Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
ioc3-eth.c
Go to the documentation of this file.
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License. See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Driver for SGI's IOC3 based Ethernet cards as found in the PCI card.
7  *
8  * Copyright (C) 1999, 2000, 01, 03, 06 Ralf Baechle
9  * Copyright (C) 1995, 1999, 2000, 2001 by Silicon Graphics, Inc.
10  *
11  * References:
12  * o IOC3 ASIC specification 4.51, 1996-04-18
13  * o IEEE 802.3 specification, 2000 edition
14  * o DP38840A Specification, National Semiconductor, March 1997
15  *
16  * To do:
17  *
18  * o Handle allocation failures in ioc3_alloc_skb() more gracefully.
19  * o Handle allocation failures in ioc3_init_rings().
20  * o Use prefetching for large packets. What is a good lower limit for
21  * prefetching?
22  * o We're probably allocating a bit too much memory.
23  * o Use hardware checksums.
24  * o Convert to using a IOC3 meta driver.
25  * o Which PHYs might possibly be attached to the IOC3 in real live,
26  * which workarounds are required for them? Do we ever have Lucent's?
27  * o For the 2.5 branch kill the mii-tool ioctls.
28  */
29 
30 #define IOC3_NAME "ioc3-eth"
31 #define IOC3_VERSION "2.6.3-4"
32 
33 #include <linux/init.h>
34 #include <linux/delay.h>
35 #include <linux/kernel.h>
36 #include <linux/mm.h>
37 #include <linux/errno.h>
38 #include <linux/module.h>
39 #include <linux/pci.h>
40 #include <linux/crc32.h>
41 #include <linux/mii.h>
42 #include <linux/in.h>
43 #include <linux/ip.h>
44 #include <linux/tcp.h>
45 #include <linux/udp.h>
46 #include <linux/dma-mapping.h>
47 #include <linux/gfp.h>
48 
49 #ifdef CONFIG_SERIAL_8250
50 #include <linux/serial_core.h>
51 #include <linux/serial_8250.h>
52 #include <linux/serial_reg.h>
53 #endif
54 
55 #include <linux/netdevice.h>
56 #include <linux/etherdevice.h>
57 #include <linux/ethtool.h>
58 #include <linux/skbuff.h>
59 #include <net/ip.h>
60 
61 #include <asm/byteorder.h>
62 #include <asm/io.h>
63 #include <asm/pgtable.h>
64 #include <asm/uaccess.h>
65 #include <asm/sn/types.h>
66 #include <asm/sn/ioc3.h>
67 #include <asm/pci/bridge.h>
68 
69 /*
70  * 64 RX buffers. This is tunable in the range of 16 <= x < 512. The
71  * value must be a power of two.
72  */
73 #define RX_BUFFS 64
74 
75 #define ETCSR_FD ((17<<ETCSR_IPGR2_SHIFT) | (11<<ETCSR_IPGR1_SHIFT) | 21)
76 #define ETCSR_HD ((21<<ETCSR_IPGR2_SHIFT) | (21<<ETCSR_IPGR1_SHIFT) | 21)
77 
78 /* Private per NIC data of the driver. */
79 struct ioc3_private {
80  struct ioc3 *regs;
81  unsigned long *rxr; /* pointer to receiver ring */
82  struct ioc3_etxd *txr;
83  struct sk_buff *rx_skbs[512];
84  struct sk_buff *tx_skbs[128];
85  int rx_ci; /* RX consumer index */
86  int rx_pi; /* RX producer index */
87  int tx_ci; /* TX consumer index */
88  int tx_pi; /* TX producer index */
89  int txqlen;
92  struct mii_if_info mii;
93 
94  struct pci_dev *pdev;
95 
96  /* Members used by autonegotiation */
98 };
99 
100 static inline struct net_device *priv_netdev(struct ioc3_private *dev)
101 {
102  return (void *)dev - ((sizeof(struct net_device) + 31) & ~31);
103 }
104 
105 static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
106 static void ioc3_set_multicast_list(struct net_device *dev);
107 static int ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev);
108 static void ioc3_timeout(struct net_device *dev);
109 static inline unsigned int ioc3_hash(const unsigned char *addr);
110 static inline void ioc3_stop(struct ioc3_private *ip);
111 static void ioc3_init(struct net_device *dev);
112 
113 static const char ioc3_str[] = "IOC3 Ethernet";
114 static const struct ethtool_ops ioc3_ethtool_ops;
115 
116 /* We use this to acquire receive skb's that we can DMA directly into. */
117 
118 #define IOC3_CACHELINE 128UL
119 
120 static inline unsigned long aligned_rx_skb_addr(unsigned long addr)
121 {
122  return (~addr + 1) & (IOC3_CACHELINE - 1UL);
123 }
124 
125 static inline struct sk_buff * ioc3_alloc_skb(unsigned long length,
126  unsigned int gfp_mask)
127 {
128  struct sk_buff *skb;
129 
130  skb = alloc_skb(length + IOC3_CACHELINE - 1, gfp_mask);
131  if (likely(skb)) {
132  int offset = aligned_rx_skb_addr((unsigned long) skb->data);
133  if (offset)
134  skb_reserve(skb, offset);
135  }
136 
137  return skb;
138 }
139 
140 static inline unsigned long ioc3_map(void *ptr, unsigned long vdev)
141 {
142 #ifdef CONFIG_SGI_IP27
143  vdev <<= 57; /* Shift to PCI64_ATTR_VIRTUAL */
144 
145  return vdev | (0xaUL << PCI64_ATTR_TARG_SHFT) | PCI64_ATTR_PREF |
146  ((unsigned long)ptr & TO_PHYS_MASK);
147 #else
148  return virt_to_bus(ptr);
149 #endif
150 }
151 
152 /* BEWARE: The IOC3 documentation documents the size of rx buffers as
153  1644 while it's actually 1664. This one was nasty to track down ... */
154 #define RX_OFFSET 10
155 #define RX_BUF_ALLOC_SIZE (1664 + RX_OFFSET + IOC3_CACHELINE)
156 
157 /* DMA barrier to separate cached and uncached accesses. */
158 #define BARRIER() \
159  __asm__("sync" ::: "memory")
160 
161 
162 #define IOC3_SIZE 0x100000
163 
164 /*
165  * IOC3 is a big endian device
166  *
167  * Unorthodox but makes the users of these macros more readable - the pointer
168  * to the IOC3's memory mapped registers is expected as struct ioc3 * ioc3
169  * in the environment.
