Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
i915_gem.c
Go to the documentation of this file.
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  * Eric Anholt <[email protected]>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38 
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42  unsigned alignment,
43  bool map_and_fenceable,
44  bool nonblocking);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46  struct drm_i915_gem_object *obj,
47  struct drm_i915_gem_pwrite *args,
48  struct drm_file *file);
49 
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51  struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53  struct drm_i915_fence_reg *fence,
54  bool enable);
55 
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57  struct shrink_control *sc);
58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61 
62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63 {
64  if (obj->tiling_mode)
66 
67  /* As we do not have an associated fence register, we will force
68  * a tiling change if we ever need to acquire one.
69  */
70  obj->fence_dirty = false;
72 }
73 
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76  size_t size)
77 {
78  dev_priv->mm.object_count++;
79  dev_priv->mm.object_memory += size;
80 }
81 
82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83  size_t size)
84 {
85  dev_priv->mm.object_count--;
86  dev_priv->mm.object_memory -= size;
87 }
88 
89 static int
90 i915_gem_wait_for_error(struct drm_device *dev)
91 {
92  struct drm_i915_private *dev_priv = dev->dev_private;
93  struct completion *x = &dev_priv->error_completion;
94  unsigned long flags;
95  int ret;
96 
97  if (!atomic_read(&dev_priv->mm.wedged))
98  return 0;
99 
100  /*
101  * Only wait 10 seconds for the gpu reset to complete to avoid hanging
102  * userspace. If it takes that long something really bad is going on and
103  * we should simply try to bail out and fail as gracefully as possible.
104  */
106  if (ret == 0) {
107  DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
108  return -EIO;
109  } else if (ret < 0) {
110  return ret;
111  }
112 
113  if (atomic_read(&dev_priv->mm.wedged)) {
114  /* GPU is hung, bump the completion count to account for
115  * the token we just consumed so that we never hit zero and
116  * end up waiting upon a subsequent completion event that
117  * will never happen.
118  */
119  spin_lock_irqsave(&x->wait.lock, flags);
120  x->done++;
121  spin_unlock_irqrestore(&x->wait.lock, flags);
122  }
123  return 0;
124 }
125 
127 {
128  int ret;
129 
130  ret = i915_gem_wait_for_error(dev);
131  if (ret)
132  return ret;
133 
134  ret = mutex_lock_interruptible(&dev->struct_mutex);
135  if (ret)
136  return ret;
137 
139  return 0;
140 }
141 
142 static inline bool
143 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
144 {
145  return obj->gtt_space && !obj->active;
146 }
147 
148 int
150  struct drm_file *file)
151 {
152  struct drm_i915_gem_init *args = data;
153 
154  if (drm_core_check_feature(dev, DRIVER_MODESET))
155  return -ENODEV;
156 
157  if (args->gtt_start >= args->gtt_end ||
158  (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
159  return -EINVAL;
160 
161  /* GEM with user mode setting was never supported on ilk and later. */
162  if (INTEL_INFO(dev)->gen >= 5)
163  return -ENODEV;
164 
165  mutex_lock(&dev->struct_mutex);
167  args->gtt_end, args->gtt_end);
168  mutex_unlock(&dev->struct_mutex);
169 
170  return 0;
171 }
172 
173 int
175  struct drm_file *file)
176 {
177  struct drm_i915_private *dev_priv = dev->dev_private;
179  struct drm_i915_gem_object *obj;
180  size_t pinned;
181 
182  pinned = 0;
183  mutex_lock(&dev->struct_mutex);
184  list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
185  if (obj->pin_count)
186  pinned += obj->gtt_space->size;
187  mutex_unlock(&dev->struct_mutex);
188 
189  args->aper_size = dev_priv->mm.gtt_total;
190  args->aper_available_size = args->aper_size - pinned;
191 
192  return 0;
193 }
194 
195 static int
196 i915_gem_create(struct drm_file *file,
197  struct drm_device *dev,
198  uint64_t size,
199  uint32_t *handle_p)
200 {
201  struct drm_i915_gem_object *obj;
202  int ret;
203  u32 handle;
204 
205  size = roundup(size, PAGE_SIZE);
206  if (size == 0)
207  return -EINVAL;
208 
209  /* Allocate the new object */
210  obj = i915_gem_alloc_object(dev, size);
211  if (obj == NULL)
212  return -ENOMEM;
213 
214  ret = drm_gem_handle_create(file, &obj->base, &handle);
215  if (ret) {
217  i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
218  kfree(obj);
219  return ret;
220  }
221 
222  /* drop reference from allocate - handle holds it now */
223  drm_gem_object_unreference(&obj->base);
224  trace_i915_gem_object_create(obj);
225 
226  *handle_p = handle;
227  return 0;
228 }
229 
230 int
231 i915_gem_dumb_create(struct drm_file *file,
232  struct drm_device *dev,
233  struct drm_mode_create_dumb *args)
234 {
235  /* have to work out size/pitch and return them */
236  args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
237  args->size = args->pitch * args->height;
238  return i915_gem_create(file, dev,
239  args->size, &args->handle);
240 }
241 
242 int i915_gem_dumb_destroy(struct drm_file *file,
243  struct drm_device *dev,
244  uint32_t handle)
245 {
246  return drm_gem_handle_delete(file, handle);
247 }
248 
252 int
254  struct drm_file *file)
255 {
256  struct drm_i915_gem_create *args = data;
257 
258  return i915_gem_create(file, dev,
259  args->size, &args->handle);
260 }
261 
262 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
263 {
264  drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
265 
266  return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
268 }
269 
270 static inline int
271 __copy_to_user_swizzled(char __user *cpu_vaddr,
272  const char *gpu_vaddr, int gpu_offset,
273  int length)
274 {
275  int ret, cpu_offset = 0;
276 
277  while (length > 0) {
278  int cacheline_end = ALIGN(gpu_offset + 1, 64);
279  int this_length = min(cacheline_end - gpu_offset, length);
280  int swizzled_gpu_offset = gpu_offset ^ 64;
281 
282  ret = __copy_to_user(cpu_vaddr + cpu_offset,
283  gpu_vaddr + swizzled_gpu_offset,
284  this_length);
285  if (ret)
286  return ret + length;
287 
288  cpu_offset += this_length;
289  gpu_offset += this_length;
290  length -= this_length;
291  }
292 
293  return 0;
294 }
295 
296 static inline int
297 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
298  const char __user *cpu_vaddr,
299  int length)
300 {
301  int ret, cpu_offset = 0;
302 
303  while (length > 0) {
304  int cacheline_end = ALIGN(gpu_offset + 1, 64);
305  int this_length = min(cacheline_end - gpu_offset, length);
306  int swizzled_gpu_offset = gpu_offset ^ 64;
307 
308  ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
309  cpu_vaddr + cpu_offset,
310  this_length);
311  if (ret)
312  return ret + length;
313 
314  cpu_offset += this_length;
315  gpu_offset += this_length;
316  length -= this_length;
317  }
318 
319  return 0;
320 }
321 
322 /* Per-page copy function for the shmem pread fastpath.
323  * Flushes invalid cachelines before reading the target if
324  * needs_clflush is set. */
325 static int
326 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
327  char __user *user_data,
328  bool page_do_bit17_swizzling, bool needs_clflush)
329 {
330  char *vaddr;
331  int ret;
332 
333  if (unlikely(page_do_bit17_swizzling))
334  return -EINVAL;
335 
336  vaddr = kmap_atomic(page);
337  if (needs_clflush)
338  drm_clflush_virt_range(vaddr + shmem_page_offset,
339  page_length);
340  ret = __copy_to_user_inatomic(user_data,
341  vaddr + shmem_page_offset,
342  page_length);
343  kunmap_atomic(vaddr);
344 
345  return ret ? -EFAULT : 0;
346 }
347 
348 static void
349 shmem_clflush_swizzled_range(char *addr, unsigned long length,
350  bool swizzled)
351 {
352  if (unlikely(swizzled)) {
353  unsigned long start = (unsigned long) addr;
354  unsigned long end = (unsigned long) addr + length;
355 
356  /* For swizzling simply ensure that we always flush both
357  * channels. Lame, but simple and it works. Swizzled
358  * pwrite/pread is far from a hotpath - current userspace
359  * doesn't use it at all. */
360  start = round_down(start, 128);
361  end = round_up(end, 128);
362 
363  drm_clflush_virt_range((void *)start, end - start);
364  } else {
365  drm_clflush_virt_range(addr, length);
366  }
367 
368 }
369 
370 /* Only difference to the fast-path function is that this can handle bit17
371  * and uses non-atomic copy and kmap functions. */
372 static int
373 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
374  char __user *user_data,
375  bool page_do_bit17_swizzling, bool needs_clflush)
376 {
377  char *vaddr;
378  int ret;
379 
380  vaddr = kmap(page);
381  if (needs_clflush)
382  shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
383  page_length,
384  page_do_bit17_swizzling);
385 
386  if (page_do_bit17_swizzling)
387  ret = __copy_to_user_swizzled(user_data,
388  vaddr, shmem_page_offset,
389  page_length);
390  else
391  ret = __copy_to_user(user_data,
392  vaddr + shmem_page_offset,
393  page_length);
394  kunmap(page);
395 
396  return ret ? - EFAULT : 0;
397 }
398 
399 static int
400 i915_gem_shmem_pread(struct drm_device *dev,
401  struct drm_i915_gem_object *obj,
402  struct drm_i915_gem_pread *args,
403  struct drm_file *file)
404 {
405  char __user *user_data;
406  ssize_t remain;
407  loff_t offset;
408  int shmem_page_offset, page_length, ret = 0;
409  int obj_do_bit17_swizzling, page_do_bit17_swizzling;
410  int hit_slowpath = 0;
411  int prefaulted = 0;
412  int needs_clflush = 0;
413  struct scatterlist *sg;
414  int i;
415 
416  user_data = (char __user *) (uintptr_t) args->data_ptr;
417  remain = args->size;
418 
419  obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
420 
421  if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
422  /* If we're not in the cpu read domain, set ourself into the gtt
423  * read domain and manually flush cachelines (if required). This
424  * optimizes for the case when the gpu will dirty the data
425  * anyway again before the next pread happens. */
426  if (obj->cache_level == I915_CACHE_NONE)
427  needs_clflush = 1;
428  if (obj->gtt_space) {
429  ret = i915_gem_object_set_to_gtt_domain(obj, false);
430  if (ret)
431  return ret;
432  }
433  }
434 
435  ret = i915_gem_object_get_pages(obj);
436  if (ret)
437  return ret;
438 
439  i915_gem_object_pin_pages(obj);
440 
441  offset = args->offset;
442 
443  for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
444  struct page *page;
445 
446  if (i < offset >> PAGE_SHIFT)
447  continue;
448 
449  if (remain <= 0)
450  break;
451 
452  /* Operation in this page
453  *
454  * shmem_page_offset = offset within page in shmem file
455  * page_length = bytes to copy for this page
456  */
457  shmem_page_offset = offset_in_page(offset);
458  page_length = remain;
459  if ((shmem_page_offset + page_length) > PAGE_SIZE)
460  page_length = PAGE_SIZE - shmem_page_offset;
461 
462  page = sg_page(sg);
463  page_do_bit17_swizzling = obj_do_bit17_swizzling &&
464  (page_to_phys(page) & (1 << 17)) != 0;
465 
466  ret = shmem_pread_fast(page, shmem_page_offset, page_length,
467  user_data, page_do_bit17_swizzling,
468  needs_clflush);
469  if (ret == 0)
470  goto next_page;
471 
472  hit_slowpath = 1;
473  mutex_unlock(&dev->struct_mutex);
474 
475  if (!prefaulted) {
476  ret = fault_in_multipages_writeable(user_data, remain);
477  /* Userspace is tricking us, but we've already clobbered
478  * its pages with the prefault and promised to write the
479  * data up to the first fault. Hence ignore any errors
480  * and just continue. */
481  (void)ret;
482  prefaulted = 1;
483  }
484 
485  ret = shmem_pread_slow(page, shmem_page_offset, page_length,
486  user_data, page_do_bit17_swizzling,
487  needs_clflush);
488 
489  mutex_lock(&dev->struct_mutex);
490 
491 next_page:
492  mark_page_accessed(page);
493 
494  if (ret)
495  goto out;
496 
497  remain -= page_length;
498  user_data += page_length;
499  offset += page_length;
500  }
501 
502 out:
503  i915_gem_object_unpin_pages(obj);
504 
505  if (hit_slowpath) {
506  /* Fixup: Kill any reinstated backing storage pages */
507  if (obj->madv == __I915_MADV_PURGED)
508  i915_gem_object_truncate(obj);
509  }
510 
511  return ret;
512 }
513 
519 int
521  struct drm_file *file)
522 {
523  struct drm_i915_gem_pread *args = data;
524  struct drm_i915_gem_object *obj;
525  int ret = 0;
526 
527  if (args->size == 0)
528  return 0;
529 
530  if (!access_ok(VERIFY_WRITE,
531  (char __user *)(uintptr_t)args->data_ptr,
532  args->size))
533  return -EFAULT;
534 
536  if (ret)
537  return ret;
538 
539  obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
540  if (&obj->base == NULL) {
541  ret = -ENOENT;
542  goto unlock;
543  }
544 
545  /* Bounds check source. */
546  if (args->offset > obj->base.size ||
547  args->size > obj->base.size - args->offset) {
548  ret = -EINVAL;
549  goto out;
550  }
551 
552  /* prime objects have no backing filp to GEM pread/pwrite
553  * pages from.
554  */
555  if (!obj->base.filp) {
556  ret = -EINVAL;
557  goto out;
558  }
559 
560  trace_i915_gem_object_pread(obj, args->offset, args->size);
561 
562  ret = i915_gem_shmem_pread(dev, obj, args, file);
563 
564 out:
565  drm_gem_object_unreference(&obj->base);
566 unlock:
567  mutex_unlock(&dev->struct_mutex);
568  return ret;
569 }
570 
571 /* This is the fast write path which cannot handle
572  * page faults in the source data
573  */
574 
575 static inline int
576 fast_user_write(struct io_mapping *mapping,
577  loff_t page_base, int page_offset,
578  char __user *user_data,
579  int length)
580 {
581  void __iomem *vaddr_atomic;
582  void *vaddr;
583  unsigned long unwritten;
584 
585  vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
586  /* We can use the cpu mem copy function because this is X86. */
587  vaddr = (void __force*)vaddr_atomic + page_offset;
588  unwritten = __copy_from_user_inatomic_nocache(vaddr,
589  user_data, length);
590  io_mapping_unmap_atomic(vaddr_atomic);
591  return unwritten;
592 }
593 
598 static int
599 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
600  struct drm_i915_gem_object *obj,
601  struct drm_i915_gem_pwrite *args,
602  struct drm_file *file)
603 {
604  drm_i915_private_t *dev_priv = dev->dev_private;
605  ssize_t remain;
606  loff_t offset, page_base;
607  char __user *user_data;
609 
610  ret = i915_gem_object_pin(obj, 0, true, true);
611  if (ret)
612  goto out;
613 
614  ret = i915_gem_object_set_to_gtt_domain(obj, true);
615  if (ret)
616  goto out_unpin;
617 
618  ret = i915_gem_object_put_fence(obj);
619  if (ret)
620  goto out_unpin;
621 
622  user_data = (char __user *) (uintptr_t) args->data_ptr;
623  remain = args->size;
624 
625  offset = obj->gtt_offset + args->offset;
626 
627  while (remain > 0) {
628  /* Operation in this page
629  *
630  * page_base = page offset within aperture
631  * page_offset = offset within page
632  * page_length = bytes to copy for this page
633  */
634  page_base = offset & PAGE_MASK;
635  page_offset = offset_in_page(offset);
636  page_length = remain;
637  if ((page_offset + remain) > PAGE_SIZE)
638  page_length = PAGE_SIZE - page_offset;
639 
640  /* If we get a fault while copying data, then (presumably) our
641  * source page isn't available. Return the error and we'll
642  * retry in the slow path.
