MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsfeq Structured version   Visualization version   GIF version

Theorem xpsfeq 16224
Description: A function on 2𝑜 is determined by its values at zero and one. (Contributed by Mario Carneiro, 27-Aug-2015.)
Assertion
Ref Expression
xpsfeq (𝐺 Fn 2𝑜({(𝐺‘∅)} +𝑐 {(𝐺‘1𝑜)}) = 𝐺)

Proof of Theorem xpsfeq
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fvex 6201 . . . 4 (𝐺‘∅) ∈ V
2 fvex 6201 . . . 4 (𝐺‘1𝑜) ∈ V
3 xpscfn 16219 . . . 4 (((𝐺‘∅) ∈ V ∧ (𝐺‘1𝑜) ∈ V) → ({(𝐺‘∅)} +𝑐 {(𝐺‘1𝑜)}) Fn 2𝑜)
41, 2, 3mp2an 708 . . 3 ({(𝐺‘∅)} +𝑐 {(𝐺‘1𝑜)}) Fn 2𝑜
54a1i 11 . 2 (𝐺 Fn 2𝑜({(𝐺‘∅)} +𝑐 {(𝐺‘1𝑜)}) Fn 2𝑜)
6 id 22 . 2 (𝐺 Fn 2𝑜𝐺 Fn 2𝑜)
7 elpri 4197 . . . . 5 (𝑘 ∈ {∅, 1𝑜} → (𝑘 = ∅ ∨ 𝑘 = 1𝑜))
8 df2o3 7573 . . . . 5 2𝑜 = {∅, 1𝑜}
97, 8eleq2s 2719 . . . 4 (𝑘 ∈ 2𝑜 → (𝑘 = ∅ ∨ 𝑘 = 1𝑜))
10 xpsc0 16220 . . . . . . 7 ((𝐺‘∅) ∈ V → (({(𝐺‘∅)} +𝑐 {(𝐺‘1𝑜)})‘∅) = (𝐺‘∅))
111, 10ax-mp 5 . . . . . 6 (({(𝐺‘∅)} +𝑐 {(𝐺‘1𝑜)})‘∅) = (𝐺‘∅)
12 fveq2 6191 . . . . . 6 (𝑘 = ∅ → (({(𝐺‘∅)} +𝑐 {(𝐺‘1𝑜)})‘𝑘) = (({(𝐺‘∅)} +𝑐 {(𝐺‘1𝑜)})‘∅))
13 fveq2 6191 . . . . . 6 (𝑘 = ∅ → (𝐺𝑘) = (𝐺‘∅))
1411, 12, 133eqtr4a 2682 . . . . 5 (𝑘 = ∅ → (({(𝐺‘∅)} +𝑐 {(𝐺‘1𝑜)})‘𝑘) = (𝐺𝑘))
15 xpsc1 16221 . . . . . . 7 ((𝐺‘1𝑜) ∈ V → (({(𝐺‘∅)} +𝑐 {(𝐺‘1𝑜)})‘1𝑜) = (𝐺‘1𝑜))
162, 15ax-mp 5 . . . . . 6 (({(𝐺‘∅)} +𝑐 {(𝐺‘1𝑜)})‘1𝑜) = (𝐺‘1𝑜)
17 fveq2 6191 . . . . . 6 (𝑘 = 1𝑜 → (({(𝐺‘∅)} +𝑐 {(𝐺‘1𝑜)})‘𝑘) = (({(𝐺‘∅)} +𝑐 {(𝐺‘1𝑜)})‘1𝑜))
18 fveq2 6191 . . . . . 6 (𝑘 = 1𝑜 → (𝐺𝑘) = (𝐺‘1𝑜))
1916, 17, 183eqtr4a 2682 . . . . 5 (𝑘 = 1𝑜 → (({(𝐺‘∅)} +𝑐 {(𝐺‘1𝑜)})‘𝑘) = (𝐺𝑘))
2014, 19jaoi 394 . . . 4 ((𝑘 = ∅ ∨ 𝑘 = 1𝑜) → (({(𝐺‘∅)} +𝑐 {(𝐺‘1𝑜)})‘𝑘) = (𝐺𝑘))
219, 20syl 17 . . 3 (𝑘 ∈ 2𝑜 → (({(𝐺‘∅)} +𝑐 {(𝐺‘1𝑜)})‘𝑘) = (𝐺𝑘))
2221adantl 482 . 2 ((𝐺 Fn 2𝑜𝑘 ∈ 2𝑜) → (({(𝐺‘∅)} +𝑐 {(𝐺‘1𝑜)})‘𝑘) = (𝐺𝑘))
235, 6, 22eqfnfvd 6314 1 (𝐺 Fn 2𝑜({(𝐺‘∅)} +𝑐 {(𝐺‘1𝑜)}) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383   = wceq 1483  wcel 1990  Vcvv 3200  c0 3915  {csn 4177  {cpr 4179  ccnv 5113   Fn wfn 5883  cfv 5888  (class class class)co 6650  1𝑜c1o 7553  2𝑜c2o 7554   +𝑐 ccda 8989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1o 7560  df-2o 7561  df-cda 8990
This theorem is referenced by:  xpsff1o  16228  xpstopnlem2  21614
  Copyright terms: Public domain W3C validator