170  */
171 #define ioc3_r_mcr() be32_to_cpu(ioc3->mcr)
172 #define ioc3_w_mcr(v) do { ioc3->mcr = cpu_to_be32(v); } while (0)
173 #define ioc3_w_gpcr_s(v) do { ioc3->gpcr_s = cpu_to_be32(v); } while (0)
174 #define ioc3_r_emcr() be32_to_cpu(ioc3->emcr)
175 #define ioc3_w_emcr(v) do { ioc3->emcr = cpu_to_be32(v); } while (0)
176 #define ioc3_r_eisr() be32_to_cpu(ioc3->eisr)
177 #define ioc3_w_eisr(v) do { ioc3->eisr = cpu_to_be32(v); } while (0)
178 #define ioc3_r_eier() be32_to_cpu(ioc3->eier)
179 #define ioc3_w_eier(v) do { ioc3->eier = cpu_to_be32(v); } while (0)
180 #define ioc3_r_ercsr() be32_to_cpu(ioc3->ercsr)
181 #define ioc3_w_ercsr(v) do { ioc3->ercsr = cpu_to_be32(v); } while (0)
182 #define ioc3_r_erbr_h() be32_to_cpu(ioc3->erbr_h)
183 #define ioc3_w_erbr_h(v) do { ioc3->erbr_h = cpu_to_be32(v); } while (0)
184 #define ioc3_r_erbr_l() be32_to_cpu(ioc3->erbr_l)
185 #define ioc3_w_erbr_l(v) do { ioc3->erbr_l = cpu_to_be32(v); } while (0)
186 #define ioc3_r_erbar() be32_to_cpu(ioc3->erbar)
187 #define ioc3_w_erbar(v) do { ioc3->erbar = cpu_to_be32(v); } while (0)
188 #define ioc3_r_ercir() be32_to_cpu(ioc3->ercir)
189 #define ioc3_w_ercir(v) do { ioc3->ercir = cpu_to_be32(v); } while (0)
190 #define ioc3_r_erpir() be32_to_cpu(ioc3->erpir)
191 #define ioc3_w_erpir(v) do { ioc3->erpir = cpu_to_be32(v); } while (0)
192 #define ioc3_r_ertr() be32_to_cpu(ioc3->ertr)
193 #define ioc3_w_ertr(v) do { ioc3->ertr = cpu_to_be32(v); } while (0)
194 #define ioc3_r_etcsr() be32_to_cpu(ioc3->etcsr)
195 #define ioc3_w_etcsr(v) do { ioc3->etcsr = cpu_to_be32(v); } while (0)
196 #define ioc3_r_ersr() be32_to_cpu(ioc3->ersr)
197 #define ioc3_w_ersr(v) do { ioc3->ersr = cpu_to_be32(v); } while (0)
198 #define ioc3_r_etcdc() be32_to_cpu(ioc3->etcdc)
199 #define ioc3_w_etcdc(v) do { ioc3->etcdc = cpu_to_be32(v); } while (0)
200 #define ioc3_r_ebir() be32_to_cpu(ioc3->ebir)
201 #define ioc3_w_ebir(v) do { ioc3->ebir = cpu_to_be32(v); } while (0)
202 #define ioc3_r_etbr_h() be32_to_cpu(ioc3->etbr_h)
203 #define ioc3_w_etbr_h(v) do { ioc3->etbr_h = cpu_to_be32(v); } while (0)
204 #define ioc3_r_etbr_l() be32_to_cpu(ioc3->etbr_l)
205 #define ioc3_w_etbr_l(v) do { ioc3->etbr_l = cpu_to_be32(v); } while (0)
206 #define ioc3_r_etcir() be32_to_cpu(ioc3->etcir)
207 #define ioc3_w_etcir(v) do { ioc3->etcir = cpu_to_be32(v); } while (0)
208 #define ioc3_r_etpir() be32_to_cpu(ioc3->etpir)
209 #define ioc3_w_etpir(v) do { ioc3->etpir = cpu_to_be32(v); } while (0)
210 #define ioc3_r_emar_h() be32_to_cpu(ioc3->emar_h)
211 #define ioc3_w_emar_h(v) do { ioc3->emar_h = cpu_to_be32(v); } while (0)
212 #define ioc3_r_emar_l() be32_to_cpu(ioc3->emar_l)
213 #define ioc3_w_emar_l(v) do { ioc3->emar_l = cpu_to_be32(v); } while (0)
214 #define ioc3_r_ehar_h() be32_to_cpu(ioc3->ehar_h)
215 #define ioc3_w_ehar_h(v) do { ioc3->ehar_h = cpu_to_be32(v); } while (0)
216 #define ioc3_r_ehar_l() be32_to_cpu(ioc3->ehar_l)
217 #define ioc3_w_ehar_l(v) do { ioc3->ehar_l = cpu_to_be32(v); } while (0)
218 #define ioc3_r_micr() be32_to_cpu(ioc3->micr)
219 #define ioc3_w_micr(v) do { ioc3->micr = cpu_to_be32(v); } while (0)
220 #define ioc3_r_midr_r() be32_to_cpu(ioc3->midr_r)
221 #define ioc3_w_midr_r(v) do { ioc3->midr_r = cpu_to_be32(v); } while (0)
222 #define ioc3_r_midr_w() be32_to_cpu(ioc3->midr_w)
223 #define ioc3_w_midr_w(v) do { ioc3->midr_w = cpu_to_be32(v); } while (0)
224 
225 static inline u32 mcr_pack(u32 pulse, u32 sample)
226 {
227  return (pulse << 10) | (sample << 2);
228 }
229 
230 static int nic_wait(struct ioc3 *ioc3)
231 {
232  u32 mcr;
233 
234  do {
235  mcr = ioc3_r_mcr();
236  } while (!(mcr & 2));
237 
238  return mcr & 1;
239 }
240 
241 static int nic_reset(struct ioc3 *ioc3)
242 {
243  int presence;
244 
245  ioc3_w_mcr(mcr_pack(500, 65));
246  presence = nic_wait(ioc3);
247 
248  ioc3_w_mcr(mcr_pack(0, 500));
249  nic_wait(ioc3);
250 
251  return presence;
252 }
253 
254 static inline int nic_read_bit(struct ioc3 *ioc3)
255 {
256  int result;
257 
258  ioc3_w_mcr(mcr_pack(6, 13));
259  result = nic_wait(ioc3);
260  ioc3_w_mcr(mcr_pack(0, 100));
261  nic_wait(ioc3);
262 
263  return result;
264 }
265 
266 static inline void nic_write_bit(struct ioc3 *ioc3, int bit)
267 {
268  if (bit)
269  ioc3_w_mcr(mcr_pack(6, 110));
270  else
271  ioc3_w_mcr(mcr_pack(80, 30));
272 
273  nic_wait(ioc3);
274 }
275 
276 /*
277  * Read a byte from an iButton device
278  */
279 static u32 nic_read_byte(struct ioc3 *ioc3)
280 {
281  u32 result = 0;
282  int i;
283 
284  for (i = 0; i < 8; i++)
285  result = (result >> 1) | (nic_read_bit(ioc3) << 7);
286 
287  return result;
288 }
289 
290 /*
291  * Write a byte to an iButton device
292  */
293 static void nic_write_byte(struct ioc3 *ioc3, int byte)
294 {
295  int i, bit;
296 
297  for (i = 8; i; i--) {
298  bit = byte & 1;
299  byte >>= 1;
300 
301  nic_write_bit(ioc3, bit);
302  }
303 }
304 
305 static u64 nic_find(struct ioc3 *ioc3, int *last)
306 {
307  int a, b, index, disc;
308  u64 address = 0;
309 
310  nic_reset(ioc3);
311  /* Search ROM. */
312  nic_write_byte(ioc3, 0xf0);
313 
314  /* Algorithm from ``Book of iButton Standards''. */
315  for (index = 0, disc = 0; index < 64; index++) {
316  a = nic_read_bit(ioc3);
317  b = nic_read_bit(ioc3);
318 
319  if (a && b) {
320  printk("NIC search failed (not fatal).\n");
321  *last = 0;
322  return 0;
323  }
324 
325  if (!a && !b) {
326  if (index == *last) {
327  address |= 1UL << index;
328  } else if (index > *last) {
329  address &= ~(1UL << index);
330  disc = index;
331  } else if ((address & (1UL << index)) == 0)
332  disc = index;
333  nic_write_bit(ioc3, address & (1UL << index));
334  continue;
335  } else {
336  if (a)
337  address |= 1UL << index;
338  else
339  address &= ~(1UL << index);
340  nic_write_bit(ioc3, a);
341  continue;
342  }
343  }
344 
345  *last = disc;
346 
347  return address;
348 }
349 
350 static int nic_init(struct ioc3 *ioc3)
351 {
352  const char *unknown = "unknown";
353  const char *type = unknown;
354  u8 crc;
355  u8 serial[6];
356  int save = 0, i;
357 
358  while (1) {
359  u64 reg;
360  reg = nic_find(ioc3, &save);
361 
362  switch (reg & 0xff) {
363  case 0x91:
364  type = "DS1981U";
365  break;
366  default:
367  if (save == 0) {
368  /* Let the caller try again. */
369  return -1;
370  }
371  continue;
372  }
373 
374  nic_reset(ioc3);
375 
376  /* Match ROM. */
377  nic_write_byte(ioc3, 0x55);
378  for (i = 0; i < 8; i++)
379  nic_write_byte(ioc3, (reg >> (i << 3)) & 0xff);
380 
381  reg >>= 8; /* Shift out type. */
382  for (i = 0; i < 6; i++) {
383  serial[i] = reg & 0xff;
384  reg >>= 8;
385  }
386  crc = reg & 0xff;
387  break;
388  }
389 
390  printk("Found %s NIC", type);
391  if (type != unknown)
392  printk (" registration number %pM, CRC %02x", serial, crc);
393  printk(".\n");
394 
395  return 0;
396 }
397 
398 /*
399  * Read the NIC (Number-In-a-Can) device used to store the MAC address on
400  * SN0 / SN00 nodeboards and PCI cards.