643  */
644  if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
645  page_offset, user_data, page_length)) {
646  ret = -EFAULT;
647  goto out_unpin;
648  }
649 
650  remain -= page_length;
651  user_data += page_length;
652  offset += page_length;
653  }
654 
655 out_unpin:
657 out:
658  return ret;
659 }
660 
661 /* Per-page copy function for the shmem pwrite fastpath.
662  * Flushes invalid cachelines before writing to the target if
663  * needs_clflush_before is set and flushes out any written cachelines after
664  * writing if needs_clflush is set. */
665 static int
666 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
667  char __user *user_data,
668  bool page_do_bit17_swizzling,
669  bool needs_clflush_before,
670  bool needs_clflush_after)
671 {
672  char *vaddr;
673  int ret;
674 
675  if (unlikely(page_do_bit17_swizzling))
676  return -EINVAL;
677 
678  vaddr = kmap_atomic(page);
679  if (needs_clflush_before)
680  drm_clflush_virt_range(vaddr + shmem_page_offset,
681  page_length);
682  ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
683  user_data,
684  page_length);
685  if (needs_clflush_after)
686  drm_clflush_virt_range(vaddr + shmem_page_offset,
687  page_length);
688  kunmap_atomic(vaddr);
689 
690  return ret ? -EFAULT : 0;
691 }
692 
693 /* Only difference to the fast-path function is that this can handle bit17
694  * and uses non-atomic copy and kmap functions. */
695 static int
696 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
697  char __user *user_data,
698  bool page_do_bit17_swizzling,
699  bool needs_clflush_before,
700  bool needs_clflush_after)
701 {
702  char *vaddr;
703  int ret;
704 
705  vaddr = kmap(page);
706  if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
707  shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
708  page_length,
709  page_do_bit17_swizzling);
710  if (page_do_bit17_swizzling)
711  ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
712  user_data,
713  page_length);
714  else
715  ret = __copy_from_user(vaddr + shmem_page_offset,
716  user_data,
717  page_length);
718  if (needs_clflush_after)
719  shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
720  page_length,
721  page_do_bit17_swizzling);
722  kunmap(page);
723 
724  return ret ? -EFAULT : 0;
725 }
726 
727 static int
728 i915_gem_shmem_pwrite(struct drm_device *dev,
729  struct drm_i915_gem_object *obj,
730  struct drm_i915_gem_pwrite *args,
731  struct drm_file *file)
732 {
733  ssize_t remain;
734  loff_t offset;
735  char __user *user_data;
736  int shmem_page_offset, page_length, ret = 0;
737  int obj_do_bit17_swizzling, page_do_bit17_swizzling;
738  int hit_slowpath = 0;
739  int needs_clflush_after = 0;
740  int needs_clflush_before = 0;
741  int i;
742  struct scatterlist *sg;
743 
744  user_data = (char __user *) (uintptr_t) args->data_ptr;
745  remain = args->size;
746 
747  obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
748 
749  if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
750  /* If we're not in the cpu write domain, set ourself into the gtt
751  * write domain and manually flush cachelines (if required). This
752  * optimizes for the case when the gpu will use the data
753  * right away and we therefore have to clflush anyway. */
754  if (obj->cache_level == I915_CACHE_NONE)
755  needs_clflush_after = 1;
756  if (obj->gtt_space) {
757  ret = i915_gem_object_set_to_gtt_domain(obj, true);
758  if (ret)
759  return ret;
760  }
761  }
762  /* Same trick applies for invalidate partially written cachelines before
763  * writing. */
764  if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
765  && obj->cache_level == I915_CACHE_NONE)
766  needs_clflush_before = 1;
767 
768  ret = i915_gem_object_get_pages(obj);
769  if (ret)
770  return ret;
771 
772  i915_gem_object_pin_pages(obj);
773 
774  offset = args->offset;
775  obj->dirty = 1;
776 
777  for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
778  struct page *page;
779  int partial_cacheline_write;
780 
781  if (i < offset >> PAGE_SHIFT)
782  continue;
783 
784  if (remain <= 0)
785  break;
786 
787  /* Operation in this page
788  *
789  * shmem_page_offset = offset within page in shmem file
790  * page_length = bytes to copy for this page
791  */
792  shmem_page_offset = offset_in_page(offset);
793 
794  page_length = remain;
795  if ((shmem_page_offset + page_length) > PAGE_SIZE)
796  page_length = PAGE_SIZE - shmem_page_offset;
797 
798  /* If we don't overwrite a cacheline completely we need to be
799  * careful to have up-to-date data by first clflushing. Don't
800  * overcomplicate things and flush the entire patch. */
801  partial_cacheline_write = needs_clflush_before &&
802  ((shmem_page_offset | page_length)
803  & (boot_cpu_data.x86_clflush_size - 1));
804 
805  page = sg_page(sg);
806  page_do_bit17_swizzling = obj_do_bit17_swizzling &&
807  (page_to_phys(page) & (1 << 17)) != 0;
808 
809  ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
810  user_data, page_do_bit17_swizzling,
811  partial_cacheline_write,
812  needs_clflush_after);
813  if (ret == 0)
814  goto next_page;
815 
816  hit_slowpath = 1;
817  mutex_unlock(&dev->struct_mutex);
818  ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
819  user_data, page_do_bit17_swizzling,
820  partial_cacheline_write,
821  needs_clflush_after);
822 
823  mutex_lock(&dev->struct_mutex);
824 
825 next_page:
826  set_page_dirty(page);
827  mark_page_accessed(page);
828 
829  if (ret)
830  goto out;
831 
832  remain -= page_length;
833  user_data += page_length;
834  offset += page_length;
835  }
836 
837 out:
838  i915_gem_object_unpin_pages(obj);
839 
840  if (hit_slowpath) {
841  /* Fixup: Kill any reinstated backing storage pages */
842  if (obj->madv == __I915_MADV_PURGED)
843  i915_gem_object_truncate(obj);
844  /* and flush dirty cachelines in case the object isn't in the cpu write
845  * domain anymore. */
846  if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
849  }
850  }
851 
852  if (needs_clflush_after)
854 
855  return ret;
856 }
857 
863 int
865  struct drm_file *file)
866 {
867  struct drm_i915_gem_pwrite *args = data;
868  struct drm_i915_gem_object *obj;
869  int ret;
870 
871  if (args->size == 0)
872  return 0;
873 
874  if (!access_ok(VERIFY_READ,
875  (char __user *)(uintptr_t)args->data_ptr,
876  args->size))
877  return -EFAULT;
878 
879  ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
880  args->size);
881  if (ret)
882  return -EFAULT;
883 
885  if (ret)
886  return ret;
887 
888  obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
889  if (&obj->base == NULL) {
890  ret = -ENOENT;
891  goto unlock;
892  }
893 
894  /* Bounds check destination. */
895  if (args->offset > obj->base.size ||
896  args->size > obj->base.size - args->offset) {
897  ret = -EINVAL;
898  goto out;
899  }
900 
901  /* prime objects have no backing filp to GEM pread/pwrite
902  * pages from.
903  */
904  if (!obj->base.filp) {
905  ret = -EINVAL;
906  goto out;
907  }
908 
909  trace_i915_gem_object_pwrite(obj, args->offset, args->size);
910 
911  ret = -EFAULT;
912  /* We can only do the GTT pwrite on untiled buffers, as otherwise
913  * it would end up going through the fenced access, and we'll get
914  * different detiling behavior between reading and writing.
915  * pread/pwrite currently are reading and writing from the CPU
916  * perspective, requiring manual detiling by the client.
917  */
918  if (obj->phys_obj) {
919  ret = i915_gem_phys_pwrite(dev, obj, args, file);
920  goto out;
921  }
922 
923  if (obj->cache_level == I915_CACHE_NONE &&
924  obj->tiling_mode == I915_TILING_NONE &&
925  obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
926  ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
927  /* Note that the gtt paths might fail with non-page-backed user
928  * pointers (e.g. gtt mappings when moving data between
929  * textures). Fallback to the shmem path in that case. */
930  }
931 
932  if (ret == -EFAULT || ret == -ENOSPC)
933  ret = i915_gem_shmem_pwrite(dev, obj, args, file);
934 
935 out:
936  drm_gem_object_unreference(&obj->base);
937 unlock:
938  mutex_unlock(&dev->struct_mutex);
939  return ret;
940 }
941 
942 int
944  bool interruptible)
945 {
946  if (atomic_read(&dev_priv->mm.wedged)) {
947  struct completion *x = &dev_priv->error_completion;
948  bool recovery_complete;
949  unsigned long flags;
950 
951  /* Give the error handler a chance to run. */
952  spin_lock_irqsave(&x->wait.lock, flags);
953  recovery_complete = x->done > 0;
954  spin_unlock_irqrestore(&x->wait.lock, flags);
955 
956  /* Non-interruptible callers can't handle -EAGAIN, hence return
957  * -EIO unconditionally for these. */
958  if (!interruptible)
959  return -EIO;
960 
961  /* Recovery complete, but still wedged means reset failure. */
962  if (recovery_complete)
963  return -EIO;
964 
965  return -EAGAIN;
966  }
967 
968  return 0;
969 }
970 
971 /*
972  * Compare seqno against outstanding lazy request. Emit a request if they are
973  * equal.
974  */
975 static int
976 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
977 {
978  int ret;
979 
980  BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
981 
982  ret = 0;
983  if (seqno == ring->outstanding_lazy_request)
984  ret = i915_add_request(ring, NULL, NULL);
985 
986  return ret;
987 }
988 
999 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1000  bool interruptible, struct timespec *timeout)
1001 {
1002  drm_i915_private_t *dev_priv = ring->dev->dev_private;
1003  struct timespec before, now, wait_time={1,0};
1004  unsigned long timeout_jiffies;
1005  long end;
1006  bool wait_forever = true;
1007  int ret;
1008 
1009  if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1010  return 0;
1011 
1012  trace_i915_gem_request_wait_begin(ring, seqno);
1013 
1014  if (timeout != NULL) {
1015  wait_time = *timeout;
1016  wait_forever = false;
1017  }
1018 
1019  timeout_jiffies = timespec_to_jiffies(&wait_time);
1020 
1021  if (WARN_ON(!ring->irq_get(ring)))
1022  return -ENODEV;
1023 
1024  /* Record current time in case interrupted by signal, or wedged * */
1025  getrawmonotonic(&before);
1026 
1027 #define EXIT_COND \
1028  (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1029  atomic_read(&dev_priv->mm.wedged))
1030  do {
1031  if (interruptible)
1033  EXIT_COND,
1034  timeout_jiffies);
1035  else
1036  end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1037  timeout_jiffies);
1038 
1039  ret = i915_gem_check_wedge(dev_priv, interruptible);
1040  if (ret)
1041  end = ret;
1042  } while (end == 0 && wait_forever);
1043 
1044  getrawmonotonic(&now);
1045 
1046  ring->irq_put(ring);
1047  trace_i915_gem_request_wait_end(ring, seqno);
1048 #undef EXIT_COND
1049 
1050  if (timeout) {
1051  struct timespec sleep_time = timespec_sub(now, before);
1052  *timeout = timespec_sub(*timeout, sleep_time);
1053  }
1054 
1055  switch (end) {
1056  case -EIO:
1057  case -EAGAIN: /* Wedged */
1058  case -ERESTARTSYS: /* Signal */
1059  return (int)end;
1060  case 0: /* Timeout */
1061  if (timeout)
1062  set_normalized_timespec(timeout, 0, 0);
1063  return -ETIME;
1064  default: /* Completed */
1065  WARN_ON(end < 0); /* We're not aware of other errors */
1066  return 0;
1067  }
1068 }
1069 
1074 int
1076 {
1077  struct drm_device *dev = ring->dev;
1078  struct drm_i915_private *dev_priv = dev->dev_private;
1079  bool interruptible = dev_priv->mm.interruptible;
1080  int ret;
1081 
1082  BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1083  BUG_ON(seqno == 0);
1084 
1085  ret = i915_gem_check_wedge(dev_priv, interruptible);
1086  if (ret)
1087  return ret;
1088 
1089  ret = i915_gem_check_olr(ring, seqno);
1090  if (ret)
1091  return ret;
1092 
1093  return __wait_seqno(ring, seqno, interruptible, NULL);
1094 }
1095 
1100 static __must_check int
1101 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1102  bool readonly)
1103 {
1104  struct intel_ring_buffer *ring = obj->ring;
1105  u32 seqno;
1106  int ret;
1107 
1108  seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1109  if (seqno == 0)
1110  return 0;
1111 
1112  ret = i915_wait_seqno(ring, seqno);
1113  if (ret)
1114  return ret;
1115 
1117 
1118  /* Manually manage the write flush as we may have not yet
1119  * retired the buffer.
1120  */
1121  if (obj->last_write_seqno &&
1122  i915_seqno_passed(seqno, obj->last_write_seqno)) {
1123  obj->last_write_seqno = 0;
1124  obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1125  }
1126 
1127  return 0;
1128 }
1129 
1130 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1131  * as the object state may change during this call.
1132  */
1133 static __must_check int
1134 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1135  bool readonly)
1136 {
1137  struct drm_device *dev = obj->base.dev;
1138  struct drm_i915_private *dev_priv = dev->dev_private;
1139  struct intel_ring_buffer *ring = obj->ring;
1140  u32 seqno;
1141  int ret;
1142 
1143  BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1144  BUG_ON(!dev_priv->mm.interruptible);
1145 
1146  seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1147  if (seqno == 0)
1148  return 0;
1149 
1150  ret = i915_gem_check_wedge(dev_priv, true);
1151  if (ret)
1152  return ret;
1153 
1154  ret = i915_gem_check_olr(ring, seqno);
1155  if (ret)
1156  return ret;
1157 
1158  mutex_unlock(&dev->struct_mutex);
1159  ret = __wait_seqno(ring, seqno, true, NULL);
1160  mutex_lock(&dev->struct_mutex);
1161 
1163 
1164  /* Manually manage the write flush as we may have not yet
1165  * retired the buffer.
