3 ((𝜑𝐴𝐾({𝐵} +𝑐 {𝐶}) ∈ ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))) → (𝐴 ((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))‘({𝐵} +𝑐 {𝐶}))) = ((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))‘(𝐴( ·𝑠 ‘(𝐺Xs({𝑅} +𝑐 {𝑆})))({𝐵} +𝑐 {𝐶}))))
441, 16, 43mpd3an23 1426 . 2 (𝜑 → (𝐴 ((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))‘({𝐵} +𝑐 {𝐶}))) = ((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))‘(𝐴( ·𝑠 ‘(𝐺Xs({𝑅} +𝑐 {𝑆})))({𝐵} +𝑐 {𝐶}))))
45 f1ocnvfv 6534 . . . . 5 (((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})) ∧ ⟨𝐵, 𝐶⟩ ∈ (𝑋 × 𝑌)) → (((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))‘⟨𝐵, 𝐶⟩) = ({𝐵} +𝑐 {𝐶}) → ((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))‘({𝐵} +𝑐 {𝐶})) = ⟨𝐵, 𝐶⟩))
4611, 10, 45sylancr 695 . . . 4 (𝜑 → (((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))‘⟨𝐵, 𝐶⟩) = ({𝐵} +𝑐 {𝐶}) → ((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))‘({𝐵} +𝑐 {𝐶})) = ⟨𝐵, 𝐶⟩))
478, 46mpd 15 . . 3 (𝜑 → ((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))‘({𝐵} +𝑐 {𝐶})) = ⟨𝐵, 𝐶⟩)
4847oveq2d 6666 . 2 (𝜑 → (𝐴 ((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))‘({𝐵} +𝑐 {𝐶}))) = (𝐴 𝐵, 𝐶⟩))
49 iftrue 4092 . . . . . . . . . . . 12 (𝑘 = ∅ → if(𝑘 = ∅, 𝑅, 𝑆) = 𝑅)
5049fveq2d 6195 . . . . . . . . . . 11 (𝑘 = ∅ → ( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆)) = ( ·𝑠𝑅))
51 xpsvsca.m . . . . . . . . . . 11 · = ( ·𝑠𝑅)
5250, 51syl6eqr 2674 . . . . . . . . . 10 (𝑘 = ∅ → ( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆)) = · )
53 eqidd 2623 . . . . . . . . . 10 (𝑘 = ∅ → 𝐴 = 𝐴)
54 iftrue 4092 . . . . . . . . . 10 (𝑘 = ∅ → if(𝑘 = ∅, 𝐵, 𝐶) = 𝐵)
5552, 53, 54oveq123d 6671 . . . . . . . . 9 (𝑘 = ∅ → (𝐴( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐵, 𝐶)) = (𝐴 · 𝐵))
56 iftrue 4092 . . . . . . . . 9 (𝑘 = ∅ → if(𝑘 = ∅, (𝐴 · 𝐵), (𝐴 × 𝐶)) = (𝐴 · 𝐵))
5755, 56eqtr4d 2659 . . . . . . . 8 (𝑘 = ∅ → (𝐴( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐵, 𝐶)) = if(𝑘 = ∅, (𝐴 · 𝐵), (𝐴 × 𝐶)))
58 iffalse 4095 . . . . . . . . . . . 12 𝑘 = ∅ → if(𝑘 = ∅, 𝑅, 𝑆) = 𝑆)
5958fveq2d 6195 . . . . . . . . . . 11 𝑘 = ∅ → ( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆)) = ( ·𝑠𝑆))