401  */
402 static void ioc3_get_eaddr_nic(struct ioc3_private *ip)
403 {
404  struct ioc3 *ioc3 = ip->regs;
405  u8 nic[14];
406  int tries = 2; /* There may be some problem with the battery? */
407  int i;
408 
409  ioc3_w_gpcr_s(1 << 21);
410 
411  while (tries--) {
412  if (!nic_init(ioc3))
413  break;
414  udelay(500);
415  }
416 
417  if (tries < 0) {
418  printk("Failed to read MAC address\n");
419  return;
420  }
421 
422  /* Read Memory. */
423  nic_write_byte(ioc3, 0xf0);
424  nic_write_byte(ioc3, 0x00);
425  nic_write_byte(ioc3, 0x00);
426 
427  for (i = 13; i >= 0; i--)
428  nic[i] = nic_read_byte(ioc3);
429 
430  for (i = 2; i < 8; i++)
431  priv_netdev(ip)->dev_addr[i - 2] = nic[i];
432 }
433 
434 /*
435  * Ok, this is hosed by design. It's necessary to know what machine the
436  * NIC is in in order to know how to read the NIC address. We also have
437  * to know if it's a PCI card or a NIC in on the node board ...
438  */
439 static void ioc3_get_eaddr(struct ioc3_private *ip)
440 {
441  ioc3_get_eaddr_nic(ip);
442 
443  printk("Ethernet address is %pM.\n", priv_netdev(ip)->dev_addr);
444 }
445 
446 static void __ioc3_set_mac_address(struct net_device *dev)
447 {
448  struct ioc3_private *ip = netdev_priv(dev);
449  struct ioc3 *ioc3 = ip->regs;
450 
451  ioc3_w_emar_h((dev->dev_addr[5] << 8) | dev->dev_addr[4]);
452  ioc3_w_emar_l((dev->dev_addr[3] << 24) | (dev->dev_addr[2] << 16) |
453  (dev->dev_addr[1] << 8) | dev->dev_addr[0]);
454 }
455 
456 static int ioc3_set_mac_address(struct net_device *dev, void *addr)
457 {
458  struct ioc3_private *ip = netdev_priv(dev);
459  struct sockaddr *sa = addr;
460 
461  memcpy(dev->dev_addr, sa->sa_data, dev->addr_len);
462 
463  spin_lock_irq(&ip->ioc3_lock);
464  __ioc3_set_mac_address(dev);
465  spin_unlock_irq(&ip->ioc3_lock);
466 
467  return 0;
468 }
469 
470 /*
471  * Caller must hold the ioc3_lock ever for MII readers. This is also
472  * used to protect the transmitter side but it's low contention.
473  */
474 static int ioc3_mdio_read(struct net_device *dev, int phy, int reg)
475 {
476  struct ioc3_private *ip = netdev_priv(dev);
477  struct ioc3 *ioc3 = ip->regs;
478 
479  while (ioc3_r_micr() & MICR_BUSY);
480  ioc3_w_micr((phy << MICR_PHYADDR_SHIFT) | reg | MICR_READTRIG);
481  while (ioc3_r_micr() & MICR_BUSY);
482 
483  return ioc3_r_midr_r() & MIDR_DATA_MASK;
484 }
485 
486 static void ioc3_mdio_write(struct net_device *dev, int phy, int reg, int data)
487 {
488  struct ioc3_private *ip = netdev_priv(dev);
489  struct ioc3 *ioc3 = ip->regs;
490 
491  while (ioc3_r_micr() & MICR_BUSY);
492  ioc3_w_midr_w(data);
493  ioc3_w_micr((phy << MICR_PHYADDR_SHIFT) | reg);
494  while (ioc3_r_micr() & MICR_BUSY);
495 }
496 
497 static int ioc3_mii_init(struct ioc3_private *ip);
498 
499 static struct net_device_stats *ioc3_get_stats(struct net_device *dev)
500 {
501  struct ioc3_private *ip = netdev_priv(dev);
502  struct ioc3 *ioc3 = ip->regs;
503 
504  dev->stats.collisions += (ioc3_r_etcdc() & ETCDC_COLLCNT_MASK);
505  return &dev->stats;
506 }
507 
508 static void ioc3_tcpudp_checksum(struct sk_buff *skb, uint32_t hwsum, int len)
509 {
510  struct ethhdr *eh = eth_hdr(skb);
511  uint32_t csum, ehsum;
512  unsigned int proto;
513  struct iphdr *ih;
514  uint16_t *ew;
515  unsigned char *cp;
516 
517  /*
518  * Did hardware handle the checksum at all? The cases we can handle
519  * are:
520  *
521  * - TCP and UDP checksums of IPv4 only.
522  * - IPv6 would be doable but we keep that for later ...
523  * - Only unfragmented packets. Did somebody already tell you
524  * fragmentation is evil?
525  * - don't care about packet size. Worst case when processing a
526  * malformed packet we'll try to access the packet at ip header +
527  * 64 bytes which is still inside the skb. Even in the unlikely
528  * case where the checksum is right the higher layers will still
529  * drop the packet as appropriate.
530  */
531  if (eh->h_proto != htons(ETH_P_IP))
532  return;
533 
534  ih = (struct iphdr *) ((char *)eh + ETH_HLEN);
535  if (ip_is_fragment(ih))
536  return;
537 
538  proto = ih->protocol;
539  if (proto != IPPROTO_TCP && proto != IPPROTO_UDP)
540  return;
541 
542  /* Same as tx - compute csum of pseudo header */
543  csum = hwsum +
544  (ih->tot_len - (ih->ihl << 2)) +
545  htons((uint16_t)ih->protocol) +
546  (ih->saddr >> 16) + (ih->saddr & 0xffff) +
547  (ih->daddr >> 16) + (ih->daddr & 0xffff);
548 
549  /* Sum up ethernet dest addr, src addr and protocol */
550  ew = (uint16_t *) eh;
551  ehsum = ew[0] + ew[1] + ew[2] + ew[3] + ew[4] + ew[5] + ew[6];
552 
553  ehsum = (ehsum & 0xffff) + (ehsum >> 16);
554  ehsum = (ehsum & 0xffff) + (ehsum >> 16);
555 
556  csum += 0xffff ^ ehsum;
557 
558  /* In the next step we also subtract the 1's complement
559  checksum of the trailing ethernet CRC. */
560  cp = (char *)eh + len; /* points at trailing CRC */
561  if (len & 1) {
562  csum += 0xffff ^ (uint16_t) ((cp[1] << 8) | cp[0]);
563  csum += 0xffff ^ (uint16_t) ((cp[3] << 8) | cp[2]);
564  } else {
565  csum += 0xffff ^ (uint16_t) ((cp[0] << 8) | cp[1]);
566  csum += 0xffff ^ (uint16_t) ((cp[2] << 8) | cp[3]);
567  }
568 
569  csum = (csum & 0xffff) + (csum >> 16);
570  csum = (csum & 0xffff) + (csum >> 16);
571 
572  if (csum == 0xffff)
574 }
575 
576 static inline void ioc3_rx(struct net_device *dev)
577 {
578  struct ioc3_private *ip = netdev_priv(dev);
579  struct sk_buff *skb, *new_skb;
580  struct ioc3 *ioc3 = ip->regs;
581  int rx_entry, n_entry, len;
582  struct ioc3_erxbuf *rxb;
583  unsigned long *rxr;
584  u32 w0, err;
585 
586  rxr = ip->rxr; /* Ring base */
587  rx_entry = ip->rx_ci; /* RX consume index */
588  n_entry = ip->rx_pi;
589 
590  skb = ip->rx_skbs[rx_entry];
591  rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
592  w0 = be32_to_cpu(rxb->w0);
593 
594  while (w0 & ERXBUF_V) {
595  err = be32_to_cpu(rxb->err); /* It's valid ... */