1166  */
1167  if (obj->last_write_seqno &&
1168  i915_seqno_passed(seqno, obj->last_write_seqno)) {
1169  obj->last_write_seqno = 0;
1170  obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1171  }
1172 
1173  return ret;
1174 }
1175 
1180 int
1182  struct drm_file *file)
1183 {
1184  struct drm_i915_gem_set_domain *args = data;
1185  struct drm_i915_gem_object *obj;
1186  uint32_t read_domains = args->read_domains;
1187  uint32_t write_domain = args->write_domain;
1188  int ret;
1189 
1190  /* Only handle setting domains to types used by the CPU. */
1191  if (write_domain & I915_GEM_GPU_DOMAINS)
1192  return -EINVAL;
1193 
1194  if (read_domains & I915_GEM_GPU_DOMAINS)
1195  return -EINVAL;
1196 
1197  /* Having something in the write domain implies it's in the read
1198  * domain, and only that read domain. Enforce that in the request.
1199  */
1200  if (write_domain != 0 && read_domains != write_domain)
1201  return -EINVAL;
1202 
1203  ret = i915_mutex_lock_interruptible(dev);
1204  if (ret)
1205  return ret;
1206 
1207  obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1208  if (&obj->base == NULL) {
1209  ret = -ENOENT;
1210  goto unlock;
1211  }
1212 
1213  /* Try to flush the object off the GPU without holding the lock.
1214  * We will repeat the flush holding the lock in the normal manner
1215  * to catch cases where we are gazumped.
1216  */
1217  ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1218  if (ret)
1219  goto unref;
1220 
1221  if (read_domains & I915_GEM_DOMAIN_GTT) {
1222  ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1223 
1224  /* Silently promote "you're not bound, there was nothing to do"
1225  * to success, since the client was just asking us to
1226  * make sure everything was done.
1227  */
1228  if (ret == -EINVAL)
1229  ret = 0;
1230  } else {
1231  ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1232  }
1233 
1234 unref:
1235  drm_gem_object_unreference(&obj->base);
1236 unlock:
1237  mutex_unlock(&dev->struct_mutex);
1238  return ret;
1239 }
1240 
1244 int
1246  struct drm_file *file)
1247 {
1248  struct drm_i915_gem_sw_finish *args = data;
1249  struct drm_i915_gem_object *obj;
1250  int ret = 0;
1251 
1252  ret = i915_mutex_lock_interruptible(dev);
1253  if (ret)
1254  return ret;
1255 
1256  obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1257  if (&obj->base == NULL) {
1258  ret = -ENOENT;
1259  goto unlock;
1260  }
1261 
1262  /* Pinned buffers may be scanout, so flush the cache */
1263  if (obj->pin_count)
1264  i915_gem_object_flush_cpu_write_domain(obj);
1265 
1266  drm_gem_object_unreference(&obj->base);
1267 unlock:
1268  mutex_unlock(&dev->struct_mutex);
1269  return ret;
1270 }
1271 
1279 int
1281  struct drm_file *file)
1282 {
1283  struct drm_i915_gem_mmap *args = data;
1284  struct drm_gem_object *obj;
1285  unsigned long addr;
1286 
1287  obj = drm_gem_object_lookup(dev, file, args->handle);
1288  if (obj == NULL)
1289  return -ENOENT;
1290 
1291  /* prime objects have no backing filp to GEM mmap
1292  * pages from.
1293  */
1294  if (!obj->filp) {
1295  drm_gem_object_unreference_unlocked(obj);
1296  return -EINVAL;
1297  }
1298 
1299  addr = vm_mmap(obj->filp, 0, args->size,
1301  args->offset);
1302  drm_gem_object_unreference_unlocked(obj);
1303  if (IS_ERR((void *)addr))
1304  return addr;
1305 
1306  args->addr_ptr = (uint64_t) addr;
1307 
1308  return 0;
1309 }
1310 
1327 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1328 {
1329  struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1330  struct drm_device *dev = obj->base.dev;
1331  drm_i915_private_t *dev_priv = dev->dev_private;
1333  unsigned long pfn;
1334  int ret = 0;
1335  bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1336 
1337  /* We don't use vmf->pgoff since that has the fake offset */
1338  page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1339  PAGE_SHIFT;
1340 
1341  ret = i915_mutex_lock_interruptible(dev);
1342  if (ret)
1343  goto out;
1344 
1345  trace_i915_gem_object_fault(obj, page_offset, true, write);
1346 
1347  /* Now bind it into the GTT if needed */
1348  if (!obj->map_and_fenceable) {
1349  ret = i915_gem_object_unbind(obj);
1350  if (ret)
1351  goto unlock;
1352  }
1353  if (!obj->gtt_space) {
1354  ret = i915_gem_object_bind_to_gtt(obj, 0, true, false);
1355  if (ret)
1356  goto unlock;
1357 
1358  ret = i915_gem_object_set_to_gtt_domain(obj, write);
1359  if (ret)
1360  goto unlock;
1361  }
1362 
1363  if (!obj->has_global_gtt_mapping)
1365 
1366  ret = i915_gem_object_get_fence(obj);
1367  if (ret)
1368  goto unlock;
1369 
1370  if (i915_gem_object_is_inactive(obj))
1371  list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1372 
1373  obj->fault_mappable = true;
1374 
1375  pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
1376  page_offset;
1377 
1378  /* Finally, remap it using the new GTT offset */
1379  ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1380 unlock:
1381  mutex_unlock(&dev->struct_mutex);
1382 out:
1383  switch (ret) {
1384  case -EIO:
1385  /* If this -EIO is due to a gpu hang, give the reset code a
1386  * chance to clean up the mess. Otherwise return the proper
1387  * SIGBUS. */
1388  if (!atomic_read(&dev_priv->mm.wedged))
1389  return VM_FAULT_SIGBUS;
1390  case -EAGAIN:
1391  /* Give the error handler a chance to run and move the
1392  * objects off the GPU active list. Next time we service the
1393  * fault, we should be able to transition the page into the
1394  * GTT without touching the GPU (and so avoid further
1395  * EIO/EGAIN). If the GPU is wedged, then there is no issue
1396  * with coherency, just lost writes.
1397  */
1398  set_need_resched();
1399  case 0:
1400  case -ERESTARTSYS:
1401  case -EINTR:
1402  case -EBUSY:
1403  /*
1404  * EBUSY is ok: this just means that another thread
1405  * already did the job.
1406  */
1407  return VM_FAULT_NOPAGE;
1408  case -ENOMEM:
1409  return VM_FAULT_OOM;
1410  case -ENOSPC:
1411  return VM_FAULT_SIGBUS;
1412  default:
1413  WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1414  return VM_FAULT_SIGBUS;
1415  }
1416 }
1417 
1432 void
1434 {
1435  if (!obj->fault_mappable)
1436  return;
1437 
1438  if (obj->base.dev->dev_mapping)
1439  unmap_mapping_range(obj->base.dev->dev_mapping,
1440  (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1441  obj->base.size, 1);
1442 
1443  obj->fault_mappable = false;
1444 }
1445 
1446 static uint32_t
1447 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1448 {
1449  uint32_t gtt_size;
1450 
1451  if (INTEL_INFO(dev)->gen >= 4 ||
1452  tiling_mode == I915_TILING_NONE)
1453  return size;
1454 
1455  /* Previous chips need a power-of-two fence region when tiling */
1456  if (INTEL_INFO(dev)->gen == 3)
1457  gtt_size = 1024*1024;
1458  else
1459  gtt_size = 512*1024;
1460 
1461  while (gtt_size < size)
1462  gtt_size <<= 1;
1463 
1464  return gtt_size;
1465 }
1466 
1474 static uint32_t
1475 i915_gem_get_gtt_alignment(struct drm_device *dev,
1476  uint32_t size,
1477  int tiling_mode)
1478 {
1479  /*
1480  * Minimum alignment is 4k (GTT page size), but might be greater
1481  * if a fence register is needed for the object.
1482  */
1483  if (INTEL_INFO(dev)->gen >= 4 ||
1484  tiling_mode == I915_TILING_NONE)
1485  return 4096;
1486 
1487  /*
1488  * Previous chips need to be aligned to the size of the smallest
1489  * fence register that can contain the object.
1490  */
1491  return i915_gem_get_gtt_size(dev, size, tiling_mode);
1492 }
1493 
1504 uint32_t
1506  uint32_t size,
1507  int tiling_mode)
1508 {
1509  /*
1510  * Minimum alignment is 4k (GTT page size) for sane hw.
1511  */
1512  if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1513  tiling_mode == I915_TILING_NONE)
1514  return 4096;
1515 
1516  /* Previous hardware however needs to be aligned to a power-of-two
1517  * tile height. The simplest method for determining this is to reuse
1518  * the power-of-tile object size.
1519  */
1520  return i915_gem_get_gtt_size(dev, size, tiling_mode);
1521 }
1522 
1523 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1524 {
1525  struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1526  int ret;
1527 
1528  if (obj->base.map_list.map)
1529  return 0;
1530 
1531  ret = drm_gem_create_mmap_offset(&obj->base);
1532  if (ret != -ENOSPC)
1533  return ret;
1534 
1535  /* Badly fragmented mmap space? The only way we can recover
1536  * space is by destroying unwanted objects. We can't randomly release
1537  * mmap_offsets as userspace expects them to be persistent for the
1538  * lifetime of the objects. The closest we can is to release the
1539  * offsets on purgeable objects by truncating it and marking it purged,
1540  * which prevents userspace from ever using that object again.
1541  */
1542  i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1543  ret = drm_gem_create_mmap_offset(&obj->base);
1544  if (ret != -ENOSPC)
1545  return ret;
1546 
1547  i915_gem_shrink_all(dev_priv);
1548  return drm_gem_create_mmap_offset(&obj->base);
1549 }
1550 
1551 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1552 {
1553  if (!obj->base.map_list.map)
1554  return;
1555 
1557 }
1558 
1559 int
1560 i915_gem_mmap_gtt(struct drm_file *file,
1561  struct drm_device *dev,
1562  uint32_t handle,
1563  uint64_t *offset)
1564 {
1565  struct drm_i915_private *dev_priv = dev->dev_private;
1566  struct drm_i915_gem_object *obj;
1567  int ret;
1568 
1569  ret = i915_mutex_lock_interruptible(dev);
1570  if (ret)
1571  return ret;
1572 
1573  obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1574  if (&obj->base == NULL) {
1575  ret = -ENOENT;
1576  goto unlock;
1577  }
1578 
1579  if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1580  ret = -E2BIG;
1581  goto out;
1582  }
1583 
1584  if (obj->madv != I915_MADV_WILLNEED) {
1585  DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1586  ret = -EINVAL;
1587  goto out;
1588  }
1589 
1590  ret = i915_gem_object_create_mmap_offset(obj);
1591  if (ret)
1592  goto out;
1593 
1594  *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1595 
1596 out:
1597  drm_gem_object_unreference(&obj->base);
1598 unlock:
1599  mutex_unlock(&dev->struct_mutex);
1600  return ret;
1601 }
1602 
1618 int
1620  struct drm_file *file)
1621 {
1622  struct drm_i915_gem_mmap_gtt *args = data;
1623 
1624  return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1625 }
1626 
1627 /* Immediately discard the backing storage */
1628 static void
1629 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1630 {
1631  struct inode *inode;
1632 
1633  i915_gem_object_free_mmap_offset(obj);
1634 
1635  if (obj->base.filp == NULL)
1636  return;
1637 
1638  /* Our goal here is to return as much of the memory as
1639  * is possible back to the system as we are called from OOM.
1640  * To do this we must instruct the shmfs to drop all of its
1641  * backing pages, *now*.
1642  */
1643  inode = obj->base.filp->f_path.dentry->d_inode;
1644  shmem_truncate_range(inode, 0, (loff_t)-1);
1645 
1646  obj->madv = __I915_MADV_PURGED;
1647 }
1648 
1649 static inline int
1650 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1651 {
1652  return obj->madv == I915_MADV_DONTNEED;
1653 }
1654 
1655 static void
1656 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1657 {
1658  int page_count = obj->base.size / PAGE_SIZE;
1659  struct scatterlist *sg;
1660  int ret, i;
1661 
1662  BUG_ON(obj->madv == __I915_MADV_PURGED);
1663 
1664  ret = i915_gem_object_set_to_cpu_domain(obj, true);
1665  if (ret) {
1666  /* In the event of a disaster, abandon all caches and
1667  * hope for the best.
1668  */
1669  WARN_ON(ret != -EIO);
1671  obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1672  }
1673 
1674  if (i915_gem_object_needs_bit17_swizzle(obj))
1676 
1677  if (obj->madv == I915_MADV_DONTNEED)
1678  obj->dirty = 0;
1679 
1680  for_each_sg(obj->pages->sgl, sg, page_count, i) {
1681  struct page *page = sg_page(sg);
1682 
1683  if (obj->dirty)
1684  set_page_dirty(page);
1685 
1686  if (obj->madv == I915_MADV_WILLNEED)
1687  mark_page_accessed(page);
1688 
1689  page_cache_release(page);
1690  }
1691  obj->dirty = 0;
1692 
1693  sg_free_table(obj->pages);
1694  kfree(obj->pages);
1695 }
1696 
1697 static int
1698 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1699 {
1700  const struct drm_i915_gem_object_ops *ops = obj->ops;
1701 
1702  if (obj->pages == NULL)
1703  return 0;
1704 
1705  BUG_ON(obj->gtt_space);
1706 
1707  if (obj->pages_pin_count)
1708  return -EBUSY;
1709 
1710  ops->put_pages(obj);
1711  obj->pages = NULL;
1712 
1713  list_del(&obj->gtt_list);
1714  if (i915_gem_object_is_purgeable(obj))
1715  i915_gem_object_truncate(obj);
1716 
1717  return 0;
1718 }
1719 
1720 static long
1721 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1722 {
1723  struct drm_i915_gem_object *obj, *next;
1724  long count = 0;
1725 
1726  list_for_each_entry_safe(obj, next,
1727  &dev_priv->mm.unbound_list,
1728  gtt_list) {
1729  if (i915_gem_object_is_purgeable(obj) &&
1730  i915_gem_object_put_pages(obj) == 0) {
1731  count += obj->base.size >> PAGE_SHIFT;
1732  if (count >= target)
1733  return count;
1734  }
1735  }
1736 
1737  list_for_each_entry_safe(obj, next,
1738  &dev_priv->mm.inactive_list,
1739  mm_list) {
1740  if (i915_gem_object_is_purgeable(obj) &&
1741  i915_gem_object_unbind(obj) == 0 &&
1742  i915_gem_object_put_pages(obj) == 0) {
1743  count += obj->base.size >> PAGE_SHIFT;
1744  if (count >= target)
1745  return count;
1746  }
1747  }
1748 
1749  return count;
1750 }
1751 
1752 static void
1753 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1754 {
1755  struct drm_i915_gem_object *obj, *next;
1756 
1757  i915_gem_evict_everything(dev_priv->dev);
1758 
1759  list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1760  i915_gem_object_put_pages(obj);
1761 }
1762 
1763 static int
1764 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1765 {
1766  struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1767  int page_count, i;
1768  struct address_space *mapping;
1769  struct sg_table *st;
1770  struct scatterlist *sg;
1771  struct page *page;
1772  gfp_t gfp;
1773 
1774  /* Assert that the object is not currently in any GPU domain. As it
1775  * wasn't in the GTT, there shouldn't be any way it could have been in
1776  * a GPU cache
1777  */
1778  BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1779  BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1780 
1781  st = kmalloc(sizeof(*st), GFP_KERNEL);
1782  if (st == NULL)
1783  return -ENOMEM;
1784 
1785  page_count = obj->base.size / PAGE_SIZE;
1786  if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1787  sg_free_table(st);
1788  kfree(st);
1789  return -ENOMEM;
1790  }
1791 
1792  /* Get the list of pages out of our struct file. They'll be pinned
1793  * at this point until we release them.