60 xpsvsca.n . . . . . . . . . . 11 × = ( ·𝑠𝑆)
6159, 60syl6eqr 2674 . . . . . . . . . 10 𝑘 = ∅ → ( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆)) = × )
62 eqidd 2623 . . . . . . . . . 10 𝑘 = ∅ → 𝐴 = 𝐴)
63 iffalse 4095 . . . . . . . . . 10 𝑘 = ∅ → if(𝑘 = ∅, 𝐵, 𝐶) = 𝐶)
6461, 62, 63oveq123d 6671 . . . . . . . . 9 𝑘 = ∅ → (𝐴( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐵, 𝐶)) = (𝐴 × 𝐶))
65 iffalse 4095 . . . . . . . . 9 𝑘 = ∅ → if(𝑘 = ∅, (𝐴 · 𝐵), (𝐴 × 𝐶)) = (𝐴 × 𝐶))
6664, 65eqtr4d 2659 . . . . . . . 8 𝑘 = ∅ → (𝐴( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐵, 𝐶)) = if(𝑘 = ∅, (𝐴 · 𝐵), (𝐴 × 𝐶)))
6757, 66pm2.61i 176 . . . . . . 7 (𝐴( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐵, 𝐶)) = if(𝑘 = ∅, (𝐴 · 𝐵), (𝐴 × 𝐶))
6820adantr 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ 2𝑜) → 𝑅𝑉)
6921adantr 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ 2𝑜) → 𝑆𝑊)
70 simpr 477 . . . . . . . . . 10 ((𝜑𝑘 ∈ 2𝑜) → 𝑘 ∈ 2𝑜)
71 xpscfv 16222 . . . . . . . . . 10 ((𝑅𝑉𝑆𝑊𝑘 ∈ 2𝑜) → (({𝑅} +𝑐 {𝑆})‘𝑘) = if(𝑘 = ∅, 𝑅, 𝑆))
7268, 69, 70, 71syl3anc 1326 . . . . . . . . 9 ((𝜑𝑘 ∈ 2𝑜) → (({𝑅} +𝑐 {𝑆})‘𝑘) = if(𝑘 = ∅, 𝑅, 𝑆))
7372fveq2d 6195 . . . . . . . 8 ((𝜑𝑘 ∈ 2𝑜) → ( ·𝑠 ‘(({𝑅} +𝑐 {𝑆})‘𝑘)) = ( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆)))
74 eqidd 2623 . . . . . . . 8 ((𝜑𝑘 ∈ 2𝑜) → 𝐴 = 𝐴)
753adantr 481 . . . . . . . . 9 ((𝜑𝑘 ∈ 2𝑜) → 𝐵𝑋)
764adantr 481 . . . . . . . . 9 ((𝜑𝑘 ∈ 2𝑜) → 𝐶𝑌)
77 xpscfv 16222 . . . . . . . . 9 ((𝐵𝑋𝐶𝑌𝑘 ∈ 2𝑜) → (({𝐵} +𝑐 {𝐶})‘𝑘) = if(𝑘 = ∅, 𝐵, 𝐶))
7875, 76, 70, 77syl3anc 1326 . . . . . . . 8 ((𝜑𝑘 ∈ 2𝑜) → (({𝐵} +𝑐 {𝐶})‘𝑘) = if(𝑘 = ∅, 𝐵, 𝐶))
7973, 74, 78oveq123d 6671 . . . . . . 7 ((𝜑𝑘 ∈ 2𝑜) → (𝐴( ·𝑠 ‘(({𝑅} +𝑐 {𝑆})‘𝑘))(({𝐵} +𝑐 {𝐶})‘𝑘)) = (𝐴( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐵, 𝐶)))
80 xpsvsca.6 . . . . . . . . 9 (𝜑 → (𝐴 · 𝐵) ∈ 𝑋)
8180adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ 2𝑜) → (𝐴 · 𝐵) ∈ 𝑋)
82 xpsvsca.7 . . . . . . . . 9 (𝜑 → (𝐴 × 𝐶) ∈ 𝑌)
8382adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ 2𝑜) → (𝐴 × 𝐶) ∈ 𝑌)
84 xpscfv 16222 . . . . . . . 8 (((𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐴 × 𝐶) ∈ 𝑌𝑘 ∈ 2𝑜) → (({(𝐴 · 𝐵)} +𝑐 {(𝐴 × 𝐶)})‘𝑘) = if(𝑘 = ∅, (𝐴 · 𝐵), (𝐴 × 𝐶)))