596  if (err & ERXBUF_GOODPKT) {
597  len = ((w0 >> ERXBUF_BYTECNT_SHIFT) & 0x7ff) - 4;
598  skb_trim(skb, len);
599  skb->protocol = eth_type_trans(skb, dev);
600 
601  new_skb = ioc3_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
602  if (!new_skb) {
603  /* Ouch, drop packet and just recycle packet
604  to keep the ring filled. */
605  dev->stats.rx_dropped++;
606  new_skb = skb;
607  goto next;
608  }
609 
610  if (likely(dev->features & NETIF_F_RXCSUM))
611  ioc3_tcpudp_checksum(skb,
612  w0 & ERXBUF_IPCKSUM_MASK, len);
613 
614  netif_rx(skb);
615 
616  ip->rx_skbs[rx_entry] = NULL; /* Poison */
617 
618  /* Because we reserve afterwards. */
619  skb_put(new_skb, (1664 + RX_OFFSET));
620  rxb = (struct ioc3_erxbuf *) new_skb->data;
621  skb_reserve(new_skb, RX_OFFSET);
622 
623  dev->stats.rx_packets++; /* Statistics */
624  dev->stats.rx_bytes += len;
625  } else {
626  /* The frame is invalid and the skb never
627  reached the network layer so we can just
628  recycle it. */
629  new_skb = skb;
630  dev->stats.rx_errors++;
631  }
632  if (err & ERXBUF_CRCERR) /* Statistics */
633  dev->stats.rx_crc_errors++;
634  if (err & ERXBUF_FRAMERR)
635  dev->stats.rx_frame_errors++;
636 next:
637  ip->rx_skbs[n_entry] = new_skb;
638  rxr[n_entry] = cpu_to_be64(ioc3_map(rxb, 1));
639  rxb->w0 = 0; /* Clear valid flag */
640  n_entry = (n_entry + 1) & 511; /* Update erpir */
641 
642  /* Now go on to the next ring entry. */
643  rx_entry = (rx_entry + 1) & 511;
644  skb = ip->rx_skbs[rx_entry];
645  rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
646  w0 = be32_to_cpu(rxb->w0);
647  }
648  ioc3_w_erpir((n_entry << 3) | ERPIR_ARM);
649  ip->rx_pi = n_entry;
650  ip->rx_ci = rx_entry;
651 }
652 
653 static inline void ioc3_tx(struct net_device *dev)
654 {
655  struct ioc3_private *ip = netdev_priv(dev);
656  unsigned long packets, bytes;
657  struct ioc3 *ioc3 = ip->regs;
658  int tx_entry, o_entry;
659  struct sk_buff *skb;
660  u32 etcir;
661 
662  spin_lock(&ip->ioc3_lock);
663  etcir = ioc3_r_etcir();
664 
665  tx_entry = (etcir >> 7) & 127;
666  o_entry = ip->tx_ci;
667  packets = 0;
668  bytes = 0;
669 
670  while (o_entry != tx_entry) {
671  packets++;
672  skb = ip->tx_skbs[o_entry];
673  bytes += skb->len;
674  dev_kfree_skb_irq(skb);
675  ip->tx_skbs[o_entry] = NULL;
676 
677  o_entry = (o_entry + 1) & 127; /* Next */
678 
679  etcir = ioc3_r_etcir(); /* More pkts sent? */
680  tx_entry = (etcir >> 7) & 127;
681  }
682 
683  dev->stats.tx_packets += packets;
684  dev->stats.tx_bytes += bytes;
685  ip->txqlen -= packets;
686 
687  if (ip->txqlen < 128)
688  netif_wake_queue(dev);
689 
690  ip->tx_ci = o_entry;
691  spin_unlock(&ip->ioc3_lock);
692 }
693 
694 /*
695  * Deal with fatal IOC3 errors. This condition might be caused by a hard or
696  * software problems, so we should try to recover
697  * more gracefully if this ever happens. In theory we might be flooded
698  * with such error interrupts if something really goes wrong, so we might
699  * also consider to take the interface down.
700  */
701 static void ioc3_error(struct net_device *dev, u32 eisr)
702 {
703  struct ioc3_private *ip = netdev_priv(dev);
704  unsigned char *iface = dev->name;
705 
706  spin_lock(&ip->ioc3_lock);
707 
708  if (eisr & EISR_RXOFLO)
709  printk(KERN_ERR "%s: RX overflow.\n", iface);
710  if (eisr & EISR_RXBUFOFLO)
711  printk(KERN_ERR "%s: RX buffer overflow.\n", iface);
712  if (eisr & EISR_RXMEMERR)
713  printk(KERN_ERR "%s: RX PCI error.\n", iface);
714  if (eisr & EISR_RXPARERR)
715  printk(KERN_ERR "%s: RX SSRAM parity error.\n", iface);
716  if (eisr & EISR_TXBUFUFLO)
717  printk(KERN_ERR "%s: TX buffer underflow.\n", iface);
718  if (eisr & EISR_TXMEMERR)
719  printk(KERN_ERR "%s: TX PCI error.\n", iface);
720 
721  ioc3_stop(ip);
722  ioc3_init(dev);
723  ioc3_mii_init(ip);
724 
725  netif_wake_queue(dev);
726 
727  spin_unlock(&ip->ioc3_lock);
728 }
729 
730 /* The interrupt handler does all of the Rx thread work and cleans up
731  after the Tx thread. */
732 static irqreturn_t ioc3_interrupt(int irq, void *_dev)
733 {
734  struct net_device *dev = (struct net_device *)_dev;
735  struct ioc3_private *ip = netdev_priv(dev);
736  struct ioc3 *ioc3 = ip->regs;
737  const u32 enabled = EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO |
738  EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO |
740  u32 eisr;
741 
742  eisr = ioc3_r_eisr() & enabled;
743 
744  ioc3_w_eisr(eisr);
745  (void) ioc3_r_eisr(); /* Flush */
746 
747  if (eisr & (EISR_RXOFLO | EISR_RXBUFOFLO | EISR_RXMEMERR |
748  EISR_RXPARERR | EISR_TXBUFUFLO | EISR_TXMEMERR))
749  ioc3_error(dev, eisr);
750  if (eisr & EISR_RXTIMERINT)
751  ioc3_rx(dev);
752  if (eisr & EISR_TXEXPLICIT)
753  ioc3_tx(dev);
754 
755  return IRQ_HANDLED;
756 }
757 
758 static inline void ioc3_setup_duplex(struct ioc3_private *ip)
759 {
760  struct ioc3 *ioc3 = ip->regs;
761 
762  if (ip->mii.full_duplex) {
764  ip->emcr |= EMCR_DUPLEX;
765  } else {
767  ip->emcr &= ~EMCR_DUPLEX;
768  }
769  ioc3_w_emcr(ip->emcr);
770 }
771 
772 static void ioc3_timer(unsigned long data)
773 {
774  struct ioc3_private *ip = (struct ioc3_private *) data;
775 
776  /* Print the link status if it has changed */
777  mii_check_media(&ip->mii, 1, 0);
778  ioc3_setup_duplex(ip);
779 
780  ip->ioc3_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2s */
781  add_timer(&ip->ioc3_timer);
782 }
783 
784 /*
785  * Try to find a PHY. There is no apparent relation between the MII addresses
786  * in the SGI documentation and what we find in reality, so we simply probe
787  * for the PHY. It seems IOC3 PHYs usually live on address 31. One of my
788  * onboard IOC3s has the special oddity that probing doesn't seem to find it
789  * yet the interface seems to work fine, so if probing fails we for now will
790  * simply default to PHY 31 instead of bailing out.