1794  *
1795  * Fail silently without starting the shrinker
1796  */
1797  mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
1798  gfp = mapping_gfp_mask(mapping);
1800  gfp &= ~(__GFP_IO | __GFP_WAIT);
1801  for_each_sg(st->sgl, sg, page_count, i) {
1802  page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1803  if (IS_ERR(page)) {
1804  i915_gem_purge(dev_priv, page_count);
1805  page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1806  }
1807  if (IS_ERR(page)) {
1808  /* We've tried hard to allocate the memory by reaping
1809  * our own buffer, now let the real VM do its job and
1810  * go down in flames if truly OOM.
1811  */
1813  gfp |= __GFP_IO | __GFP_WAIT;
1814 
1815  i915_gem_shrink_all(dev_priv);
1816  page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1817  if (IS_ERR(page))
1818  goto err_pages;
1819 
1821  gfp &= ~(__GFP_IO | __GFP_WAIT);
1822  }
1823 
1824  sg_set_page(sg, page, PAGE_SIZE, 0);
1825  }
1826 
1827  obj->pages = st;
1828 
1829  if (i915_gem_object_needs_bit17_swizzle(obj))
1831 
1832  return 0;
1833 
1834 err_pages:
1835  for_each_sg(st->sgl, sg, i, page_count)
1836  page_cache_release(sg_page(sg));
1837  sg_free_table(st);
1838  kfree(st);
1839  return PTR_ERR(page);
1840 }
1841 
1842 /* Ensure that the associated pages are gathered from the backing storage
1843  * and pinned into our object. i915_gem_object_get_pages() may be called
1844  * multiple times before they are released by a single call to
1845  * i915_gem_object_put_pages() - once the pages are no longer referenced
1846  * either as a result of memory pressure (reaping pages under the shrinker)
1847  * or as the object is itself released.
1848  */
1849 int
1851 {
1852  struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1853  const struct drm_i915_gem_object_ops *ops = obj->ops;
1854  int ret;
1855 
1856  if (obj->pages)
1857  return 0;
1858 
1859  BUG_ON(obj->pages_pin_count);
1860 
1861  ret = ops->get_pages(obj);
1862  if (ret)
1863  return ret;
1864 
1865  list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1866  return 0;
1867 }
1868 
1869 void
1871  struct intel_ring_buffer *ring,
1872  u32 seqno)
1873 {
1874  struct drm_device *dev = obj->base.dev;
1875  struct drm_i915_private *dev_priv = dev->dev_private;
1876 
1877  BUG_ON(ring == NULL);
1878  obj->ring = ring;
1879 
1880  /* Add a reference if we're newly entering the active list. */
1881  if (!obj->active) {
1882  drm_gem_object_reference(&obj->base);
1883  obj->active = 1;
1884  }
1885 
1886  /* Move from whatever list we were on to the tail of execution. */
1887  list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1888  list_move_tail(&obj->ring_list, &ring->active_list);
1889 
1890  obj->last_read_seqno = seqno;
1891 
1892  if (obj->fenced_gpu_access) {
1893  obj->last_fenced_seqno = seqno;
1894 
1895  /* Bump MRU to take account of the delayed flush */
1896  if (obj->fence_reg != I915_FENCE_REG_NONE) {
1897  struct drm_i915_fence_reg *reg;
1898 
1899  reg = &dev_priv->fence_regs[obj->fence_reg];
1900  list_move_tail(&reg->lru_list,
1901  &dev_priv->mm.fence_list);
1902  }
1903  }
1904 }
1905 
1906 static void
1907 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1908 {
1909  struct drm_device *dev = obj->base.dev;
1910  struct drm_i915_private *dev_priv = dev->dev_private;
1911 
1912  BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1913  BUG_ON(!obj->active);
1914 
1915  if (obj->pin_count) /* are we a framebuffer? */
1916  intel_mark_fb_idle(obj);
1917 
1918  list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1919 
1920  list_del_init(&obj->ring_list);
1921  obj->ring = NULL;
1922 
1923  obj->last_read_seqno = 0;
1924  obj->last_write_seqno = 0;
1925  obj->base.write_domain = 0;
1926 
1927  obj->last_fenced_seqno = 0;
1928  obj->fenced_gpu_access = false;
1929 
1930  obj->active = 0;
1931  drm_gem_object_unreference(&obj->base);
1932 
1933  WARN_ON(i915_verify_lists(dev));
1934 }
1935 
1936 static u32
1937 i915_gem_get_seqno(struct drm_device *dev)
1938 {
1939  drm_i915_private_t *dev_priv = dev->dev_private;
1940  u32 seqno = dev_priv->next_seqno;
1941 
1942  /* reserve 0 for non-seqno */
1943  if (++dev_priv->next_seqno == 0)
1944  dev_priv->next_seqno = 1;
1945 
1946  return seqno;
1947 }
1948 
1949 u32
1951 {
1952  if (ring->outstanding_lazy_request == 0)
1953  ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1954 
1955  return ring->outstanding_lazy_request;
1956 }
1957 
1958 int
1960  struct drm_file *file,
1961  u32 *out_seqno)
1962 {
1963  drm_i915_private_t *dev_priv = ring->dev->dev_private;
1964  struct drm_i915_gem_request *request;
1965  u32 request_ring_position;
1966  u32 seqno;
1967  int was_empty;
1968  int ret;
1969 
1970  /*
1971  * Emit any outstanding flushes - execbuf can fail to emit the flush
1972  * after having emitted the batchbuffer command. Hence we need to fix
1973  * things up similar to emitting the lazy request. The difference here
1974  * is that the flush _must_ happen before the next request, no matter
1975  * what.
1976  */
1977  ret = intel_ring_flush_all_caches(ring);
1978  if (ret)
1979  return ret;
1980 
1981  request = kmalloc(sizeof(*request), GFP_KERNEL);
1982  if (request == NULL)
1983  return -ENOMEM;
1984 
1985  seqno = i915_gem_next_request_seqno(ring);
1986 
1987  /* Record the position of the start of the request so that
1988  * should we detect the updated seqno part-way through the
1989  * GPU processing the request, we never over-estimate the
1990  * position of the head.
1991  */
1992  request_ring_position = intel_ring_get_tail(ring);
1993 
1994  ret = ring->add_request(ring, &seqno);
1995  if (ret) {
1996  kfree(request);
1997  return ret;
1998  }
1999 
2000  trace_i915_gem_request_add(ring, seqno);
2001 
2002  request->seqno = seqno;
2003  request->ring = ring;
2004  request->tail = request_ring_position;
2005  request->emitted_jiffies = jiffies;
2006  was_empty = list_empty(&ring->request_list);
2007  list_add_tail(&request->list, &ring->request_list);
2008  request->file_priv = NULL;
2009 
2010  if (file) {
2011  struct drm_i915_file_private *file_priv = file->driver_priv;
2012 
2013  spin_lock(&file_priv->mm.lock);
2014  request->file_priv = file_priv;
2015  list_add_tail(&request->client_list,
2016  &file_priv->mm.request_list);
2017  spin_unlock(&file_priv->mm.lock);
2018  }
2019 
2020  ring->outstanding_lazy_request = 0;
2021 
2022  if (!dev_priv->mm.suspended) {
2023  if (i915_enable_hangcheck) {
2024  mod_timer(&dev_priv->hangcheck_timer,
2025  jiffies +
2027  }
2028  if (was_empty) {
2029  queue_delayed_work(dev_priv->wq,
2030  &dev_priv->mm.retire_work, HZ);
2031  intel_mark_busy(dev_priv->dev);
2032  }
2033  }
2034 
2035  if (out_seqno)
2036  *out_seqno = seqno;
2037  return 0;
2038 }
2039 
2040 static inline void
2041 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2042 {
2043  struct drm_i915_file_private *file_priv = request->file_priv;
2044 
2045  if (!file_priv)
2046  return;
2047 
2048  spin_lock(&file_priv->mm.lock);
2049  if (request->file_priv) {
2050  list_del(&request->client_list);
2051  request->file_priv = NULL;
2052  }
2053  spin_unlock(&file_priv->mm.lock);
2054 }
2055 
2056 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2057  struct intel_ring_buffer *ring)
2058 {
2059  while (!list_empty(&ring->request_list)) {
2060  struct drm_i915_gem_request *request;
2061 
2062  request = list_first_entry(&ring->request_list,
2063  struct drm_i915_gem_request,
2064  list);
2065 
2066  list_del(&request->list);
2067  i915_gem_request_remove_from_client(request);
2068  kfree(request);
2069  }
2070 
2071  while (!list_empty(&ring->active_list)) {
2072  struct drm_i915_gem_object *obj;
2073 
2074  obj = list_first_entry(&ring->active_list,
2075  struct drm_i915_gem_object,
2076  ring_list);
2077 
2078  i915_gem_object_move_to_inactive(obj);
2079  }
2080 }
2081 
2082 static void i915_gem_reset_fences(struct drm_device *dev)
2083 {
2084  struct drm_i915_private *dev_priv = dev->dev_private;
2085  int i;
2086 
2087  for (i = 0; i < dev_priv->num_fence_regs; i++) {
2088  struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2089 
2090  i915_gem_write_fence(dev, i, NULL);
2091 
2092  if (reg->obj)
2093  i915_gem_object_fence_lost(reg->obj);
2094 
2095  reg->pin_count = 0;
2096  reg->obj = NULL;
2097  INIT_LIST_HEAD(&reg->lru_list);
2098  }
2099 
2100  INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2101 }
2102 
2103 void i915_gem_reset(struct drm_device *dev)
2104 {
2105  struct drm_i915_private *dev_priv = dev->dev_private;
2106  struct drm_i915_gem_object *obj;
2107  struct intel_ring_buffer *ring;
2108  int i;
2109 
2110  for_each_ring(ring, dev_priv, i)
2111  i915_gem_reset_ring_lists(dev_priv, ring);
2112 
2113  /* Move everything out of the GPU domains to ensure we do any
2114  * necessary invalidation upon reuse.
2115  */
2116  list_for_each_entry(obj,
2117  &dev_priv->mm.inactive_list,
2118  mm_list)
2119  {
2120  obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2121  }
2122 
2123  /* The fence registers are invalidated so clear them out */
2124  i915_gem_reset_fences(dev);
2125 }
2126 
2130 void
2132 {
2133  uint32_t seqno;
2134  int i;
2135 
2136  if (list_empty(&ring->request_list))
2137  return;
2138 
2139  WARN_ON(i915_verify_lists(ring->dev));
2140 
2141  seqno = ring->get_seqno(ring, true);
2142 
2143  for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
2144  if (seqno >= ring->sync_seqno[i])
2145  ring->sync_seqno[i] = 0;
2146 
2147  while (!list_empty(&ring->request_list)) {
2148  struct drm_i915_gem_request *request;
2149 
2150  request = list_first_entry(&ring->request_list,
2151  struct drm_i915_gem_request,
2152  list);
2153 
2154  if (!i915_seqno_passed(seqno, request->seqno))
2155  break;
2156 
2157  trace_i915_gem_request_retire(ring, request->seqno);
2158  /* We know the GPU must have read the request to have
2159  * sent us the seqno + interrupt, so use the position
2160  * of tail of the request to update the last known position
2161  * of the GPU head.
2162  */
2163  ring->last_retired_head = request->tail;
2164 
2165  list_del(&request->list);
2166  i915_gem_request_remove_from_client(request);
2167  kfree(request);
2168  }
2169 
2170  /* Move any buffers on the active list that are no longer referenced
2171  * by the ringbuffer to the flushing/inactive lists as appropriate.
2172  */
2173  while (!list_empty(&ring->active_list)) {
2174  struct drm_i915_gem_object *obj;
2175 
2176  obj = list_first_entry(&ring->active_list,
2177  struct drm_i915_gem_object,
2178  ring_list);
2179 
2180  if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2181  break;
2182 
2183  i915_gem_object_move_to_inactive(obj);
2184  }
2185 
2186  if (unlikely(ring->trace_irq_seqno &&
2187  i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2188  ring->irq_put(ring);
2189  ring->trace_irq_seqno = 0;
2190  }
2191 
2192  WARN_ON(i915_verify_lists(ring->dev));
2193 }
2194 
2195 void
2197 {
2198  drm_i915_private_t *dev_priv = dev->dev_private;
2199  struct intel_ring_buffer *ring;
2200  int i;
2201 
2202  for_each_ring(ring, dev_priv, i)
2204 }
2205 
2206 static void
2207 i915_gem_retire_work_handler(struct work_struct *work)
2208 {
2209  drm_i915_private_t *dev_priv;
2210  struct drm_device *dev;
2211  struct intel_ring_buffer *ring;
2212  bool idle;
2213  int i;
2214 
2215  dev_priv = container_of(work, drm_i915_private_t,
2216  mm.retire_work.work);
2217  dev = dev_priv->dev;
2218 
2219  /* Come back later if the device is busy... */
2220  if (!mutex_trylock(&dev->struct_mutex)) {
2221  queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2222  return;
2223  }
2224 
2226 
2227  /* Send a periodic flush down the ring so we don't hold onto GEM
2228  * objects indefinitely.
