![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpscfn | Structured version Visualization version GIF version |
Description: The pair function is a function on 2𝑜 = {∅, 1𝑜}. (Contributed by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
xpscfn | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ◡({𝐴} +𝑐 {𝐵}) Fn 2𝑜) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4790 | . . . 4 ⊢ ∅ ∈ V | |
2 | 1on 7567 | . . . 4 ⊢ 1𝑜 ∈ On | |
3 | 1n0 7575 | . . . . . 6 ⊢ 1𝑜 ≠ ∅ | |
4 | 3 | necomi 2848 | . . . . 5 ⊢ ∅ ≠ 1𝑜 |
5 | fnprg 5947 | . . . . 5 ⊢ (((∅ ∈ V ∧ 1𝑜 ∈ On) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ ∅ ≠ 1𝑜) → {〈∅, 𝐴〉, 〈1𝑜, 𝐵〉} Fn {∅, 1𝑜}) | |
6 | 4, 5 | mp3an3 1413 | . . . 4 ⊢ (((∅ ∈ V ∧ 1𝑜 ∈ On) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) → {〈∅, 𝐴〉, 〈1𝑜, 𝐵〉} Fn {∅, 1𝑜}) |
7 | 1, 2, 6 | mpanl12 718 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈∅, 𝐴〉, 〈1𝑜, 𝐵〉} Fn {∅, 1𝑜}) |
8 | df2o3 7573 | . . . 4 ⊢ 2𝑜 = {∅, 1𝑜} | |
9 | 8 | fneq2i 5986 | . . 3 ⊢ ({〈∅, 𝐴〉, 〈1𝑜, 𝐵〉} Fn 2𝑜 ↔ {〈∅, 𝐴〉, 〈1𝑜, 𝐵〉} Fn {∅, 1𝑜}) |
10 | 7, 9 | sylibr 224 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈∅, 𝐴〉, 〈1𝑜, 𝐵〉} Fn 2𝑜) |
11 | xpscg 16218 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ◡({𝐴} +𝑐 {𝐵}) = {〈∅, 𝐴〉, 〈1𝑜, 𝐵〉}) | |
12 | 11 | fneq1d 5981 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (◡({𝐴} +𝑐 {𝐵}) Fn 2𝑜 ↔ {〈∅, 𝐴〉, 〈1𝑜, 𝐵〉} Fn 2𝑜)) |
13 | 10, 12 | mpbird 247 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ◡({𝐴} +𝑐 {𝐵}) Fn 2𝑜) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∈ wcel 1990 ≠ wne 2794 Vcvv 3200 ∅c0 3915 {csn 4177 {cpr 4179 〈cop 4183 ◡ccnv 5113 Oncon0 5723 Fn wfn 5883 (class class class)co 6650 1𝑜c1o 7553 2𝑜c2o 7554 +𝑐 ccda 8989 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-ord 5726 df-on 5727 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1o 7560 df-2o 7561 df-cda 8990 |
This theorem is referenced by: xpsfeq 16224 xpsfrnel2 16225 xpslem 16233 xpsaddlem 16235 xpsvsca 16239 xpsle 16241 xpstopnlem1 21612 xpstopnlem2 21614 xpsxmetlem 22184 xpsdsval 22186 xpsmet 22187 |
Copyright terms: Public domain | W3C validator |