791  */
792 static int ioc3_mii_init(struct ioc3_private *ip)
793 {
794  struct net_device *dev = priv_netdev(ip);
795  int i, found = 0, res = 0;
796  int ioc3_phy_workaround = 1;
797  u16 word;
798 
799  for (i = 0; i < 32; i++) {
800  word = ioc3_mdio_read(dev, i, MII_PHYSID1);
801 
802  if (word != 0xffff && word != 0x0000) {
803  found = 1;
804  break; /* Found a PHY */
805  }
806  }
807 
808  if (!found) {
809  if (ioc3_phy_workaround)
810  i = 31;
811  else {
812  ip->mii.phy_id = -1;
813  res = -ENODEV;
814  goto out;
815  }
816  }
817 
818  ip->mii.phy_id = i;
819 
820 out:
821  return res;
822 }
823 
824 static void ioc3_mii_start(struct ioc3_private *ip)
825 {
826  ip->ioc3_timer.expires = jiffies + (12 * HZ)/10; /* 1.2 sec. */
827  ip->ioc3_timer.data = (unsigned long) ip;
828  ip->ioc3_timer.function = ioc3_timer;
829  add_timer(&ip->ioc3_timer);
830 }
831 
832 static inline void ioc3_clean_rx_ring(struct ioc3_private *ip)
833 {
834  struct sk_buff *skb;
835  int i;
836 
837  for (i = ip->rx_ci; i & 15; i++) {
838  ip->rx_skbs[ip->rx_pi] = ip->rx_skbs[ip->rx_ci];
839  ip->rxr[ip->rx_pi++] = ip->rxr[ip->rx_ci++];
840  }
841  ip->rx_pi &= 511;
842  ip->rx_ci &= 511;
843 
844  for (i = ip->rx_ci; i != ip->rx_pi; i = (i+1) & 511) {
845  struct ioc3_erxbuf *rxb;
846  skb = ip->rx_skbs[i];
847  rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
848  rxb->w0 = 0;
849  }
850 }
851 
852 static inline void ioc3_clean_tx_ring(struct ioc3_private *ip)
853 {
854  struct sk_buff *skb;
855  int i;
856 
857  for (i=0; i < 128; i++) {
858  skb = ip->tx_skbs[i];
859  if (skb) {
860  ip->tx_skbs[i] = NULL;
861  dev_kfree_skb_any(skb);
862  }
863  ip->txr[i].cmd = 0;
864  }
865  ip->tx_pi = 0;
866  ip->tx_ci = 0;
867 }
868 
869 static void ioc3_free_rings(struct ioc3_private *ip)
870 {
871  struct sk_buff *skb;
872  int rx_entry, n_entry;
873 
874  if (ip->txr) {
875  ioc3_clean_tx_ring(ip);
876  free_pages((unsigned long)ip->txr, 2);
877  ip->txr = NULL;
878  }
879 
880  if (ip->rxr) {
881  n_entry = ip->rx_ci;
882  rx_entry = ip->rx_pi;
883 
884  while (n_entry != rx_entry) {
885  skb = ip->rx_skbs[n_entry];
886  if (skb)
887  dev_kfree_skb_any(skb);
888 
889  n_entry = (n_entry + 1) & 511;
890  }
891  free_page((unsigned long)ip->rxr);
892  ip->rxr = NULL;
893  }
894 }
895 
896 static void ioc3_alloc_rings(struct net_device *dev)
897 {
898  struct ioc3_private *ip = netdev_priv(dev);
899  struct ioc3_erxbuf *rxb;
900  unsigned long *rxr;
901  int i;
902 
903  if (ip->rxr == NULL) {
904  /* Allocate and initialize rx ring. 4kb = 512 entries */
905  ip->rxr = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
906  rxr = ip->rxr;
907  if (!rxr)
908  printk("ioc3_alloc_rings(): get_zeroed_page() failed!\n");
909 
910  /* Now the rx buffers. The RX ring may be larger but
911  we only allocate 16 buffers for now. Need to tune
912  this for performance and memory later. */
913  for (i = 0; i < RX_BUFFS; i++) {
914  struct sk_buff *skb;
915 
916  skb = ioc3_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
917  if (!skb) {
918  show_free_areas(0);
919  continue;
920  }
921 
922  ip->rx_skbs[i] = skb;
923 
924  /* Because we reserve afterwards. */
925  skb_put(skb, (1664 + RX_OFFSET));
926  rxb = (struct ioc3_erxbuf *) skb->data;
927  rxr[i] = cpu_to_be64(ioc3_map(rxb, 1));
928  skb_reserve(skb, RX_OFFSET);
929  }
930  ip->rx_ci = 0;
931  ip->rx_pi = RX_BUFFS;
932  }
933 
934  if (ip->txr == NULL) {
935  /* Allocate and initialize tx rings. 16kb = 128 bufs. */
936  ip->txr = (struct ioc3_etxd *)__get_free_pages(GFP_KERNEL, 2);
937  if (!ip->txr)
938  printk("ioc3_alloc_rings(): __get_free_pages() failed!\n");
939  ip->tx_pi = 0;
940  ip->tx_ci = 0;
941  }
942 }
943 
944 static void ioc3_init_rings(struct net_device *dev)
945 {
946  struct ioc3_private *ip = netdev_priv(dev);
947  struct ioc3 *ioc3 = ip->regs;
948  unsigned long ring;
949 
950  ioc3_free_rings(ip);
951  ioc3_alloc_rings(dev);
952 
953  ioc3_clean_rx_ring(ip);
954  ioc3_clean_tx_ring(ip);
955 
956  /* Now the rx ring base, consume & produce registers. */
957  ring = ioc3_map(ip->rxr, 0);
958  ioc3_w_erbr_h(ring >> 32);
959  ioc3_w_erbr_l(ring & 0xffffffff);
960  ioc3_w_ercir(ip->rx_ci << 3);
961  ioc3_w_erpir((ip->rx_pi << 3) | ERPIR_ARM);
962 
963  ring = ioc3_map(ip->txr, 0);
964 
965  ip->txqlen = 0; /* nothing queued */
966 
967  /* Now the tx ring base, consume & produce registers. */
968  ioc3_w_etbr_h(ring >> 32);
969  ioc3_w_etbr_l(ring & 0xffffffff);
970  ioc3_w_etpir(ip->tx_pi << 7);
971  ioc3_w_etcir(ip->tx_ci << 7);
972  (void) ioc3_r_etcir(); /* Flush */
973 }
974 
975 static inline void ioc3_ssram_disc(struct ioc3_private *ip)
976 {
977  struct ioc3 *ioc3 = ip->regs;
978  volatile u32 *ssram0 = &ioc3->ssram[0x0000];
979  volatile u32 *ssram1 = &ioc3->ssram[0x4000];
980  unsigned int pattern = 0x5555;
981 
982  /* Assume the larger size SSRAM and enable parity checking */
984 
985  *ssram0 = pattern;
986  *ssram1 = ~pattern & IOC3_SSRAM_DM;
987 
988  if ((*ssram0 & IOC3_SSRAM_DM) != pattern ||
989  (*ssram1 & IOC3_SSRAM_DM) != (~pattern & IOC3_SSRAM_DM)) {
990  /* set ssram size to 64 KB */
991  ip->emcr = EMCR_RAMPAR;
993  } else
994  ip->emcr = EMCR_BUFSIZ | EMCR_RAMPAR;
995 }
996 
997 static void ioc3_init(struct net_device *dev)
998 {
999  struct ioc3_private *ip = netdev_priv(dev);
1000  struct ioc3 *ioc3 = ip->regs;
1001 
1002  del_timer_sync(&ip->ioc3_timer); /* Kill if running */
1003 
1004  ioc3_w_emcr(EMCR_RST); /* Reset */
1005  (void) ioc3_r_emcr(); /* Flush WB */
1006  udelay(4); /* Give it time ... */
1007  ioc3_w_emcr(0);
1008  (void) ioc3_r_emcr();
1009 
1010  /* Misc registers */
1011 #ifdef CONFIG_SGI_IP27
1012  ioc3_w_erbar(PCI64_ATTR_BAR >> 32); /* Barrier on last store */
1013 #else
1014  ioc3_w_erbar(0); /* Let PCI API get it right */
1015 #endif
1016  (void) ioc3_r_etcdc(); /* Clear on read */
1017  ioc3_w_ercsr(15); /* RX low watermark */
1018  ioc3_w_ertr(0); /* Interrupt immediately */
1019  __ioc3_set_mac_address(dev);
1020  ioc3_w_ehar_h(ip->ehar_h);
1021  ioc3_w_ehar_l(ip->ehar_l);
1022  ioc3_w_ersr(42); /* XXX should be random */
1023 
1024  ioc3_init_rings(dev);
1025 
1026  ip->emcr |= ((RX_OFFSET / 2) << EMCR_RXOFF_SHIFT) | EMCR_TXDMAEN |
1028  ioc3_w_emcr(ip->emcr);
1029  ioc3_w_eier(EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO |
1030  EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO |
1032  (void) ioc3_r_eier();
1033 }
1034 
1035 static inline void ioc3_stop(struct ioc3_private *ip)
1036 {
1037  struct ioc3 *ioc3 = ip->regs;
1038 
1039  ioc3_w_emcr(0); /* Shutup */
1040  ioc3_w_eier(0); /* Disable interrupts */
1041  (void) ioc3_r_eier(); /* Flush */
1042 }
1043 
1044 static int ioc3_open(struct net_device *dev)
1045 {
1046  struct ioc3_private *ip = netdev_priv(dev);
1047 
1048  if (request_irq(dev->irq, ioc3_interrupt, IRQF_SHARED, ioc3_str, dev)) {
1049  printk(KERN_ERR "%s: Can't get irq %d\n", dev->name, dev->irq);
1050 
1051  return -EAGAIN;
1052  }
1053 
1054  ip->ehar_h = 0;
1055  ip->ehar_l = 0;
1056  ioc3_init(dev);
1057  ioc3_mii_start(ip);
1058 
1059  netif_start_queue(dev);
1060  return 0;
1061 }
1062 
1063 static int ioc3_close(struct net_device *dev)
1064 {
1065  struct ioc3_private *ip = netdev_priv(dev);
1066 
1067  del_timer_sync(&ip->ioc3_timer);
1068 
1069  netif_stop_queue(dev);
1070 
1071  ioc3_stop(ip);
1072  free_irq(dev->irq, dev);
1073 
1074  ioc3_free_rings(ip);
1075  return 0;
1076 }
1077 
1078 /*
1079  * MENET cards have four IOC3 chips, which are attached to two sets of
1080  * PCI slot resources each: the primary connections are on slots
1081  * 0..3 and the secondaries are on 4..7
1082  *
1083  * All four ethernets are brought out to connectors; six serial ports
1084  * (a pair from each of the first three IOC3s) are brought out to
1085  * MiniDINs; all other subdevices are left swinging in the wind, leave
1086  * them disabled.