2229  */
2230  idle = true;
2231  for_each_ring(ring, dev_priv, i) {
2232  if (ring->gpu_caches_dirty)
2233  i915_add_request(ring, NULL, NULL);
2234 
2235  idle &= list_empty(&ring->request_list);
2236  }
2237 
2238  if (!dev_priv->mm.suspended && !idle)
2239  queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2240  if (idle)
2241  intel_mark_idle(dev);
2242 
2243  mutex_unlock(&dev->struct_mutex);
2244 }
2245 
2251 static int
2252 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2253 {
2254  int ret;
2255 
2256  if (obj->active) {
2257  ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2258  if (ret)
2259  return ret;
2260 
2262  }
2263 
2264  return 0;
2265 }
2266 
2289 int
2290 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2291 {
2292  struct drm_i915_gem_wait *args = data;
2293  struct drm_i915_gem_object *obj;
2294  struct intel_ring_buffer *ring = NULL;
2295  struct timespec timeout_stack, *timeout = NULL;
2296  u32 seqno = 0;
2297  int ret = 0;
2298 
2299  if (args->timeout_ns >= 0) {
2300  timeout_stack = ns_to_timespec(args->timeout_ns);
2301  timeout = &timeout_stack;
2302  }
2303 
2304  ret = i915_mutex_lock_interruptible(dev);
2305  if (ret)
2306  return ret;
2307 
2308  obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2309  if (&obj->base == NULL) {
2310  mutex_unlock(&dev->struct_mutex);
2311  return -ENOENT;
2312  }
2313 
2314  /* Need to make sure the object gets inactive eventually. */
2315  ret = i915_gem_object_flush_active(obj);
2316  if (ret)
2317  goto out;
2318 
2319  if (obj->active) {
2320  seqno = obj->last_read_seqno;
2321  ring = obj->ring;
2322  }
2323 
2324  if (seqno == 0)
2325  goto out;
2326 
2327  /* Do this after OLR check to make sure we make forward progress polling
2328  * on this IOCTL with a 0 timeout (like busy ioctl)
2329  */
2330  if (!args->timeout_ns) {
2331  ret = -ETIME;
2332  goto out;
2333  }
2334 
2335  drm_gem_object_unreference(&obj->base);
2336  mutex_unlock(&dev->struct_mutex);
2337 
2338  ret = __wait_seqno(ring, seqno, true, timeout);
2339  if (timeout) {
2340  WARN_ON(!timespec_valid(timeout));
2341  args->timeout_ns = timespec_to_ns(timeout);
2342  }
2343  return ret;
2344 
2345 out:
2346  drm_gem_object_unreference(&obj->base);
2347  mutex_unlock(&dev->struct_mutex);
2348  return ret;
2349 }
2350 
2363 int
2365  struct intel_ring_buffer *to)
2366 {
2367  struct intel_ring_buffer *from = obj->ring;
2368  u32 seqno;
2369  int ret, idx;
2370 
2371  if (from == NULL || to == from)
2372  return 0;
2373 
2374  if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2375  return i915_gem_object_wait_rendering(obj, false);
2376 
2377  idx = intel_ring_sync_index(from, to);
2378 
2379  seqno = obj->last_read_seqno;
2380  if (seqno <= from->sync_seqno[idx])
2381  return 0;
2382 
2383  ret = i915_gem_check_olr(obj->ring, seqno);
2384  if (ret)
2385  return ret;
2386 
2387  ret = to->sync_to(to, from, seqno);
2388  if (!ret)
2389  from->sync_seqno[idx] = seqno;
2390 
2391  return ret;
2392 }
2393 
2394 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2395 {
2396  u32 old_write_domain, old_read_domains;
2397 
2398  /* Act a barrier for all accesses through the GTT */
2399  mb();
2400 
2401  /* Force a pagefault for domain tracking on next user access */
2402  i915_gem_release_mmap(obj);
2403 
2404  if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2405  return;
2406 
2407  old_read_domains = obj->base.read_domains;
2408  old_write_domain = obj->base.write_domain;
2409 
2410  obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2411  obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2412 
2413  trace_i915_gem_object_change_domain(obj,
2414  old_read_domains,
2415  old_write_domain);
2416 }
2417 
2421 int
2423 {
2424  drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2425  int ret = 0;
2426 
2427  if (obj->gtt_space == NULL)
2428  return 0;
2429 
2430  if (obj->pin_count)
2431  return -EBUSY;
2432 
2433  BUG_ON(obj->pages == NULL);
2434 
2435  ret = i915_gem_object_finish_gpu(obj);
2436  if (ret)
2437  return ret;
2438  /* Continue on if we fail due to EIO, the GPU is hung so we
2439  * should be safe and we need to cleanup or else we might
2440  * cause memory corruption through use-after-free.
2441  */
2442 
2443  i915_gem_object_finish_gtt(obj);
2444 
2445  /* release the fence reg _after_ flushing */
2446  ret = i915_gem_object_put_fence(obj);
2447  if (ret)
2448  return ret;
2449 
2450  trace_i915_gem_object_unbind(obj);
2451 
2452  if (obj->has_global_gtt_mapping)
2454  if (obj->has_aliasing_ppgtt_mapping) {
2455  i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2456  obj->has_aliasing_ppgtt_mapping = 0;
2457  }
2459 
2460  list_del(&obj->mm_list);
2461  list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2462  /* Avoid an unnecessary call to unbind on rebind. */
2463  obj->map_and_fenceable = true;
2464 
2466  obj->gtt_space = NULL;
2467  obj->gtt_offset = 0;
2468 
2469  return 0;
2470 }
2471 
2472 static int i915_ring_idle(struct intel_ring_buffer *ring)
2473 {
2474  if (list_empty(&ring->active_list))
2475  return 0;
2476 
2477  return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
2478 }
2479 
2480 int i915_gpu_idle(struct drm_device *dev)
2481 {
2482  drm_i915_private_t *dev_priv = dev->dev_private;
2483  struct intel_ring_buffer *ring;
2484  int ret, i;
2485 
2486  /* Flush everything onto the inactive list. */
2487  for_each_ring(ring, dev_priv, i) {
2489  if (ret)
2490  return ret;
2491 
2492  ret = i915_ring_idle(ring);
2493  if (ret)
2494  return ret;
2495  }
2496 
2497  return 0;
2498 }
2499 
2500 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2501  struct drm_i915_gem_object *obj)
2502 {
2503  drm_i915_private_t *dev_priv = dev->dev_private;
2504  uint64_t val;
2505 
2506  if (obj) {
2507  u32 size = obj->gtt_space->size;
2508 
2509  val = (uint64_t)((obj->gtt_offset + size - 4096) &
2510  0xfffff000) << 32;
2511  val |= obj->gtt_offset & 0xfffff000;
2512  val |= (uint64_t)((obj->stride / 128) - 1) <<
2514 
2515  if (obj->tiling_mode == I915_TILING_Y)
2516  val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2517  val |= I965_FENCE_REG_VALID;
2518  } else
2519  val = 0;
2520 
2521  I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2523 }
2524 
2525 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2526  struct drm_i915_gem_object *obj)
2527 {
2528  drm_i915_private_t *dev_priv = dev->dev_private;
2529  uint64_t val;
2530 
2531  if (obj) {
2532  u32 size = obj->gtt_space->size;
2533 
2534  val = (uint64_t)((obj->gtt_offset + size - 4096) &
2535  0xfffff000) << 32;
2536  val |= obj->gtt_offset & 0xfffff000;
2537  val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2538  if (obj->tiling_mode == I915_TILING_Y)
2539  val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2540  val |= I965_FENCE_REG_VALID;
2541  } else
2542  val = 0;
2543 
2544  I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2545  POSTING_READ(FENCE_REG_965_0 + reg * 8);
2546 }
2547 
2548 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2549  struct drm_i915_gem_object *obj)
2550 {
2551  drm_i915_private_t *dev_priv = dev->dev_private;
2552  u32 val;
2553 
2554  if (obj) {
2555  u32 size = obj->gtt_space->size;
2556  int pitch_val;
2557  int tile_width;
2558 
2560  (size & -size) != size ||
2561  (obj->gtt_offset & (size - 1)),
2562  "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2563  obj->gtt_offset, obj->map_and_fenceable, size);
2564 
2565  if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2566  tile_width = 128;
2567  else
2568  tile_width = 512;
2569 
2570  /* Note: pitch better be a power of two tile widths */
2571  pitch_val = obj->stride / tile_width;
2572  pitch_val = ffs(pitch_val) - 1;
2573 
2574  val = obj->gtt_offset;
2575  if (obj->tiling_mode == I915_TILING_Y)
2576  val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2577  val |= I915_FENCE_SIZE_BITS(size);
2578  val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2579  val |= I830_FENCE_REG_VALID;
2580  } else
2581  val = 0;
2582 
2583  if (reg < 8)
2584  reg = FENCE_REG_830_0 + reg * 4;
2585  else
2586  reg = FENCE_REG_945_8 + (reg - 8) * 4;
2587 
2588  I915_WRITE(reg, val);
2589  POSTING_READ(reg);
2590 }
2591 
2592 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2593  struct drm_i915_gem_object *obj)
2594 {
2595  drm_i915_private_t *dev_priv = dev->dev_private;
2596  uint32_t val;
2597 
2598  if (obj) {
2599  u32 size = obj->gtt_space->size;
2600  uint32_t pitch_val;
2601 
2603  (size & -size) != size ||
2604  (obj->gtt_offset & (size - 1)),
2605  "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2606  obj->gtt_offset, size);
2607 
2608  pitch_val = obj->stride / 128;
2609  pitch_val = ffs(pitch_val) - 1;
2610 
2611  val = obj->gtt_offset;
2612  if (obj->tiling_mode == I915_TILING_Y)
2613  val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2614  val |= I830_FENCE_SIZE_BITS(size);
2615  val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2616  val |= I830_FENCE_REG_VALID;
2617  } else
2618  val = 0;
2619 
2620  I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2621  POSTING_READ(FENCE_REG_830_0 + reg * 4);
2622 }
2623 
2624 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2625  struct drm_i915_gem_object *obj)
2626 {
2627  switch (INTEL_INFO(dev)->gen) {
2628  case 7:
2629  case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2630  case 5:
2631  case 4: i965_write_fence_reg(dev, reg, obj); break;
2632  case 3: i915_write_fence_reg(dev, reg, obj); break;
2633  case 2: i830_write_fence_reg(dev, reg, obj); break;
2634  default: break;
2635  }
2636 }
2637 
2638 static inline int fence_number(struct drm_i915_private *dev_priv,
2639  struct drm_i915_fence_reg *fence)
2640 {
2641  return fence - dev_priv->fence_regs;
2642 }
2643 
2644 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2645  struct drm_i915_fence_reg *fence,
2646  bool enable)
2647 {
2648  struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2649  int reg = fence_number(dev_priv, fence);
2650 
2651  i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2652 
2653  if (enable) {
2654  obj->fence_reg = reg;
2655  fence->obj = obj;
2656  list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2657  } else {
2659  fence->obj = NULL;
2660  list_del_init(&fence->lru_list);
2661  }
2662 }
2663 
2664 static int
2665 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2666 {
2667  if (obj->last_fenced_seqno) {
2668  int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2669  if (ret)
2670  return ret;
2671 
2672  obj->last_fenced_seqno = 0;
2673  }
2674 
2675  /* Ensure that all CPU reads are completed before installing a fence
2676  * and all writes before removing the fence.
2677  */
2678  if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2679  mb();
2680 
2681  obj->fenced_gpu_access = false;
2682  return 0;
2683 }
2684 
2685 int
2687 {
2688  struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2689  int ret;
2690 
2691  ret = i915_gem_object_flush_fence(obj);
2692  if (ret)
2693  return ret;
2694 
2695  if (obj->fence_reg == I915_FENCE_REG_NONE)
2696  return 0;
2697 
2698  i915_gem_object_update_fence(obj,
2699  &dev_priv->fence_regs[obj->fence_reg],
2700  false);
2701  i915_gem_object_fence_lost(obj);
2702 
2703  return 0;
2704 }
2705 
2706 static struct drm_i915_fence_reg *
2707 i915_find_fence_reg(struct drm_device *dev)
2708 {
2709  struct drm_i915_private *dev_priv = dev->dev_private;
2710  struct drm_i915_fence_reg *reg, *avail;
2711  int i;
2712 
2713  /* First try to find a free reg */
2714  avail = NULL;
2715  for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2716  reg = &dev_priv->fence_regs[i];
2717  if (!reg->obj)
2718  return reg;
2719 
2720  if (!reg->pin_count)
2721  avail = reg;
2722  }
2723 
2724  if (avail == NULL)
2725  return NULL;
2726 
2727  /* None available, try to steal one or wait for a user to finish */
2728  list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2729  if (reg->pin_count)
2730  continue;
2731 
2732  return reg;
2733  }
2734 
2735  return NULL;
2736 }
2737 
2752 int
2754 {
2755  struct drm_device *dev = obj->base.dev;
2756  struct drm_i915_private *dev_priv = dev->dev_private;
2757  bool enable = obj->tiling_mode != I915_TILING_NONE;
2758  struct drm_i915_fence_reg *reg;
2759  int ret;
2760 
2761  /* Have we updated the tiling parameters upon the object and so
2762  * will need to serialise the write to the associated fence register?
2763  */
2764  if (obj->fence_dirty) {
2765  ret = i915_gem_object_flush_fence(obj);
2766  if (ret)
2767  return ret;
2768  }
2769 
2770  /* Just update our place in the LRU if our fence is getting reused. */
2771  if (obj->fence_reg != I915_FENCE_REG_NONE) {
2772  reg = &dev_priv->fence_regs[obj->fence_reg];
2773  if (!obj->fence_dirty) {
2774  list_move_tail(&reg->lru_list,
2775  &dev_priv->mm.fence_list);
2776  return 0;
2777  }
2778  } else if (enable) {
2779  reg = i915_find_fence_reg(dev);
2780  if (reg == NULL)
2781  return -EDEADLK;
2782 
2783  if (reg->obj) {
2784  struct drm_i915_gem_object *old = reg->obj;
2785 
2786  ret = i915_gem_object_flush_fence(old);
2787  if (ret)
2788  return ret;
2789 
2790  i915_gem_object_fence_lost(old);
2791  }
2792  } else
2793  return 0;
2794 
2795  i915_gem_object_update_fence(obj, reg, enable);
2796  obj->fence_dirty = false;
2797 
2798  return 0;
2799 }
2800 
2801 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2802  struct drm_mm_node *gtt_space,
2803  unsigned long cache_level)
2804 {
2805  struct drm_mm_node *other;
2806 
2807  /* On non-LLC machines we have to be careful when putting differing
2808  * types of snoopable memory together to avoid the prefetcher
2809  * crossing memory domains and dieing.
