![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpsfeq | Structured version Visualization version GIF version |
Description: A function on 2𝑜 is determined by its values at zero and one. (Contributed by Mario Carneiro, 27-Aug-2015.) |
Ref | Expression |
---|---|
xpsfeq | ⊢ (𝐺 Fn 2𝑜 → ◡({(𝐺‘∅)} +𝑐 {(𝐺‘1𝑜)}) = 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6201 | . . . 4 ⊢ (𝐺‘∅) ∈ V | |
2 | fvex 6201 | . . . 4 ⊢ (𝐺‘1𝑜) ∈ V | |
3 | xpscfn 16219 | . . . 4 ⊢ (((𝐺‘∅) ∈ V ∧ (𝐺‘1𝑜) ∈ V) → ◡({(𝐺‘∅)} +𝑐 {(𝐺‘1𝑜)}) Fn 2𝑜) | |
4 | 1, 2, 3 | mp2an 708 | . . 3 ⊢ ◡({(𝐺‘∅)} +𝑐 {(𝐺‘1𝑜)}) Fn 2𝑜 |
5 | 4 | a1i 11 | . 2 ⊢ (𝐺 Fn 2𝑜 → ◡({(𝐺‘∅)} +𝑐 {(𝐺‘1𝑜)}) Fn 2𝑜) |
6 | id 22 | . 2 ⊢ (𝐺 Fn 2𝑜 → 𝐺 Fn 2𝑜) | |
7 | elpri 4197 | . . . . 5 ⊢ (𝑘 ∈ {∅, 1𝑜} → (𝑘 = ∅ ∨ 𝑘 = 1𝑜)) | |
8 | df2o3 7573 | . . . . 5 ⊢ 2𝑜 = {∅, 1𝑜} | |
9 | 7, 8 | eleq2s 2719 | . . . 4 ⊢ (𝑘 ∈ 2𝑜 → (𝑘 = ∅ ∨ 𝑘 = 1𝑜)) |
10 | xpsc0 16220 | . . . . . . 7 ⊢ ((𝐺‘∅) ∈ V → (◡({(𝐺‘∅)} +𝑐 {(𝐺‘1𝑜)})‘∅) = (𝐺‘∅)) | |
11 | 1, 10 | ax-mp 5 | . . . . . 6 ⊢ (◡({(𝐺‘∅)} +𝑐 {(𝐺‘1𝑜)})‘∅) = (𝐺‘∅) |
12 | fveq2 6191 | . . . . . 6 ⊢ (𝑘 = ∅ → (◡({(𝐺‘∅)} +𝑐 {(𝐺‘1𝑜)})‘𝑘) = (◡({(𝐺‘∅)} +𝑐 {(𝐺‘1𝑜)})‘∅)) | |
13 | fveq2 6191 | . . . . . 6 ⊢ (𝑘 = ∅ → (𝐺‘𝑘) = (𝐺‘∅)) | |
14 | 11, 12, 13 | 3eqtr4a 2682 | . . . . 5 ⊢ (𝑘 = ∅ → (◡({(𝐺‘∅)} +𝑐 {(𝐺‘1𝑜)})‘𝑘) = (𝐺‘𝑘)) |
15 | xpsc1 16221 | . . . . . . 7 ⊢ ((𝐺‘1𝑜) ∈ V → (◡({(𝐺‘∅)} +𝑐 {(𝐺‘1𝑜)})‘1𝑜) = (𝐺‘1𝑜)) | |
16 | 2, 15 | ax-mp 5 | . . . . . 6 ⊢ (◡({(𝐺‘∅)} +𝑐 {(𝐺‘1𝑜)})‘1𝑜) = (𝐺‘1𝑜) |
17 | fveq2 6191 | . . . . . 6 ⊢ (𝑘 = 1𝑜 → (◡({(𝐺‘∅)} +𝑐 {(𝐺‘1𝑜)})‘𝑘) = (◡({(𝐺‘∅)} +𝑐 {(𝐺‘1𝑜)})‘1𝑜)) | |
18 | fveq2 6191 | . . . . . 6 ⊢ (𝑘 = 1𝑜 → (𝐺‘𝑘) = (𝐺‘1𝑜)) | |
19 | 16, 17, 18 | 3eqtr4a 2682 | . . . . 5 ⊢ (𝑘 = 1𝑜 → (◡({(𝐺‘∅)} +𝑐 {(𝐺‘1𝑜)})‘𝑘) = (𝐺‘𝑘)) |
20 | 14, 19 | jaoi 394 | . . . 4 ⊢ ((𝑘 = ∅ ∨ 𝑘 = 1𝑜) → (◡({(𝐺‘∅)} +𝑐 {(𝐺‘1𝑜)})‘𝑘) = (𝐺‘𝑘)) |
21 | 9, 20 | syl 17 | . . 3 ⊢ (𝑘 ∈ 2𝑜 → (◡({(𝐺‘∅)} +𝑐 {(𝐺‘1𝑜)})‘𝑘) = (𝐺‘𝑘)) |
22 | 21 | adantl 482 | . 2 ⊢ ((𝐺 Fn 2𝑜 ∧ 𝑘 ∈ 2𝑜) → (◡({(𝐺‘∅)} +𝑐 {(𝐺‘1𝑜)})‘𝑘) = (𝐺‘𝑘)) |
23 | 5, 6, 22 | eqfnfvd 6314 | 1 ⊢ (𝐺 Fn 2𝑜 → ◡({(𝐺‘∅)} +𝑐 {(𝐺‘1𝑜)}) = 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 383 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ∅c0 3915 {csn 4177 {cpr 4179 ◡ccnv 5113 Fn wfn 5883 ‘cfv 5888 (class class class)co 6650 1𝑜c1o 7553 2𝑜c2o 7554 +𝑐 ccda 8989 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1o 7560 df-2o 7561 df-cda 8990 |
This theorem is referenced by: xpsff1o 16228 xpstopnlem2 21614 |
Copyright terms: Public domain | W3C validator |