1087  */
1088 
1089 static int ioc3_adjacent_is_ioc3(struct pci_dev *pdev, int slot)
1090 {
1091  struct pci_dev *dev = pci_get_slot(pdev->bus, PCI_DEVFN(slot, 0));
1092  int ret = 0;
1093 
1094  if (dev) {
1095  if (dev->vendor == PCI_VENDOR_ID_SGI &&
1097  ret = 1;
1098  pci_dev_put(dev);
1099  }
1100 
1101  return ret;
1102 }
1103 
1104 static int ioc3_is_menet(struct pci_dev *pdev)
1105 {
1106  return pdev->bus->parent == NULL &&
1107  ioc3_adjacent_is_ioc3(pdev, 0) &&
1108  ioc3_adjacent_is_ioc3(pdev, 1) &&
1109  ioc3_adjacent_is_ioc3(pdev, 2);
1110 }
1111 
1112 #ifdef CONFIG_SERIAL_8250
1113 /*
1114  * Note about serial ports and consoles:
1115  * For console output, everyone uses the IOC3 UARTA (offset 0x178)
1116  * connected to the master node (look in ip27_setup_console() and
1117  * ip27prom_console_write()).
1118  *
1119  * For serial (/dev/ttyS0 etc), we can not have hardcoded serial port
1120  * addresses on a partitioned machine. Since we currently use the ioc3
1121  * serial ports, we use dynamic serial port discovery that the serial.c
1122  * driver uses for pci/pnp ports (there is an entry for the SGI ioc3
1123  * boards in pci_boards[]). Unfortunately, UARTA's pio address is greater
1124  * than UARTB's, although UARTA on o200s has traditionally been known as
1125  * port 0. So, we just use one serial port from each ioc3 (since the
1126  * serial driver adds addresses to get to higher ports).
1127  *
1128  * The first one to do a register_console becomes the preferred console
1129  * (if there is no kernel command line console= directive). /dev/console
1130  * (ie 5, 1) is then "aliased" into the device number returned by the
1131  * "device" routine referred to in this console structure
1132  * (ip27prom_console_dev).
1133  *
1134  * Also look in ip27-pci.c:pci_fixup_ioc3() for some comments on working
1135  * around ioc3 oddities in this respect.
1136  *
1137  * The IOC3 serials use a 22MHz clock rate with an additional divider which
1138  * can be programmed in the SCR register if the DLAB bit is set.
1139  *
1140  * Register to interrupt zero because we share the interrupt with
1141  * the serial driver which we don't properly support yet.
1142  *
1143  * Can't use UPF_IOREMAP as the whole of IOC3 resources have already been
1144  * registered.
1145  */
1146 static void __devinit ioc3_8250_register(struct ioc3_uartregs __iomem *uart)
1147 {
1148 #define COSMISC_CONSTANT 6
1149 
1150  struct uart_8250_port port = {
1151  .port = {
1152  .irq = 0,
1153  .flags = UPF_SKIP_TEST | UPF_BOOT_AUTOCONF,
1154  .iotype = UPIO_MEM,
1155  .regshift = 0,
1156  .uartclk = (22000000 << 1) / COSMISC_CONSTANT,
1157 
1158  .membase = (unsigned char __iomem *) uart,
1159  .mapbase = (unsigned long) uart,
1160  }
1161  };
1162  unsigned char lcr;
1163 
1164  lcr = uart->iu_lcr;
1165  uart->iu_lcr = lcr | UART_LCR_DLAB;
1166  uart->iu_scr = COSMISC_CONSTANT,
1167  uart->iu_lcr = lcr;
1168  uart->iu_lcr;
1170 }
1171 
1172 static void __devinit ioc3_serial_probe(struct pci_dev *pdev, struct ioc3 *ioc3)
1173 {
1174  /*
1175  * We need to recognice and treat the fourth MENET serial as it
1176  * does not have an SuperIO chip attached to it, therefore attempting
1177  * to access it will result in bus errors. We call something an
1178  * MENET if PCI slot 0, 1, 2 and 3 of a master PCI bus all have an IOC3
1179  * in it. This is paranoid but we want to avoid blowing up on a
1180  * showhorn PCI box that happens to have 4 IOC3 cards in it so it's
1181  * not paranoid enough ...
1182  */
1183  if (ioc3_is_menet(pdev) && PCI_SLOT(pdev->devfn) == 3)
1184  return;
1185 
1186  /*
1187  * Switch IOC3 to PIO mode. It probably already was but let's be
1188  * paranoid
1189  */
1191  ioc3->gpcr_s;
1192  ioc3->gppr_6 = 0;
1193  ioc3->gppr_6;
1194  ioc3->gppr_7 = 0;
1195  ioc3->gppr_7;
1196  ioc3->sscr_a = ioc3->sscr_a & ~SSCR_DMA_EN;
1197  ioc3->sscr_a;
1198  ioc3->sscr_b = ioc3->sscr_b & ~SSCR_DMA_EN;
1199  ioc3->sscr_b;
1200  /* Disable all SA/B interrupts except for SA/B_INT in SIO_IEC. */
1201  ioc3->sio_iec &= ~ (SIO_IR_SA_TX_MT | SIO_IR_SA_RX_FULL |
1205  ioc3->sio_iec |= SIO_IR_SA_INT;
1206  ioc3->sscr_a = 0;
1207  ioc3->sio_iec &= ~ (SIO_IR_SB_TX_MT | SIO_IR_SB_RX_FULL |
1211  ioc3->sio_iec |= SIO_IR_SB_INT;
1212  ioc3->sscr_b = 0;
1213 
1214  ioc3_8250_register(&ioc3->sregs.uarta);
1215  ioc3_8250_register(&ioc3->sregs.uartb);
1216 }
1217 #endif
1218 
1219 static const struct net_device_ops ioc3_netdev_ops = {
1220  .ndo_open = ioc3_open,
1221  .ndo_stop = ioc3_close,
1222  .ndo_start_xmit = ioc3_start_xmit,
1223  .ndo_tx_timeout = ioc3_timeout,
1224  .ndo_get_stats = ioc3_get_stats,
1225  .ndo_set_rx_mode = ioc3_set_multicast_list,
1226  .ndo_do_ioctl = ioc3_ioctl,
1227  .ndo_validate_addr = eth_validate_addr,
1228  .ndo_set_mac_address = ioc3_set_mac_address,
1229  .ndo_change_mtu = eth_change_mtu,
1230 };
1231 
1232 static int __devinit ioc3_probe(struct pci_dev *pdev,
1233  const struct pci_device_id *ent)
1234 {
1235  unsigned int sw_physid1, sw_physid2;
1236  struct net_device *dev = NULL;
1237  struct ioc3_private *ip;
1238  struct ioc3 *ioc3;
1239  unsigned long ioc3_base, ioc3_size;
1240  u32 vendor, model, rev;
1241  int err, pci_using_dac;
1242 
1243  /* Configure DMA attributes. */
1244  err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1245  if (!err) {
1246  pci_using_dac = 1;
1247  err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1248  if (err < 0) {
1249  printk(KERN_ERR "%s: Unable to obtain 64 bit DMA "
1250  "for consistent allocations\n", pci_name(pdev));
1251  goto out;
1252  }
1253  } else {
1254  err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1255  if (err) {
1256  printk(KERN_ERR "%s: No usable DMA configuration, "
1257  "aborting.\n", pci_name(pdev));
1258  goto out;
1259  }
1260  pci_using_dac = 0;
1261  }
1262 
1263  if (pci_enable_device(pdev))
1264  return -ENODEV;
1265 
1266  dev = alloc_etherdev(sizeof(struct ioc3_private));
1267  if (!dev) {
1268  err = -ENOMEM;
1269  goto out_disable;
1270  }
1271 
1272  if (pci_using_dac)
1273  dev->features |= NETIF_F_HIGHDMA;
1274 
1275  err = pci_request_regions(pdev, "ioc3");
1276  if (err)
1277  goto out_free;
1278 
1279  SET_NETDEV_DEV(dev, &pdev->dev);
1280 
1281  ip = netdev_priv(dev);
1282 
1283  dev->irq = pdev->irq;
1284 
1285  ioc3_base = pci_resource_start(pdev, 0);
1286  ioc3_size = pci_resource_len(pdev, 0);
1287  ioc3 = (struct ioc3 *) ioremap(ioc3_base, ioc3_size);
1288  if (!ioc3) {
1289  printk(KERN_CRIT "ioc3eth(%s): ioremap failed, goodbye.\n",
1290  pci_name(pdev));
1291  err = -ENOMEM;
1292  goto out_res;
1293  }
1294  ip->regs = ioc3;
1295 
1296 #ifdef CONFIG_SERIAL_8250
1297  ioc3_serial_probe(pdev, ioc3);
1298 #endif
1299 
1300  spin_lock_init(&ip->ioc3_lock);
1301  init_timer(&ip->ioc3_timer);
1302 
1303  ioc3_stop(ip);
1304  ioc3_init(dev);
1305 
1306  ip->pdev = pdev;
1307 
1308  ip->mii.phy_id_mask = 0x1f;
1309  ip->mii.reg_num_mask = 0x1f;
1310  ip->mii.dev = dev;
1311  ip->mii.mdio_read = ioc3_mdio_read;
1312  ip->mii.mdio_write = ioc3_mdio_write;
1313 
1314  ioc3_mii_init(ip);
1315 
1316  if (ip->mii.phy_id == -1) {
1317  printk(KERN_CRIT "ioc3-eth(%s): Didn't find a PHY, goodbye.\n",
1318  pci_name(pdev));
1319  err = -ENODEV;
1320  goto out_stop;
1321  }
1322 
1323  ioc3_mii_start(ip);
1324  ioc3_ssram_disc(ip);
1325  ioc3_get_eaddr(ip);
1326 
1327  /* The IOC3-specific entries in the device structure. */
1328  dev->watchdog_timeo = 5 * HZ;
1329  dev->netdev_ops = &ioc3_netdev_ops;
1330  dev->ethtool_ops = &ioc3_ethtool_ops;
1332  dev->features = NETIF_F_IP_CSUM;
1333 
1334  sw_physid1 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID1);
1335  sw_physid2 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID2);
1336 
1337  err = register_netdev(dev);
1338  if (err)
1339  goto out_stop;
1340 
1341  mii_check_media(&ip->mii, 1, 1);
1342  ioc3_setup_duplex(ip);
1343 
1344  vendor = (sw_physid1 << 12) | (sw_physid2 >> 4);
1345  model = (sw_physid2 >> 4) & 0x3f;
1346  rev = sw_physid2 & 0xf;
1347  printk(KERN_INFO "%s: Using PHY %d, vendor 0x%x, model %d, "
1348  "rev %d.\n", dev->name, ip->mii.phy_id, vendor, model, rev);
1349  printk(KERN_INFO "%s: IOC3 SSRAM has %d kbyte.\n", dev->name,
1350  ip->emcr & EMCR_BUFSIZ ? 128 : 64);
1351 
1352  return 0;
1353 
1354 out_stop:
1355  ioc3_stop(ip);
1356  del_timer_sync(&ip->ioc3_timer);
1357  ioc3_free_rings(ip);
1358 out_res:
1359  pci_release_regions(pdev);
1360 out_free:
1361  free_netdev(dev);
1362 out_disable:
1363  /*
1364  * We should call pci_disable_device(pdev); here if the IOC3 wasn't
1365  * such a weird device ...
1366  */
1367 out:
1368  return err;
1369 }
1370 
1371 static void __devexit ioc3_remove_one (struct pci_dev *pdev)
1372 {
1373  struct net_device *dev = pci_get_drvdata(pdev);
1374  struct ioc3_private *ip = netdev_priv(dev);
1375  struct ioc3 *ioc3 = ip->regs;
1376 
1377  unregister_netdev(dev);
1378  del_timer_sync(&ip->ioc3_timer);
1379 
1380  iounmap(ioc3);
1381  pci_release_regions(pdev);
1382  free_netdev(dev);
1383  /*
1384  * We should call pci_disable_device(pdev); here if the IOC3 wasn't
1385  * such a weird device ...
1386  */
1387 }
1388 
1389 static DEFINE_PCI_DEVICE_TABLE(ioc3_pci_tbl) = {
1391  { 0 }
1392 };
1393 MODULE_DEVICE_TABLE(pci, ioc3_pci_tbl);
1394 
1395 static struct pci_driver ioc3_driver = {
1396  .name = "ioc3-eth",
1397  .id_table = ioc3_pci_tbl,
1398  .probe = ioc3_probe,
1399  .remove = __devexit_p(ioc3_remove_one),
1400 };
1401 
1402 static int __init ioc3_init_module(void)
1403 {
1404  return pci_register_driver(&ioc3_driver);
1405 }
1406 
1407 static void __exit ioc3_cleanup_module(void)
1408 {
1409  pci_unregister_driver(&ioc3_driver);
1410 }
1411 
1412 static int ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev)
1413 {
1414  unsigned long data;
1415  struct ioc3_private *ip = netdev_priv(dev);
1416  struct ioc3 *ioc3 = ip->regs;
1417  unsigned int len;
1418  struct ioc3_etxd *desc;
1419  uint32_t w0 = 0;
1420  int produce;
1421 
1422  /*
1423  * IOC3 has a fairly simple minded checksumming hardware which simply
1424  * adds up the 1's complement checksum for the entire packet and
1425  * inserts it at an offset which can be specified in the descriptor
1426  * into the transmit packet. This means we have to compensate for the
1427  * MAC header which should not be summed and the TCP/UDP pseudo headers
1428  * manually.
1429  */
1430  if (skb->ip_summed == CHECKSUM_PARTIAL) {
1431  const struct iphdr *ih = ip_hdr(skb);
1432  const int proto = ntohs(ih->protocol);
1433  unsigned int csoff;
1434  uint32_t csum, ehsum;
1435  uint16_t *eh;
1436 
1437  /* The MAC header. skb->mac seem the logic approach
1438  to find the MAC header - except it's a NULL pointer ... */
1439  eh = (uint16_t *) skb->data;
1440 
1441  /* Sum up dest addr, src addr and protocol */
1442  ehsum = eh[0] + eh[1] + eh[2] + eh[3] + eh[4] + eh[5] + eh[6];
1443 
1444  /* Fold ehsum. can't use csum_fold which negates also ... */
1445  ehsum = (ehsum & 0xffff) + (ehsum >> 16);
1446  ehsum = (ehsum & 0xffff) + (ehsum >> 16);
1447 
1448  /* Skip IP header; it's sum is always zero and was
1449  already filled in by ip_output.c */
1450  csum = csum_tcpudp_nofold(ih->saddr, ih->daddr,
1451  ih->tot_len - (ih->ihl << 2),
1452  proto, 0xffff ^ ehsum);
1453 
1454  csum = (csum & 0xffff) + (csum >> 16); /* Fold again */
1455  csum = (csum & 0xffff) + (csum >> 16);
1456 
1457  csoff = ETH_HLEN + (ih->ihl << 2);
1458  if (proto == IPPROTO_UDP) {
1459  csoff += offsetof(struct udphdr, check);
1460  udp_hdr(skb)->check = csum;
1461  }
1462  if (proto == IPPROTO_TCP) {
1463  csoff += offsetof(struct tcphdr, check);
1464  tcp_hdr(skb)->check = csum;
1465  }
1466 
1467  w0 = ETXD_DOCHECKSUM | (csoff << ETXD_CHKOFF_SHIFT);
1468  }
1469 
1470  spin_lock_irq(&ip->ioc3_lock);
1471 
1472  data = (unsigned long) skb->data;
1473  len = skb->len;
1474 
1475  produce = ip->tx_pi;
1476  desc = &ip->txr[produce];
1477 
1478  if (len <= 104) {
1479  /* Short packet, let's copy it directly into the ring. */
1480  skb_copy_from_linear_data(skb, desc->data, skb->len);
1481  if (len < ETH_ZLEN) {
1482  /* Very short packet, pad with zeros at the end. */
1483  memset(desc->data + len, 0, ETH_ZLEN - len);
1484  len = ETH_ZLEN;
1485  }
1486  desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_D0V | w0);
1487  desc->bufcnt = cpu_to_be32(len);
1488  } else if ((data ^ (data + len - 1)) & 0x4000) {
1489  unsigned long b2 = (data | 0x3fffUL) + 1UL;
1490  unsigned long s1 = b2 - data;
1491  unsigned long s2 = data + len - b2;
1492 
1493  desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE |
1494  ETXD_B1V | ETXD_B2V | w0);
1495  desc->bufcnt = cpu_to_be32((s1 << ETXD_B1CNT_SHIFT) |
1496  (s2 << ETXD_B2CNT_SHIFT));
1497  desc->p1 = cpu_to_be64(ioc3_map(skb->data, 1));
1498  desc->p2 = cpu_to_be64(ioc3_map((void *) b2, 1));
1499  } else {
1500  /* Normal sized packet that doesn't cross a page boundary. */
1501  desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_B1V | w0);
1502  desc->bufcnt = cpu_to_be32(len << ETXD_B1CNT_SHIFT);
1503  desc->p1 = cpu_to_be64(ioc3_map(skb->data, 1));
1504  }
1505 
1506  BARRIER();
1507 
1508  ip->tx_skbs[produce] = skb; /* Remember skb */
1509  produce = (produce + 1) & 127;
1510  ip->tx_pi = produce;
1511  ioc3_w_etpir(produce << 7); /* Fire ... */
1512 
1513  ip->txqlen++;
1514 
1515  if (ip->txqlen >= 127)
1516  netif_stop_queue(dev);
1517 
1518  spin_unlock_irq(&ip->ioc3_lock);
1519 
1520  return NETDEV_TX_OK;
1521 }
1522 
1523 static void ioc3_timeout(struct net_device *dev)
1524 {
1525  struct ioc3_private *ip = netdev_priv(dev);
1526 
1527  printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
1528 
1529  spin_lock_irq(&ip->ioc3_lock);
1530 
1531  ioc3_stop(ip);
1532  ioc3_init(dev);
1533  ioc3_mii_init(ip);
1534  ioc3_mii_start(ip);
1535 
1536  spin_unlock_irq(&ip->ioc3_lock);
1537 
1538  netif_wake_queue(dev);
1539 }
1540 
1541 /*
1542  * Given a multicast ethernet address, this routine calculates the
1543  * address's bit index in the logical address filter mask
1544  */
1545 
1546 static inline unsigned int ioc3_hash(const unsigned char *addr)
1547 {
1548  unsigned int temp = 0;
1549  u32 crc;
1550  int bits;
1551 
1552  crc = ether_crc_le(ETH_ALEN, addr);
1553 
1554  crc &= 0x3f; /* bit reverse lowest 6 bits for hash index */
1555  for (bits = 6; --bits >= 0; ) {
1556  temp <<= 1;
1557  temp |= (crc & 0x1);
1558  crc >>= 1;
1559  }
1560 
1561  return temp;
1562 }
1563 
1564 static void ioc3_get_drvinfo (struct net_device *dev,
1565  struct ethtool_drvinfo *info)
1566 {
1567  struct ioc3_private *ip = netdev_priv(dev);
1568 
1569  strcpy (info->driver, IOC3_NAME);
1570  strcpy (info->version, IOC3_VERSION);
1571  strcpy (info->bus_info, pci_name(ip->pdev));
1572 }
1573 
1574 static int ioc3_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1575 {
1576  struct ioc3_private *ip = netdev_priv(dev);
1577  int rc;
1578 
1579  spin_lock_irq(&ip->ioc3_lock);
1580  rc = mii_ethtool_gset(&ip->mii, cmd);
1581  spin_unlock_irq(&ip->ioc3_lock);
1582 
1583  return rc;
1584 }
1585 
1586 static int ioc3_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1587 {
1588  struct ioc3_private *ip = netdev_priv(dev);
1589  int rc;
1590 
1591  spin_lock_irq(&ip->ioc3_lock);
1592  rc = mii_ethtool_sset(&ip->mii, cmd);
1593  spin_unlock_irq(&ip->ioc3_lock);
1594 
1595  return rc;
1596 }
1597 
1598 static int ioc3_nway_reset(struct net_device *dev)
1599 {
1600  struct ioc3_private *ip = netdev_priv(dev);
1601  int rc;
1602 
1603  spin_lock_irq(&ip->ioc3_lock);
1604  rc = mii_nway_restart(&ip->mii);
1605  spin_unlock_irq(&ip->ioc3_lock);
1606 
1607  return rc;
1608 }
1609 
1610 static u32 ioc3_get_link(struct net_device *dev)
1611 {
1612  struct ioc3_private *ip = netdev_priv(dev);
1613  int rc;
1614 
1615  spin_lock_irq(&ip->ioc3_lock);
1616  rc = mii_link_ok(&ip->mii);
1617  spin_unlock_irq(&ip->ioc3_lock);
1618 
1619  return rc;
1620 }
1621 
1622 static const struct ethtool_ops ioc3_ethtool_ops = {
1623  .get_drvinfo = ioc3_get_drvinfo,
1624  .get_settings = ioc3_get_settings,
1625  .set_settings = ioc3_set_settings,
1626  .nway_reset = ioc3_nway_reset,
1627  .get_link = ioc3_get_link,
1628 };
1629 
1630 static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1631 {
1632  struct ioc3_private *ip = netdev_priv(dev);
1633  int rc;
1634 
1635  spin_lock_irq(&ip->ioc3_lock);
1636  rc = generic_mii_ioctl(&ip->mii, if_mii(rq), cmd, NULL);
1637  spin_unlock_irq(&ip->ioc3_lock);
1638 
1639  return rc;
1640 }
1641 
1642 static void ioc3_set_multicast_list(struct net_device *dev)
1643 {
1644  struct netdev_hw_addr *ha;
1645  struct ioc3_private *ip = netdev_priv(dev);
1646  struct ioc3 *ioc3 = ip->regs;
1647  u64 ehar = 0;
1648 
1649  netif_stop_queue(dev); /* Lock out others. */
1650 
1651  if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1652  ip->emcr |= EMCR_PROMISC;
1653  ioc3_w_emcr(ip->emcr);
1654  (void) ioc3_r_emcr();
1655  } else {
1656  ip->emcr &= ~EMCR_PROMISC;
1657  ioc3_w_emcr(ip->emcr); /* Clear promiscuous. */
1658  (void) ioc3_r_emcr();
1659 
1660  if ((dev->flags & IFF_ALLMULTI) ||
1661  (netdev_mc_count(dev) > 64)) {
1662  /* Too many for hashing to make sense or we want all
1663  multicast packets anyway, so skip computing all the
1664  hashes and just accept all packets. */
1665  ip->ehar_h = 0xffffffff;
1666  ip->ehar_l = 0xffffffff;
1667  } else {
1668  netdev_for_each_mc_addr(ha, dev) {
1669  ehar |= (1UL << ioc3_hash(ha->addr));
1670  }
1671  ip->ehar_h = ehar >> 32;
1672  ip->ehar_l = ehar & 0xffffffff;
1673  }
1674  ioc3_w_ehar_h(ip->ehar_h);
1675  ioc3_w_ehar_l(ip->ehar_l);
1676  }
1677 
1678  netif_wake_queue(dev); /* Let us get going again. */
1679 }
1680 
1681 MODULE_AUTHOR("Ralf Baechle <[email protected]>");
1682 MODULE_DESCRIPTION("SGI IOC3 Ethernet driver");
1683 MODULE_LICENSE("GPL");
1684 
1685 module_init(ioc3_init_module);
1686 module_exit(ioc3_cleanup_module);