2810  */
2811  if (HAS_LLC(dev))
2812  return true;
2813 
2814  if (gtt_space == NULL)
2815  return true;
2816 
2817  if (list_empty(&gtt_space->node_list))
2818  return true;
2819 
2820  other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2821  if (other->allocated && !other->hole_follows && other->color != cache_level)
2822  return false;
2823 
2824  other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2825  if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2826  return false;
2827 
2828  return true;
2829 }
2830 
2831 static void i915_gem_verify_gtt(struct drm_device *dev)
2832 {
2833 #if WATCH_GTT
2834  struct drm_i915_private *dev_priv = dev->dev_private;
2835  struct drm_i915_gem_object *obj;
2836  int err = 0;
2837 
2838  list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2839  if (obj->gtt_space == NULL) {
2840  printk(KERN_ERR "object found on GTT list with no space reserved\n");
2841  err++;
2842  continue;
2843  }
2844 
2845  if (obj->cache_level != obj->gtt_space->color) {
2846  printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2847  obj->gtt_space->start,
2848  obj->gtt_space->start + obj->gtt_space->size,
2849  obj->cache_level,
2850  obj->gtt_space->color);
2851  err++;
2852  continue;
2853  }
2854 
2855  if (!i915_gem_valid_gtt_space(dev,
2856  obj->gtt_space,
2857  obj->cache_level)) {
2858  printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2859  obj->gtt_space->start,
2860  obj->gtt_space->start + obj->gtt_space->size,
2861  obj->cache_level);
2862  err++;
2863  continue;
2864  }
2865  }
2866 
2867  WARN_ON(err);
2868 #endif
2869 }
2870 
2874 static int
2875 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2876  unsigned alignment,
2877  bool map_and_fenceable,
2878  bool nonblocking)
2879 {
2880  struct drm_device *dev = obj->base.dev;
2881  drm_i915_private_t *dev_priv = dev->dev_private;
2882  struct drm_mm_node *free_space;
2883  u32 size, fence_size, fence_alignment, unfenced_alignment;
2884  bool mappable, fenceable;
2885  int ret;
2886 
2887  if (obj->madv != I915_MADV_WILLNEED) {
2888  DRM_ERROR("Attempting to bind a purgeable object\n");
2889  return -EINVAL;
2890  }
2891 
2892  fence_size = i915_gem_get_gtt_size(dev,
2893  obj->base.size,
2894  obj->tiling_mode);
2895  fence_alignment = i915_gem_get_gtt_alignment(dev,
2896  obj->base.size,
2897  obj->tiling_mode);
2898  unfenced_alignment =
2900  obj->base.size,
2901  obj->tiling_mode);
2902 
2903  if (alignment == 0)
2904  alignment = map_and_fenceable ? fence_alignment :
2905  unfenced_alignment;
2906  if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2907  DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2908  return -EINVAL;
2909  }
2910 
2911  size = map_and_fenceable ? fence_size : obj->base.size;
2912 
2913  /* If the object is bigger than the entire aperture, reject it early
2914  * before evicting everything in a vain attempt to find space.
2915  */
2916  if (obj->base.size >
2917  (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2918  DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2919  return -E2BIG;
2920  }
2921 
2922  ret = i915_gem_object_get_pages(obj);
2923  if (ret)
2924  return ret;
2925 
2926  search_free:
2927  if (map_and_fenceable)
2928  free_space =
2929  drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space,
2930  size, alignment, obj->cache_level,
2931  0, dev_priv->mm.gtt_mappable_end,
2932  false);
2933  else
2934  free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space,
2935  size, alignment, obj->cache_level,
2936  false);
2937 
2938  if (free_space != NULL) {
2939  if (map_and_fenceable)
2940  obj->gtt_space =
2941  drm_mm_get_block_range_generic(free_space,
2942  size, alignment, obj->cache_level,
2943  0, dev_priv->mm.gtt_mappable_end,
2944  false);
2945  else
2946  obj->gtt_space =
2947  drm_mm_get_block_generic(free_space,
2948  size, alignment, obj->cache_level,
2949  false);
2950  }
2951  if (obj->gtt_space == NULL) {
2952  ret = i915_gem_evict_something(dev, size, alignment,
2953  obj->cache_level,
2954  map_and_fenceable,
2955  nonblocking);
2956  if (ret)
2957  return ret;
2958 
2959  goto search_free;
2960  }
2961  if (WARN_ON(!i915_gem_valid_gtt_space(dev,
2962  obj->gtt_space,
2963  obj->cache_level))) {
2965  obj->gtt_space = NULL;
2966  return -EINVAL;
2967  }
2968 
2969 
2970  ret = i915_gem_gtt_prepare_object(obj);
2971  if (ret) {
2973  obj->gtt_space = NULL;
2974  return ret;
2975  }
2976 
2977  if (!dev_priv->mm.aliasing_ppgtt)
2979 
2980  list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
2981  list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2982 
2983  obj->gtt_offset = obj->gtt_space->start;
2984 
2985  fenceable =
2986  obj->gtt_space->size == fence_size &&
2987  (obj->gtt_space->start & (fence_alignment - 1)) == 0;
2988 
2989  mappable =
2990  obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2991 
2992  obj->map_and_fenceable = mappable && fenceable;
2993 
2994  trace_i915_gem_object_bind(obj, map_and_fenceable);
2995  i915_gem_verify_gtt(dev);
2996  return 0;
2997 }
2998 
2999 void
3001 {
3002  /* If we don't have a page list set up, then we're not pinned
3003  * to GPU, and we can ignore the cache flush because it'll happen
3004  * again at bind time.
3005  */
3006  if (obj->pages == NULL)
3007  return;
3008 
3009  /* If the GPU is snooping the contents of the CPU cache,
3010  * we do not need to manually clear the CPU cache lines. However,
3011  * the caches are only snooped when the render cache is
3012  * flushed/invalidated. As we always have to emit invalidations
3013  * and flushes when moving into and out of the RENDER domain, correct
3014  * snooping behaviour occurs naturally as the result of our domain
3015  * tracking.
3016  */
3017  if (obj->cache_level != I915_CACHE_NONE)
3018  return;
3019 
3020  trace_i915_gem_object_clflush(obj);
3021 
3022  drm_clflush_sg(obj->pages);
3023 }
3024 
3026 static void
3027 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3028 {
3029  uint32_t old_write_domain;
3030 
3031  if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3032  return;
3033 
3034  /* No actual flushing is required for the GTT write domain. Writes
3035  * to it immediately go to main memory as far as we know, so there's
3036  * no chipset flush. It also doesn't land in render cache.
3037  *
3038  * However, we do have to enforce the order so that all writes through
3039  * the GTT land before any writes to the device, such as updates to
3040  * the GATT itself.
3041  */
3042  wmb();
3043 
3044  old_write_domain = obj->base.write_domain;
3045  obj->base.write_domain = 0;
3046 
3047  trace_i915_gem_object_change_domain(obj,
3048  obj->base.read_domains,
3049  old_write_domain);
3050 }
3051 
3053 static void
3054 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3055 {
3056  uint32_t old_write_domain;
3057 
3058  if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3059  return;
3060 
3063  old_write_domain = obj->base.write_domain;
3064  obj->base.write_domain = 0;
3065 
3066  trace_i915_gem_object_change_domain(obj,
3067  obj->base.read_domains,
3068  old_write_domain);
3069 }
3070 
3077 int
3079 {
3080  drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3081  uint32_t old_write_domain, old_read_domains;
3082  int ret;
3083 
3084  /* Not valid to be called on unbound objects. */
3085  if (obj->gtt_space == NULL)
3086  return -EINVAL;
3087 
3088  if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3089  return 0;
3090 
3091  ret = i915_gem_object_wait_rendering(obj, !write);
3092  if (ret)
3093  return ret;
3094 
3095  i915_gem_object_flush_cpu_write_domain(obj);
3096 
3097  old_write_domain = obj->base.write_domain;
3098  old_read_domains = obj->base.read_domains;
3099 
3100  /* It should now be out of any other write domains, and we can update
3101  * the domain values for our changes.
3102  */
3103  BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3104  obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3105  if (write) {
3106  obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3107  obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3108  obj->dirty = 1;
3109  }
3110 
3111  trace_i915_gem_object_change_domain(obj,
3112  old_read_domains,
3113  old_write_domain);
3114 
3115  /* And bump the LRU for this access */
3116  if (i915_gem_object_is_inactive(obj))
3117  list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3118 
3119  return 0;
3120 }
3121 
3123  enum i915_cache_level cache_level)
3124 {
3125  struct drm_device *dev = obj->base.dev;
3126  drm_i915_private_t *dev_priv = dev->dev_private;
3127  int ret;
3128 
3129  if (obj->cache_level == cache_level)
3130  return 0;
3131 
3132  if (obj->pin_count) {
3133  DRM_DEBUG("can not change the cache level of pinned objects\n");
3134  return -EBUSY;
3135  }
3136 
3137  if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3138  ret = i915_gem_object_unbind(obj);
3139  if (ret)
3140  return ret;
3141  }
3142 
3143  if (obj->gtt_space) {
3144  ret = i915_gem_object_finish_gpu(obj);
3145  if (ret)
3146  return ret;
3147 
3148  i915_gem_object_finish_gtt(obj);
3149 
3150  /* Before SandyBridge, you could not use tiling or fence
3151  * registers with snooped memory, so relinquish any fences
3152  * currently pointing to our region in the aperture.
3153  */
3154  if (INTEL_INFO(dev)->gen < 6) {
3155  ret = i915_gem_object_put_fence(obj);
3156  if (ret)
3157  return ret;
3158  }
3159 
3160  if (obj->has_global_gtt_mapping)
3161  i915_gem_gtt_bind_object(obj, cache_level);
3162  if (obj->has_aliasing_ppgtt_mapping)
3163  i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3164  obj, cache_level);
3165 
3166  obj->gtt_space->color = cache_level;
3167  }
3168 
3169  if (cache_level == I915_CACHE_NONE) {
3170  u32 old_read_domains, old_write_domain;
3171 
3172  /* If we're coming from LLC cached, then we haven't
3173  * actually been tracking whether the data is in the
3174  * CPU cache or not, since we only allow one bit set
3175  * in obj->write_domain and have been skipping the clflushes.
3176  * Just set it to the CPU cache for now.
3177  */
3178  WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3179  WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3180 
3181  old_read_domains = obj->base.read_domains;
3182  old_write_domain = obj->base.write_domain;
3183 
3184  obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3185  obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3186 
3187  trace_i915_gem_object_change_domain(obj,
3188  old_read_domains,
3189  old_write_domain);
3190  }
3191 
3192  obj->cache_level = cache_level;
3193  i915_gem_verify_gtt(dev);
3194  return 0;
3195 }
3196 
3198  struct drm_file *file)
3199 {
3200  struct drm_i915_gem_caching *args = data;
3201  struct drm_i915_gem_object *obj;
3202  int ret;
3203 
3204  ret = i915_mutex_lock_interruptible(dev);
3205  if (ret)
3206  return ret;
3207 
3208  obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3209  if (&obj->base == NULL) {
3210  ret = -ENOENT;
3211  goto unlock;
3212  }
3213 
3214  args->caching = obj->cache_level != I915_CACHE_NONE;
3215 
3216  drm_gem_object_unreference(&obj->base);
3217 unlock:
3218  mutex_unlock(&dev->struct_mutex);
3219  return ret;
3220 }
3221 
3223  struct drm_file *file)
3224 {
3225  struct drm_i915_gem_caching *args = data;
3226  struct drm_i915_gem_object *obj;
3227  enum i915_cache_level level;
3228  int ret;
3229 
3230  switch (args->caching) {
3231  case I915_CACHING_NONE:
3232  level = I915_CACHE_NONE;
3233  break;
3234  case I915_CACHING_CACHED:
3235  level = I915_CACHE_LLC;
3236  break;
3237  default:
3238  return -EINVAL;
3239  }
3240 
3241  ret = i915_mutex_lock_interruptible(dev);
3242  if (ret)
3243  return ret;
3244 
3245  obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3246  if (&obj->base == NULL) {
3247  ret = -ENOENT;
3248  goto unlock;
3249  }
3250 
3251  ret = i915_gem_object_set_cache_level(obj, level);
3252 
3253  drm_gem_object_unreference(&obj->base);
3254 unlock:
3255  mutex_unlock(&dev->struct_mutex);
3256  return ret;
3257 }
3258 
3259 /*
3260  * Prepare buffer for display plane (scanout, cursors, etc).
3261  * Can be called from an uninterruptible phase (modesetting) and allows
3262  * any flushes to be pipelined (for pageflips).
3263  */
3264 int
3266  u32 alignment,
3267  struct intel_ring_buffer *pipelined)
3268 {
3269  u32 old_read_domains, old_write_domain;
3270  int ret;
3271 
3272  if (pipelined != obj->ring) {
3273  ret = i915_gem_object_sync(obj, pipelined);
3274  if (ret)
3275  return ret;
3276  }
3277 
3278  /* The display engine is not coherent with the LLC cache on gen6. As
3279  * a result, we make sure that the pinning that is about to occur is
3280  * done with uncached PTEs. This is lowest common denominator for all
3281  * chipsets.
3282  *
3283  * However for gen6+, we could do better by using the GFDT bit instead
3284  * of uncaching, which would allow us to flush all the LLC-cached data
3285  * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3286  */
3288  if (ret)
3289  return ret;
3290 
3291  /* As the user may map the buffer once pinned in the display plane
3292  * (e.g. libkms for the bootup splash), we have to ensure that we
3293  * always use map_and_fenceable for all scanout buffers.
3294  */
3295  ret = i915_gem_object_pin(obj, alignment, true, false);
3296  if (ret)
3297  return ret;
3298 
3299  i915_gem_object_flush_cpu_write_domain(obj);
3300 
3301  old_write_domain = obj->base.write_domain;
3302  old_read_domains = obj->base.read_domains;
3303 
3304  /* It should now be out of any other write domains, and we can update
3305  * the domain values for our changes.
3306  */
3307  obj->base.write_domain = 0;
3308  obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3309 
3310  trace_i915_gem_object_change_domain(obj,
3311  old_read_domains,
3312  old_write_domain);
3313 
3314  return 0;
3315 }
3316 
3317 int
3319 {
3320  int ret;
3321 
3322  if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3323  return 0;
3324 
3325  ret = i915_gem_object_wait_rendering(obj, false);
3326  if (ret)
3327  return ret;
3328 
3329  /* Ensure that we invalidate the GPU's caches and TLBs. */
3330  obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3331  return 0;
3332 }
3333 
3340 int
3342 {
3343  uint32_t old_write_domain, old_read_domains;
3344  int ret;
3345 
3346  if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3347  return 0;
3348 
3349  ret = i915_gem_object_wait_rendering(obj, !write);
3350  if (ret)
3351  return ret;
3352 
3353  i915_gem_object_flush_gtt_write_domain(obj);
3354 
3355  old_write_domain = obj->base.write_domain;
3356  old_read_domains = obj->base.read_domains;
3357 
3358  /* Flush the CPU cache if it's still invalid. */
3359  if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3361 
3362  obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3363  }
3364 
3365  /* It should now be out of any other write domains, and we can update
3366  * the domain values for our changes.
3367  */
3368  BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3369 
3370  /* If we're writing through the CPU, then the GPU read domains will
3371  * need to be invalidated at next use.
3372  */
3373  if (write) {
3374  obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3375  obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3376  }
3377 
3378  trace_i915_gem_object_change_domain(obj,
3379  old_read_domains,
3380  old_write_domain);
3381 
3382  return 0;
3383 }
3384 
3385 /* Throttle our rendering by waiting until the ring has completed our requests
3386  * emitted over 20 msec ago.
3387  *
3388  * Note that if we were to use the current jiffies each time around the loop,
3389  * we wouldn't escape the function with any frames outstanding if the time to
3390  * render a frame was over 20ms.
3391  *
3392  * This should get us reasonable parallelism between CPU and GPU but also
3393  * relatively low latency when blocking on a particular request to finish.
3394  */
3395 static int
3396 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3397 {
3398  struct drm_i915_private *dev_priv = dev->dev_private;
3399  struct drm_i915_file_private *file_priv = file->driver_priv;
3400  unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3401  struct drm_i915_gem_request *request;
3402  struct intel_ring_buffer *ring = NULL;
3403  u32 seqno = 0;
3404  int ret;
3405 
3406  if (atomic_read(&dev_priv->mm.wedged))
3407  return -EIO;
3408 
3409  spin_lock(&file_priv->mm.lock);
3410  list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3411  if (time_after_eq(request->emitted_jiffies, recent_enough))
3412  break;
3413 
3414  ring = request->ring;
3415  seqno = request->seqno;
3416  }
3417  spin_unlock(&file_priv->mm.lock);
3418 
3419  if (seqno == 0)
3420  return 0;
3421 
3422  ret = __wait_seqno(ring, seqno, true, NULL);
3423  if (ret == 0)
3424  queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3425 
3426  return ret;
3427 }
3428 
3429 int
3431  uint32_t alignment,
3432  bool map_and_fenceable,
3433  bool nonblocking)
3434 {
3435  int ret;
3436 
3438  return -EBUSY;
3439 
3440  if (obj->gtt_space != NULL) {
3441  if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3442  (map_and_fenceable && !obj->map_and_fenceable)) {
3443  WARN(obj->pin_count,
3444  "bo is already pinned with incorrect alignment:"
3445  " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3446  " obj->map_and_fenceable=%d\n",
3447  obj->gtt_offset, alignment,
3448  map_and_fenceable,
3449  obj->map_and_fenceable);
3450  ret = i915_gem_object_unbind(obj);
3451  if (ret)
3452  return ret;
3453  }
3454  }
3455 
3456  if (obj->gtt_space == NULL) {
3457  ret = i915_gem_object_bind_to_gtt(obj, alignment,
3458  map_and_fenceable,
3459  nonblocking);
3460  if (ret)
3461  return ret;
3462  }
3463 
3464  if (!obj->has_global_gtt_mapping && map_and_fenceable)
3466 
3467  obj->pin_count++;
3468  obj->pin_mappable |= map_and_fenceable;
3469 
3470  return 0;
3471 }
3472 
3473 void
3475 {
3476  BUG_ON(obj->pin_count == 0);
3477  BUG_ON(obj->gtt_space == NULL);
3478 
3479  if (--obj->pin_count == 0)
3480  obj->pin_mappable = false;
3481 }
3482 
3483 int
3485  struct drm_file *file)
3486 {
3487  struct drm_i915_gem_pin *args = data;
3488  struct drm_i915_gem_object *obj;
3489  int ret;
3490 
3491  ret = i915_mutex_lock_interruptible(dev);
3492  if (ret)
3493  return ret;
3494 
3495  obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3496  if (&obj->base == NULL) {
3497  ret = -ENOENT;
3498  goto unlock;
3499  }
3500 
3501  if (obj->madv != I915_MADV_WILLNEED) {
3502  DRM_ERROR("Attempting to pin a purgeable buffer\n");
3503  ret = -EINVAL;
3504  goto out;
3505  }
3506 
3507  if (obj->pin_filp != NULL && obj->pin_filp != file) {
3508  DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3509  args->handle);
3510  ret = -EINVAL;
3511  goto out;
3512  }
3513 
3514  obj->user_pin_count++;
3515  obj->pin_filp = file;
3516  if (obj->user_pin_count == 1) {
3517  ret = i915_gem_object_pin(obj, args->alignment, true, false);
3518  if (ret)
3519  goto out;
3520  }
3521 
3522  /* XXX - flush the CPU caches for pinned objects
3523  * as the X server doesn't manage domains yet
3524  */
3525  i915_gem_object_flush_cpu_write_domain(obj);
3526  args->offset = obj->gtt_offset;
3527 out:
3528  drm_gem_object_unreference(&obj->base);
3529 unlock:
3530  mutex_unlock(&dev->struct_mutex);
3531  return ret;
3532 }
3533 
3534 int
3536  struct drm_file *file)
3537 {
3538  struct drm_i915_gem_pin *args = data;
3539  struct drm_i915_gem_object *obj;
3540  int ret;
3541 
3542  ret = i915_mutex_lock_interruptible(dev);
3543  if (ret)
3544  return ret;
3545 
3546  obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3547  if (&obj->base == NULL) {
3548  ret = -ENOENT;
3549  goto unlock;
3550  }
3551 
3552  if (obj->pin_filp != file) {
3553  DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3554  args->handle);
3555  ret = -EINVAL;
3556  goto out;
3557  }
3558  obj->user_pin_count--;
3559  if (obj->user_pin_count == 0) {
3560  obj->pin_filp = NULL;
3561  i915_gem_object_unpin(obj);
3562  }
3563 
3564 out:
3565  drm_gem_object_unreference(&obj->base);
3566 unlock:
3567  mutex_unlock(&dev->struct_mutex);
3568  return ret;
3569 }
3570 
3571 int
3573  struct drm_file *file)
3574 {
3575  struct drm_i915_gem_busy *args = data;
3576  struct drm_i915_gem_object *obj;
3577  int ret;
3578 
3579  ret = i915_mutex_lock_interruptible(dev);
3580  if (ret)
3581  return ret;
3582 
3583  obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3584  if (&obj->base == NULL) {
3585  ret = -ENOENT;
3586  goto unlock;
3587  }
3588 
3589  /* Count all active objects as busy, even if they are currently not used
3590  * by the gpu. Users of this interface expect objects to eventually
3591  * become non-busy without any further actions, therefore emit any
3592  * necessary flushes here.
3593  */
3594  ret = i915_gem_object_flush_active(obj);
3595 
3596  args->busy = obj->active;
3597  if (obj->ring) {
3599  args->busy |= intel_ring_flag(obj->ring) << 16;
3600  }
3601 
3602  drm_gem_object_unreference(&obj->base);
3603 unlock:
3604  mutex_unlock(&dev->struct_mutex);
3605  return ret;
3606 }
3607 
3608 int
3610  struct drm_file *file_priv)
3611 {
3612  return i915_gem_ring_throttle(dev, file_priv);
3613 }
3614 
3615 int
3617  struct drm_file *file_priv)
3618 {
3619  struct drm_i915_gem_madvise *args = data;
3620  struct drm_i915_gem_object *obj;
3621  int ret;
3622 
3623  switch (args->madv) {
3624  case I915_MADV_DONTNEED:
3625  case I915_MADV_WILLNEED:
3626  break;
3627  default:
3628  return -EINVAL;
3629  }
3630 
3631  ret = i915_mutex_lock_interruptible(dev);
3632  if (ret)
3633  return ret;
3634 
3635  obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3636  if (&obj->base == NULL) {
3637  ret = -ENOENT;
3638  goto unlock;
3639  }
3640 
3641  if (obj->pin_count) {
3642  ret = -EINVAL;
3643  goto out;
3644  }
3645 
3646  if (obj->madv != __I915_MADV_PURGED)
3647  obj->madv = args->madv;
3648 
3649  /* if the object is no longer attached, discard its backing storage */
3650  if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3651  i915_gem_object_truncate(obj);
3652 
3653  args->retained = obj->madv != __I915_MADV_PURGED;
3654 
3655 out:
3656  drm_gem_object_unreference(&obj->base);
3657 unlock:
3658  mutex_unlock(&dev->struct_mutex);
3659  return ret;
3660 }
3661 
3663  const struct drm_i915_gem_object_ops *ops)
3664 {
3665  INIT_LIST_HEAD(&obj->mm_list);
3666  INIT_LIST_HEAD(&obj->gtt_list);
3667  INIT_LIST_HEAD(&obj->ring_list);
3668  INIT_LIST_HEAD(&obj->exec_list);
3669 
3670  obj->ops = ops;
3671 
3673  obj->madv = I915_MADV_WILLNEED;
3674  /* Avoid an unnecessary call to unbind on the first bind. */
3675  obj->map_and_fenceable = true;
3676 
3677  i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3678 }
3679 
3680 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3681  .get_pages = i915_gem_object_get_pages_gtt,
3682  .put_pages = i915_gem_object_put_pages_gtt,
3683 };
3684 
3686  size_t size)
3687 {
3688  struct drm_i915_gem_object *obj;
3689  struct address_space *mapping;
3690  u32 mask;
3691 
3692  obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3693  if (obj == NULL)
3694  return NULL;
3695 
3696  if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3697  kfree(obj);
3698  return NULL;
3699  }
3700 
3702  if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3703  /* 965gm cannot relocate objects above 4GiB. */
3704  mask &= ~__GFP_HIGHMEM;
3705  mask |= __GFP_DMA32;
3706  }
3707 
3708  mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3709  mapping_set_gfp_mask(mapping, mask);
3710 
3711  i915_gem_object_init(obj, &i915_gem_object_ops);
3712 
3713  obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3714  obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3715 
3716  if (HAS_LLC(dev)) {
3717  /* On some devices, we can have the GPU use the LLC (the CPU
3718  * cache) for about a 10% performance improvement
3719  * compared to uncached. Graphics requests other than
3720  * display scanout are coherent with the CPU in
3721  * accessing this cache. This means in this mode we
3722  * don't need to clflush on the CPU side, and on the
3723  * GPU side we only need to flush internal caches to
3724  * get data visible to the CPU.
3725  *
3726  * However, we maintain the display planes as UC, and so
3727  * need to rebind when first used as such.
3728  */
3729  obj->cache_level = I915_CACHE_LLC;
3730  } else
3732 
3733  return obj;
3734 }
3735 
3736 int i915_gem_init_object(struct drm_gem_object *obj)
3737 {
3738  BUG();
3739 
3740  return 0;
3741 }
3742 
3743 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3744 {
3745  struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3746  struct drm_device *dev = obj->base.dev;
3747  drm_i915_private_t *dev_priv = dev->dev_private;
3748 
3749  trace_i915_gem_object_destroy(obj);
3750 
3751  if (obj->phys_obj)
3752  i915_gem_detach_phys_object(dev, obj);
3753 
3754  obj->pin_count = 0;
3755  if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3756  bool was_interruptible;
3757 
3758  was_interruptible = dev_priv->mm.interruptible;
3759  dev_priv->mm.interruptible = false;
3760 
3762 
3763  dev_priv->mm.interruptible = was_interruptible;
3764  }
3765 
3766  obj->pages_pin_count = 0;
3767  i915_gem_object_put_pages(obj);
3768  i915_gem_object_free_mmap_offset(obj);
3769 
3770  BUG_ON(obj->pages);
3771 
3772  if (obj->base.import_attach)
3774 
3776  i915_gem_info_remove_obj(dev_priv, obj->base.size);
3777 
3778  kfree(obj->bit_17);
3779  kfree(obj);
3780 }
3781 
3782 int
3784 {
3785  drm_i915_private_t *dev_priv = dev->dev_private;
3786  int ret;
3787 
3788  mutex_lock(&dev->struct_mutex);
3789 
3790  if (dev_priv->mm.suspended) {
3791  mutex_unlock(&dev->struct_mutex);
3792  return 0;
3793  }
3794 
3795  ret = i915_gpu_idle(dev);
3796  if (ret) {
3797  mutex_unlock(&dev->struct_mutex);
3798  return ret;
3799  }
3801 
3802  /* Under UMS, be paranoid and evict. */
3803  if (!drm_core_check_feature(dev, DRIVER_MODESET))
3805 
3806  i915_gem_reset_fences(dev);
3807 
3808  /* Hack! Don't let anybody do execbuf while we don't control the chip.
3809  * We need to replace this with a semaphore, or something.
3810  * And not confound mm.suspended!
3811  */
3812  dev_priv->mm.suspended = 1;
3813  del_timer_sync(&dev_priv->hangcheck_timer);
3814 
3817 
3818  mutex_unlock(&dev->struct_mutex);
3819 
3820  /* Cancel the retire work handler, which should be idle now. */
3821  cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3822 
3823  return 0;
3824 }
3825 
3827 {
3828  drm_i915_private_t *dev_priv = dev->dev_private;
3829  u32 misccpctl;
3830  int i;
3831 
3832  if (!IS_IVYBRIDGE(dev))
3833  return;
3834 
3835  if (!dev_priv->mm.l3_remap_info)
3836  return;
3837 
3838  misccpctl = I915_READ(GEN7_MISCCPCTL);
3841 
3842  for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3843  u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3844  if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
3845  DRM_DEBUG("0x%x was already programmed to %x\n",
3846  GEN7_L3LOG_BASE + i, remap);
3847  if (remap && !dev_priv->mm.l3_remap_info[i/4])
3848  DRM_DEBUG_DRIVER("Clearing remapped register\n");
3849  I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
3850  }
3851 
3852  /* Make sure all the writes land before disabling dop clock gating */
3854 
3855  I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3856 }
3857 
3859 {
3860  drm_i915_private_t *dev_priv = dev->dev_private;
3861 
3862  if (INTEL_INFO(dev)->gen < 5 ||
3863  dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3864  return;
3865 
3868 
3869  if (IS_GEN5(dev))
3870  return;
3871 
3873  if (IS_GEN6(dev))
3875  else
3877 }
3878 
3880 {
3881  drm_i915_private_t *dev_priv = dev->dev_private;
3882  uint32_t pd_offset;
3883  struct intel_ring_buffer *ring;
3884  struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3885  uint32_t __iomem *pd_addr;
3886  uint32_t pd_entry;
3887  int i;
3888 
3889  if (!dev_priv->mm.aliasing_ppgtt)
3890  return;
3891 
3892 
3893  pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3894  for (i = 0; i < ppgtt->num_pd_entries; i++) {
3895  dma_addr_t pt_addr;
3896 
3897  if (dev_priv->mm.gtt->needs_dmar)
3898  pt_addr = ppgtt->pt_dma_addr[i];
3899  else
3900  pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3901 
3902  pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3903  pd_entry |= GEN6_PDE_VALID;
3904 
3905  writel(pd_entry, pd_addr + i);
3906  }
3907  readl(pd_addr);
3908 
3909  pd_offset = ppgtt->pd_offset;
3910  pd_offset /= 64; /* in cachelines, */
3911  pd_offset <<= 16;
3912 
3913  if (INTEL_INFO(dev)->gen == 6) {
3914  uint32_t ecochk, gab_ctl, ecobits;
3915 
3916  ecobits = I915_READ(GAC_ECO_BITS);
3918 
3919  gab_ctl = I915_READ(GAB_CTL);
3921 
3922  ecochk = I915_READ(GAM_ECOCHK);
3926  } else if (INTEL_INFO(dev)->gen >= 7) {
3928  /* GFX_MODE is per-ring on gen7+ */
3929  }
3930 
3931  for_each_ring(ring, dev_priv, i) {
3932  if (INTEL_INFO(dev)->gen >= 7)
3933  I915_WRITE(RING_MODE_GEN7(ring),
3935 
3937  I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3938  }
3939 }
3940 
3941 static bool
3942 intel_enable_blt(struct drm_device *dev)
3943 {
3944  if (!HAS_BLT(dev))
3945  return false;
3946 
3947  /* The blitter was dysfunctional on early prototypes */
3948  if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3949  DRM_INFO("BLT not supported on this pre-production hardware;"
3950  " graphics performance will be degraded.\n");
3951  return false;
3952  }
3953 
3954  return true;
3955 }
3956 
3957 int
3959 {
3960  drm_i915_private_t *dev_priv = dev->dev_private;
3961  int ret;
3962 
3963  if (!intel_enable_gtt())
3964  return -EIO;
3965 
3966  if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
3967  I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
3968 
3969  i915_gem_l3_remap(dev);
3970 
3972 
3973  ret = intel_init_render_ring_buffer(dev);
3974  if (ret)
3975  return ret;
3976 
3977  if (HAS_BSD(dev)) {
3978  ret = intel_init_bsd_ring_buffer(dev);
3979  if (ret)
3980  goto cleanup_render_ring;
3981  }
3982 
3983  if (intel_enable_blt(dev)) {
3984  ret = intel_init_blt_ring_buffer(dev);
3985  if (ret)
3986  goto cleanup_bsd_ring;
3987  }
3988 
3989  dev_priv->next_seqno = 1;
3990 
3991  /*
3992  * XXX: There was some w/a described somewhere suggesting loading
3993  * contexts before PPGTT.