8581, 83, 70, 84syl3anc 1326 . . . . . . 7 ((𝜑𝑘 ∈ 2𝑜) → (({(𝐴 · 𝐵)} +𝑐 {(𝐴 × 𝐶)})‘𝑘) = if(𝑘 = ∅, (𝐴 · 𝐵), (𝐴 × 𝐶)))
8667, 79, 853eqtr4a 2682 . . . . . 6 ((𝜑𝑘 ∈ 2𝑜) → (𝐴( ·𝑠 ‘(({𝑅} +𝑐 {𝑆})‘𝑘))(({𝐵} +𝑐 {𝐶})‘𝑘)) = (({(𝐴 · 𝐵)} +𝑐 {(𝐴 × 𝐶)})‘𝑘))
8786mpteq2dva 4744 . . . . 5 (𝜑 → (𝑘 ∈ 2𝑜 ↦ (𝐴( ·𝑠 ‘(({𝑅} +𝑐 {𝑆})‘𝑘))(({𝐵} +𝑐 {𝐶})‘𝑘))) = (𝑘 ∈ 2𝑜 ↦ (({(𝐴 · 𝐵)} +𝑐 {(𝐴 × 𝐶)})‘𝑘)))
88 eqid 2622 . . . . . 6 (Base‘(𝐺Xs({𝑅} +𝑐 {𝑆}))) = (Base‘(𝐺Xs({𝑅} +𝑐 {𝑆})))
8932a1i 11 . . . . . 6 (𝜑𝐺 ∈ V)
90 2on 7568 . . . . . . 7 2𝑜 ∈ On
9190a1i 11 . . . . . 6 (𝜑 → 2𝑜 ∈ On)
92 xpscfn 16219 . . . . . . 7 ((𝑅𝑉𝑆𝑊) → ({𝑅} +𝑐 {𝑆}) Fn 2𝑜)
9320, 21, 92syl2anc 693 . . . . . 6 (𝜑({𝑅} +𝑐 {𝑆}) Fn 2𝑜)
9416, 25eleqtrd 2703 . . . . . 6 (𝜑({𝐵} +𝑐 {𝐶}) ∈ (Base‘(𝐺Xs({𝑅} +𝑐 {𝑆}))))
9523, 88, 40, 39, 89, 91, 93, 1, 94prdsvscaval 16139 . . . . 5 (𝜑 → (𝐴( ·𝑠 ‘(𝐺Xs({𝑅} +𝑐 {𝑆})))({𝐵} +𝑐 {𝐶})) = (𝑘 ∈ 2𝑜 ↦ (𝐴( ·𝑠 ‘(({𝑅} +𝑐 {𝑆})‘𝑘))(({𝐵} +𝑐 {𝐶})‘𝑘))))
96 xpscfn 16219 . . . . . . 7 (((𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐴 × 𝐶) ∈ 𝑌) → ({(𝐴 · 𝐵)} +𝑐 {(𝐴 × 𝐶)}) Fn 2𝑜)
9780, 82, 96syl2anc 693 . . . . . 6 (𝜑({(𝐴 · 𝐵)} +𝑐 {(𝐴 × 𝐶)}) Fn 2𝑜)
98 dffn5 6241 . . . . . 6 (({(𝐴 · 𝐵)} +𝑐 {(𝐴 × 𝐶)}) Fn 2𝑜({(𝐴 · 𝐵)} +𝑐 {(𝐴 × 𝐶)}) = (𝑘 ∈ 2𝑜 ↦ (({(𝐴 · 𝐵)} +𝑐 {(𝐴 × 𝐶)})‘𝑘)))
9997, 98sylib 208 . . . . 5 (𝜑({(𝐴 · 𝐵)} +𝑐 {(𝐴 × 𝐶)}) = (𝑘 ∈ 2𝑜 ↦ (({(𝐴 · 𝐵)} +𝑐 {(𝐴 × 𝐶)})‘𝑘)))
10087, 95, 993eqtr4d 2666 . . . 4 (𝜑 → (𝐴( ·𝑠 ‘(𝐺Xs({𝑅} +𝑐 {𝑆})))({𝐵} +𝑐 {𝐶})) = ({(𝐴 · 𝐵)} +𝑐 {(𝐴 × 𝐶)}))
101100fveq2d 6195 . . 3 (𝜑 → ((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))‘(𝐴( ·𝑠 ‘(𝐺Xs({𝑅} +𝑐 {𝑆})))({𝐵} +𝑐 {𝐶}))) = ((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))‘({(𝐴 · 𝐵)} +𝑐 {(𝐴 × 𝐶)})))
102 df-ov 6653 . . . . 5 ((𝐴 · 𝐵)(𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))(𝐴 × 𝐶)) = ((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))‘⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩)
1035xpsfval 16227 . . . . . 6 (((𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐴 × 𝐶) ∈ 𝑌) → ((𝐴 · 𝐵)(𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))(𝐴 × 𝐶)) = ({(𝐴 · 𝐵)} +𝑐 {(𝐴 × 𝐶)}))
10480, 82, 103syl2anc 693 . . . . 5 (𝜑 → ((𝐴 · 𝐵)(𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))(𝐴 × 𝐶)) = ({(𝐴 · 𝐵)} +𝑐 {(𝐴 × 𝐶)}))