3994  */
3995  i915_gem_context_init(dev);
3996  i915_gem_init_ppgtt(dev);
3997 
3998  return 0;
3999 
4000 cleanup_bsd_ring:
4001  intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4002 cleanup_render_ring:
4003  intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4004  return ret;
4005 }
4006 
4007 static bool
4008 intel_enable_ppgtt(struct drm_device *dev)
4009 {
4010  if (i915_enable_ppgtt >= 0)
4011  return i915_enable_ppgtt;
4012 
4013 #ifdef CONFIG_INTEL_IOMMU
4014  /* Disable ppgtt on SNB if VT-d is on. */
4015  if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
4016  return false;
4017 #endif
4018 
4019  return true;
4020 }
4021 
4022 int i915_gem_init(struct drm_device *dev)
4023 {
4024  struct drm_i915_private *dev_priv = dev->dev_private;
4025  unsigned long gtt_size, mappable_size;
4026  int ret;
4027 
4028  gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
4029  mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
4030 
4031  mutex_lock(&dev->struct_mutex);
4032  if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
4033  /* PPGTT pdes are stolen from global gtt ptes, so shrink the
4034  * aperture accordingly when using aliasing ppgtt. */
4035  gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
4036 
4037  i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
4038 
4039  ret = i915_gem_init_aliasing_ppgtt(dev);
4040  if (ret) {
4041  mutex_unlock(&dev->struct_mutex);
4042  return ret;
4043  }
4044  } else {
4045  /* Let GEM Manage all of the aperture.
4046  *
4047  * However, leave one page at the end still bound to the scratch
4048  * page. There are a number of places where the hardware
4049  * apparently prefetches past the end of the object, and we've
4050  * seen multiple hangs with the GPU head pointer stuck in a
4051  * batchbuffer bound at the last page of the aperture. One page
4052  * should be enough to keep any prefetching inside of the
4053  * aperture.
4054  */
4055  i915_gem_init_global_gtt(dev, 0, mappable_size,
4056  gtt_size);
4057  }
4058 
4059  ret = i915_gem_init_hw(dev);
4060  mutex_unlock(&dev->struct_mutex);
4061  if (ret) {
4063  return ret;
4064  }
4065 
4066  /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4067  if (!drm_core_check_feature(dev, DRIVER_MODESET))
4068  dev_priv->dri1.allow_batchbuffer = 1;
4069  return 0;
4070 }
4071 
4072 void
4074 {
4075  drm_i915_private_t *dev_priv = dev->dev_private;
4076  struct intel_ring_buffer *ring;
4077  int i;
4078 
4079  for_each_ring(ring, dev_priv, i)
4081 }
4082 
4083 int
4085  struct drm_file *file_priv)
4086 {
4087  drm_i915_private_t *dev_priv = dev->dev_private;
4088  int ret;
4089 
4090  if (drm_core_check_feature(dev, DRIVER_MODESET))
4091  return 0;
4092 
4093  if (atomic_read(&dev_priv->mm.wedged)) {
4094  DRM_ERROR("Reenabling wedged hardware, good luck\n");
4095  atomic_set(&dev_priv->mm.wedged, 0);
4096  }
4097 
4098  mutex_lock(&dev->struct_mutex);
4099  dev_priv->mm.suspended = 0;
4100 
4101  ret = i915_gem_init_hw(dev);
4102  if (ret != 0) {
4103  mutex_unlock(&dev->struct_mutex);
4104  return ret;
4105  }
4106 
4107  BUG_ON(!list_empty(&dev_priv->mm.active_list));
4108  mutex_unlock(&dev->struct_mutex);
4109 
4110  ret = drm_irq_install(dev);
4111  if (ret)
4112  goto cleanup_ringbuffer;
4113 
4114  return 0;
4115 
4116 cleanup_ringbuffer:
4117  mutex_lock(&dev->struct_mutex);
4119  dev_priv->mm.suspended = 1;
4120  mutex_unlock(&dev->struct_mutex);
4121 
4122  return ret;
4123 }
4124 
4125 int
4127  struct drm_file *file_priv)
4128 {
4129  if (drm_core_check_feature(dev, DRIVER_MODESET))
4130  return 0;
4131 
4132  drm_irq_uninstall(dev);
4133  return i915_gem_idle(dev);
4134 }
4135 
4136 void
4138 {
4139  int ret;
4140 
4141  if (drm_core_check_feature(dev, DRIVER_MODESET))
4142  return;
4143 
4144  ret = i915_gem_idle(dev);
4145  if (ret)
4146  DRM_ERROR("failed to idle hardware: %d\n", ret);
4147 }
4148 
4149 static void
4150 init_ring_lists(struct intel_ring_buffer *ring)
4151 {
4152  INIT_LIST_HEAD(&ring->active_list);
4153  INIT_LIST_HEAD(&ring->request_list);
4154 }
4155 
4156 void
4158 {
4159  int i;
4160  drm_i915_private_t *dev_priv = dev->dev_private;
4161 
4162  INIT_LIST_HEAD(&dev_priv->mm.active_list);
4163  INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4164  INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4165  INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4166  INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4167  for (i = 0; i < I915_NUM_RINGS; i++)
4168  init_ring_lists(&dev_priv->ring[i]);
4169  for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4170  INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4171  INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4172  i915_gem_retire_work_handler);
4173  init_completion(&dev_priv->error_completion);
4174 
4175  /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4176  if (IS_GEN3(dev)) {
4179  }
4180 
4182 
4183  /* Old X drivers will take 0-2 for front, back, depth buffers */
4184  if (!drm_core_check_feature(dev, DRIVER_MODESET))
4185  dev_priv->fence_reg_start = 3;
4186 
4187  if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4188  dev_priv->num_fence_regs = 16;
4189  else
4190  dev_priv->num_fence_regs = 8;
4191 
4192  /* Initialize fence registers to zero */
4193  i915_gem_reset_fences(dev);
4194 
4197 
4198  dev_priv->mm.interruptible = true;
4199 
4200  dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4201  dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4202  register_shrinker(&dev_priv->mm.inactive_shrinker);
4203 }
4204 
4205 /*
4206  * Create a physically contiguous memory object for this object
4207  * e.g. for cursor + overlay regs
4208  */
4209 static int i915_gem_init_phys_object(struct drm_device *dev,
4210  int id, int size, int align)
4211 {
4212  drm_i915_private_t *dev_priv = dev->dev_private;
4213  struct drm_i915_gem_phys_object *phys_obj;
4214  int ret;
4215 
4216  if (dev_priv->mm.phys_objs[id - 1] || !size)
4217  return 0;
4218 
4219  phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4220  if (!phys_obj)
4221  return -ENOMEM;
4222 
4223  phys_obj->id = id;
4224 
4225  phys_obj->handle = drm_pci_alloc(dev, size, align);
4226  if (!phys_obj->handle) {
4227  ret = -ENOMEM;
4228  goto kfree_obj;
4229  }
4230 #ifdef CONFIG_X86
4231  set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4232 #endif
4233 
4234  dev_priv->mm.phys_objs[id - 1] = phys_obj;
4235 
4236  return 0;
4237 kfree_obj:
4238  kfree(phys_obj);
4239  return ret;
4240 }
4241 
4242 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4243 {
4244  drm_i915_private_t *dev_priv = dev->dev_private;
4245  struct drm_i915_gem_phys_object *phys_obj;
4246 
4247  if (!dev_priv->mm.phys_objs[id - 1])
4248  return;
4249 
4250  phys_obj = dev_priv->mm.phys_objs[id - 1];
4251  if (phys_obj->cur_obj) {
4252  i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4253  }
4254 
4255 #ifdef CONFIG_X86
4256  set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4257 #endif
4258  drm_pci_free(dev, phys_obj->handle);
4259  kfree(phys_obj);
4260  dev_priv->mm.phys_objs[id - 1] = NULL;
4261 }
4262 
4264 {
4265  int i;
4266 
4267  for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4268  i915_gem_free_phys_object(dev, i);
4269 }
4270 
4272  struct drm_i915_gem_object *obj)
4273 {
4274  struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4275  char *vaddr;
4276  int i;
4277  int page_count;
4278 
4279  if (!obj->phys_obj)
4280  return;
4281  vaddr = obj->phys_obj->handle->vaddr;
4282 
4283  page_count = obj->base.size / PAGE_SIZE;
4284  for (i = 0; i < page_count; i++) {
4285  struct page *page = shmem_read_mapping_page(mapping, i);
4286  if (!IS_ERR(page)) {
4287  char *dst = kmap_atomic(page);
4288  memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4289  kunmap_atomic(dst);
4290 
4291  drm_clflush_pages(&page, 1);
4292 
4293  set_page_dirty(page);
4294  mark_page_accessed(page);
4295  page_cache_release(page);
4296  }
4297  }
4299 
4300  obj->phys_obj->cur_obj = NULL;
4301  obj->phys_obj = NULL;
4302 }
4303 
4304 int
4306  struct drm_i915_gem_object *obj,
4307  int id,
4308  int align)
4309 {
4310  struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4311  drm_i915_private_t *dev_priv = dev->dev_private;
4312  int ret = 0;
4313  int page_count;
4314  int i;
4315 
4316  if (id > I915_MAX_PHYS_OBJECT)
4317  return -EINVAL;
4318 
4319  if (obj->phys_obj) {
4320  if (obj->phys_obj->id == id)
4321  return 0;
4322  i915_gem_detach_phys_object(dev, obj);
4323  }
4324 
4325  /* create a new object */
4326  if (!dev_priv->mm.phys_objs[id - 1]) {
4327  ret = i915_gem_init_phys_object(dev, id,
4328  obj->base.size, align);
4329  if (ret) {
4330  DRM_ERROR("failed to init phys object %d size: %zu\n",
4331  id, obj->base.size);
4332  return ret;
4333  }
4334  }
4335 
4336  /* bind to the object */
4337  obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4338  obj->phys_obj->cur_obj = obj;
4339 
4340  page_count = obj->base.size / PAGE_SIZE;
4341 
4342  for (i = 0; i < page_count; i++) {
4343  struct page *page;
4344  char *dst, *src;
4345 
4346  page = shmem_read_mapping_page(mapping, i);
4347  if (IS_ERR(page))
4348  return PTR_ERR(page);
4349 
4350  src = kmap_atomic(page);
4351  dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4352  memcpy(dst, src, PAGE_SIZE);
4353  kunmap_atomic(src);
4354 
4355  mark_page_accessed(page);
4356  page_cache_release(page);
4357  }
4358 
4359  return 0;
4360 }
4361 
4362 static int
4363 i915_gem_phys_pwrite(struct drm_device *dev,
4364  struct drm_i915_gem_object *obj,
4365  struct drm_i915_gem_pwrite *args,
4366  struct drm_file *file_priv)
4367 {
4368  void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4369  char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4370 
4371  if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4372  unsigned long unwritten;
4373 
4374  /* The physical object once assigned is fixed for the lifetime
4375  * of the obj, so we can safely drop the lock and continue
4376  * to access vaddr.
4377  */
4378  mutex_unlock(&dev->struct_mutex);
4379  unwritten = copy_from_user(vaddr, user_data, args->size);
4380  mutex_lock(&dev->struct_mutex);
4381  if (unwritten)
4382  return -EFAULT;
4383  }
4384 
4386  return 0;
4387 }
4388 
4389 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4390 {
4391  struct drm_i915_file_private *file_priv = file->driver_priv;
4392 
4393  /* Clean up our request list when the client is going away, so that
4394  * later retire_requests won't dereference our soon-to-be-gone
4395  * file_priv.
4396  */
4397  spin_lock(&file_priv->mm.lock);
4398  while (!list_empty(&file_priv->mm.request_list)) {
4399  struct drm_i915_gem_request *request;
4400 
4401  request = list_first_entry(&file_priv->mm.request_list,
4402  struct drm_i915_gem_request,
4403  client_list);
4404  list_del(&request->client_list);
4405  request->file_priv = NULL;
4406  }
4407  spin_unlock(&file_priv->mm.lock);
4408 }
4409 
4410 static int
4411 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4412 {
4413  struct drm_i915_private *dev_priv =
4414  container_of(shrinker,
4415  struct drm_i915_private,
4416  mm.inactive_shrinker);
4417  struct drm_device *dev = dev_priv->dev;
4418  struct drm_i915_gem_object *obj;
4419  int nr_to_scan = sc->nr_to_scan;
4420  int cnt;
4421 
4422  if (!mutex_trylock(&dev->struct_mutex))
4423  return 0;
4424 
4425  if (nr_to_scan) {
4426  nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4427  if (nr_to_scan > 0)
4428  i915_gem_shrink_all(dev_priv);
4429  }
4430 
4431  cnt = 0;
4432  list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4433  if (obj->pages_pin_count == 0)
4434  cnt += obj->base.size >> PAGE_SHIFT;
4435  list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
4436  if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4437  cnt += obj->base.size >> PAGE_SHIFT;
4438 
4439  mutex_unlock(&dev->struct_mutex);
4440  return cnt;
4441 }