105102, 104syl5eqr 2670 . . . 4 (𝜑 → ((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))‘⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩) = ({(𝐴 · 𝐵)} +𝑐 {(𝐴 × 𝐶)}))
106 opelxpi 5148 . . . . . 6 (((𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐴 × 𝐶) ∈ 𝑌) → ⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩ ∈ (𝑋 × 𝑌))
10780, 82, 106syl2anc 693 . . . . 5 (𝜑 → ⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩ ∈ (𝑋 × 𝑌))
108 f1ocnvfv 6534 . . . . 5 (((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})) ∧ ⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩ ∈ (𝑋 × 𝑌)) → (((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))‘⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩) = ({(𝐴 · 𝐵)} +𝑐 {(𝐴 × 𝐶)}) → ((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))‘({(𝐴 · 𝐵)} +𝑐 {(𝐴 × 𝐶)})) = ⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩))
10911, 107, 108sylancr 695 . . . 4 (𝜑 → (((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))‘⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩) = ({(𝐴 · 𝐵)} +𝑐 {(𝐴 × 𝐶)}) → ((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))‘({(𝐴 · 𝐵)} +𝑐 {(𝐴 × 𝐶)})) = ⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩))
110105, 109mpd 15 . . 3 (𝜑 → ((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))‘({(𝐴 · 𝐵)} +𝑐 {(𝐴 × 𝐶)})) = ⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩)
111101, 110eqtrd 2656 . 2 (𝜑 → ((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))‘(𝐴( ·𝑠 ‘(𝐺Xs({𝑅} +𝑐 {𝑆})))({𝐵} +𝑐 {𝐶}))) = ⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩)
11244, 48, 1113eqtr3d 2664 1 (𝜑 → (𝐴 𝐵, 𝐶⟩) = ⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wtru 1484  wcel 1990  Vcvv 3200  c0 3915  ifcif 4086  {csn 4177  cop 4183  cmpt 4729   × cxp 5112  ccnv 5113  ran crn 5115  Oncon0 5723   Fn wfn 5883  wf 5884  ontowfo 5886  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  cmpt2 6652  2𝑜c2o 7554   +𝑐 ccda 8989  Basecbs 15857  Scalarcsca 15944   ·𝑠 cvsca 15945  Xscprds 16106   ×s cxps 16166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-prds 16108  df-imas 16168  df-xps 16170
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator