Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
kvm-ia64.c
Go to the documentation of this file.
1 /*
2  * kvm_ia64.c: Basic KVM suppport On Itanium series processors
3  *
4  *
5  * Copyright (C) 2007, Intel Corporation.
6  * Xiantao Zhang ([email protected])
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15  * more details.
16  *
17  * You should have received a copy of the GNU General Public License along with
18  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
19  * Place - Suite 330, Boston, MA 02111-1307 USA.
20  *
21  */
22 
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/smp.h>
29 #include <linux/kvm_host.h>
30 #include <linux/kvm.h>
31 #include <linux/bitops.h>
32 #include <linux/hrtimer.h>
33 #include <linux/uaccess.h>
34 #include <linux/iommu.h>
35 #include <linux/intel-iommu.h>
36 #include <linux/pci.h>
37 
38 #include <asm/pgtable.h>
39 #include <asm/gcc_intrin.h>
40 #include <asm/pal.h>
41 #include <asm/cacheflush.h>
42 #include <asm/div64.h>
43 #include <asm/tlb.h>
44 #include <asm/elf.h>
45 #include <asm/sn/addrs.h>
46 #include <asm/sn/clksupport.h>
47 #include <asm/sn/shub_mmr.h>
48 
49 #include "misc.h"
50 #include "vti.h"
51 #include "iodev.h"
52 #include "ioapic.h"
53 #include "lapic.h"
54 #include "irq.h"
55 
56 static unsigned long kvm_vmm_base;
57 static unsigned long kvm_vsa_base;
58 static unsigned long kvm_vm_buffer;
59 static unsigned long kvm_vm_buffer_size;
60 unsigned long kvm_vmm_gp;
61 
62 static long vp_env_info;
63 
64 static struct kvm_vmm_info *kvm_vmm_info;
65 
66 static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
67 
69  { NULL }
70 };
71 
72 static unsigned long kvm_get_itc(struct kvm_vcpu *vcpu)
73 {
74 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
75  if (vcpu->kvm->arch.is_sn2)
76  return rtc_time();
77  else
78 #endif
80 }
81 
82 static void kvm_flush_icache(unsigned long start, unsigned long len)
83 {
84  int l;
85 
86  for (l = 0; l < (len + 32); l += 32)
87  ia64_fc((void *)(start + l));
88 
89  ia64_sync_i();
90  ia64_srlz_i();
91 }
92 
93 static void kvm_flush_tlb_all(void)
94 {
95  unsigned long i, j, count0, count1, stride0, stride1, addr;
96  long flags;
97 
98  addr = local_cpu_data->ptce_base;
99  count0 = local_cpu_data->ptce_count[0];
100  count1 = local_cpu_data->ptce_count[1];
101  stride0 = local_cpu_data->ptce_stride[0];
102  stride1 = local_cpu_data->ptce_stride[1];
103 
104  local_irq_save(flags);
105  for (i = 0; i < count0; ++i) {
106  for (j = 0; j < count1; ++j) {
107  ia64_ptce(addr);
108  addr += stride1;
109  }
110  addr += stride0;
111  }
112  local_irq_restore(flags);
113  ia64_srlz_i(); /* srlz.i implies srlz.d */
114 }
115 
116 long ia64_pal_vp_create(u64 *vpd, u64 *host_iva, u64 *opt_handler)
117 {
118  struct ia64_pal_retval iprv;
119 
120  PAL_CALL_STK(iprv, PAL_VP_CREATE, (u64)vpd, (u64)host_iva,
121  (u64)opt_handler);
122 
123  return iprv.status;
124 }
125 
126 static DEFINE_SPINLOCK(vp_lock);
127 
128 int kvm_arch_hardware_enable(void *garbage)
129 {
130  long status;
131  long tmp_base;
132  unsigned long pte;
133  unsigned long saved_psr;
134  int slot;
135 
136  pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
137  local_irq_save(saved_psr);
138  slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
139  local_irq_restore(saved_psr);
140  if (slot < 0)
141  return -EINVAL;
142 
143  spin_lock(&vp_lock);
144  status = ia64_pal_vp_init_env(kvm_vsa_base ?
146  __pa(kvm_vm_buffer), KVM_VM_BUFFER_BASE, &tmp_base);
147  if (status != 0) {
148  spin_unlock(&vp_lock);
149  printk(KERN_WARNING"kvm: Failed to Enable VT Support!!!!\n");
150  return -EINVAL;
151  }
152 
153  if (!kvm_vsa_base) {
154  kvm_vsa_base = tmp_base;
155  printk(KERN_INFO"kvm: kvm_vsa_base:0x%lx\n", kvm_vsa_base);
156  }
157  spin_unlock(&vp_lock);
158  ia64_ptr_entry(0x3, slot);
159 
160  return 0;
161 }
162 
163 void kvm_arch_hardware_disable(void *garbage)
164 {
165 
166  long status;
167  int slot;
168  unsigned long pte;
169  unsigned long saved_psr;
170  unsigned long host_iva = ia64_getreg(_IA64_REG_CR_IVA);
171 
172  pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
173  PAGE_KERNEL));
174 
175  local_irq_save(saved_psr);
176  slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
177  local_irq_restore(saved_psr);
178  if (slot < 0)
179  return;
180 
181  status = ia64_pal_vp_exit_env(host_iva);
182  if (status)
183  printk(KERN_DEBUG"kvm: Failed to disable VT support! :%ld\n",
184  status);
185  ia64_ptr_entry(0x3, slot);
186 }
187 
189 {
190  *(int *)rtn = 0;
191 }
192 
194 {
195 
196  int r;
197 
198  switch (ext) {
199  case KVM_CAP_IRQCHIP:
200  case KVM_CAP_MP_STATE:
202  r = 1;
203  break;
206  break;
207  case KVM_CAP_IOMMU:
209  break;
210  default:
211  r = 0;
212  }
213  return r;
214 
215 }
216 
217 static int handle_vm_error(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
218 {
219  kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
220  kvm_run->hw.hardware_exit_reason = 1;
221  return 0;
222 }
223 
224 static int handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
225 {
226  struct kvm_mmio_req *p;
227  struct kvm_io_device *mmio_dev;
228  int r;
229 
230  p = kvm_get_vcpu_ioreq(vcpu);
231 
233  goto mmio;
234  vcpu->mmio_needed = 1;
235  vcpu->mmio_fragments[0].gpa = kvm_run->mmio.phys_addr = p->addr;
236  vcpu->mmio_fragments[0].len = kvm_run->mmio.len = p->size;
237  vcpu->mmio_is_write = kvm_run->mmio.is_write = !p->dir;
238 
239  if (vcpu->mmio_is_write)
240  memcpy(vcpu->arch.mmio_data, &p->data, p->size);
241  memcpy(kvm_run->mmio.data, &p->data, p->size);
242  kvm_run->exit_reason = KVM_EXIT_MMIO;
243  return 0;
244 mmio:
245  if (p->dir)
246  r = kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, p->addr,
247  p->size, &p->data);
248  else
249  r = kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, p->addr,
250  p->size, &p->data);
251  if (r)
252  printk(KERN_ERR"kvm: No iodevice found! addr:%lx\n", p->addr);
254 
255  return 1;
256 }
257 
258 static int handle_pal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
259 {
260  struct exit_ctl_data *p;
261 
262  p = kvm_get_exit_data(vcpu);
263 
265  return kvm_pal_emul(vcpu, kvm_run);
266  else {
267  kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
268  kvm_run->hw.hardware_exit_reason = 2;
269  return 0;
270  }
271 }
272 
273 static int handle_sal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
274 {
275  struct exit_ctl_data *p;
276 
277  p = kvm_get_exit_data(vcpu);
278 
279  if (p->exit_reason == EXIT_REASON_SAL_CALL) {
280  kvm_sal_emul(vcpu);
281  return 1;
282  } else {
283  kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
284  kvm_run->hw.hardware_exit_reason = 3;
285  return 0;
286  }
287 
288 }
289 
290 static int __apic_accept_irq(struct kvm_vcpu *vcpu, uint64_t vector)
291 {
292  struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
293 
294  if (!test_and_set_bit(vector, &vpd->irr[0])) {
295  vcpu->arch.irq_new_pending = 1;
296  kvm_vcpu_kick(vcpu);
297  return 1;
298  }
299  return 0;
300 }
301 
302 /*
303  * offset: address offset to IPI space.
304  * value: deliver value.
305  */
306 static void vcpu_deliver_ipi(struct kvm_vcpu *vcpu, uint64_t dm,
307  uint64_t vector)
308 {
309  switch (dm) {
310  case SAPIC_FIXED:
311  break;
312  case SAPIC_NMI:
313  vector = 2;
314  break;
315  case SAPIC_EXTINT:
316  vector = 0;
317  break;
318  case SAPIC_INIT:
319  case SAPIC_PMI:
320  default:
321  printk(KERN_ERR"kvm: Unimplemented Deliver reserved IPI!\n");
322  return;
323  }
324  __apic_accept_irq(vcpu, vector);
325 }
326 
327 static struct kvm_vcpu *lid_to_vcpu(struct kvm *kvm, unsigned long id,
328  unsigned long eid)
329 {
330  union ia64_lid lid;
331  int i;
332  struct kvm_vcpu *vcpu;
333 
334  kvm_for_each_vcpu(i, vcpu, kvm) {
335  lid.val = VCPU_LID(vcpu);
336  if (lid.id == id && lid.eid == eid)
337  return vcpu;
338  }
339 
340  return NULL;
341 }
342 
343 static int handle_ipi(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
344 {
345  struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
346  struct kvm_vcpu *target_vcpu;
347  struct kvm_pt_regs *regs;
348  union ia64_ipi_a addr = p->u.ipi_data.addr;
349  union ia64_ipi_d data = p->u.ipi_data.data;
350 
351  target_vcpu = lid_to_vcpu(vcpu->kvm, addr.id, addr.eid);
352  if (!target_vcpu)
353  return handle_vm_error(vcpu, kvm_run);
354 
355  if (!target_vcpu->arch.launched) {
356  regs = vcpu_regs(target_vcpu);
357 
358  regs->cr_iip = vcpu->kvm->arch.rdv_sal_data.boot_ip;
359  regs->r1 = vcpu->kvm->arch.rdv_sal_data.boot_gp;
360 
361  target_vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
362  if (waitqueue_active(&target_vcpu->wq))
363  wake_up_interruptible(&target_vcpu->wq);
364  } else {
365  vcpu_deliver_ipi(target_vcpu, data.dm, data.vector);
366  if (target_vcpu != vcpu)
367  kvm_vcpu_kick(target_vcpu);
368  }
369 
370  return 1;
371 }
372 
373 struct call_data {
375  struct kvm_vcpu *vcpu;
376 };
377 
378 static void vcpu_global_purge(void *info)
379 {
380  struct call_data *p = (struct call_data *)info;
381  struct kvm_vcpu *vcpu = p->vcpu;
382 
383  if (test_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
384  return;
385 
386  set_bit(KVM_REQ_PTC_G, &vcpu->requests);
387  if (vcpu->arch.ptc_g_count < MAX_PTC_G_NUM) {
388  vcpu->arch.ptc_g_data[vcpu->arch.ptc_g_count++] =
389  p->ptc_g_data;
390  } else {
392  vcpu->arch.ptc_g_count = 0;
394  }
395 }
396 
397 static int handle_global_purge(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
398 {
399  struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
400  struct kvm *kvm = vcpu->kvm;
401  struct call_data call_data;
402  int i;
403  struct kvm_vcpu *vcpui;
404 
406 
407  kvm_for_each_vcpu(i, vcpui, kvm) {
408  if (vcpui->arch.mp_state == KVM_MP_STATE_UNINITIALIZED ||
409  vcpu == vcpui)
410  continue;
411 
412  if (waitqueue_active(&vcpui->wq))
413  wake_up_interruptible(&vcpui->wq);
414 
415  if (vcpui->cpu != -1) {
416  call_data.vcpu = vcpui;
418  vcpu_global_purge, &call_data, 1);
419  } else
420  printk(KERN_WARNING"kvm: Uninit vcpu received ipi!\n");
421 
422  }
423  return 1;
424 }
425 
426 static int handle_switch_rr6(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
427 {
428  return 1;
429 }
430 
431 static int kvm_sn2_setup_mappings(struct kvm_vcpu *vcpu)
432 {
433  unsigned long pte, rtc_phys_addr, map_addr;
434  int slot;
435 
436  map_addr = KVM_VMM_BASE + (1UL << KVM_VMM_SHIFT);
437  rtc_phys_addr = LOCAL_MMR_OFFSET | SH_RTC;
438  pte = pte_val(mk_pte_phys(rtc_phys_addr, PAGE_KERNEL_UC));
439  slot = ia64_itr_entry(0x3, map_addr, pte, PAGE_SHIFT);
440  vcpu->arch.sn_rtc_tr_slot = slot;
441  if (slot < 0) {
442  printk(KERN_ERR "Mayday mayday! RTC mapping failed!\n");
443  slot = 0;
444  }
445  return slot;
446 }
447 
448 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
449 {
450 
451  ktime_t kt;
452  long itc_diff;
453  unsigned long vcpu_now_itc;
454  unsigned long expires;
455  struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
456  unsigned long cyc_per_usec = local_cpu_data->cyc_per_usec;
457  struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
458 
459  if (irqchip_in_kernel(vcpu->kvm)) {
460 
461  vcpu_now_itc = kvm_get_itc(vcpu) + vcpu->arch.itc_offset;
462 
463  if (time_after(vcpu_now_itc, vpd->itm)) {
464  vcpu->arch.timer_check = 1;
465  return 1;
466  }
467  itc_diff = vpd->itm - vcpu_now_itc;
468  if (itc_diff < 0)
469  itc_diff = -itc_diff;
470 
471  expires = div64_u64(itc_diff, cyc_per_usec);
472  kt = ktime_set(0, 1000 * expires);
473 
474  vcpu->arch.ht_active = 1;
475  hrtimer_start(p_ht, kt, HRTIMER_MODE_ABS);
476 
477  vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
478  kvm_vcpu_block(vcpu);
479  hrtimer_cancel(p_ht);
480  vcpu->arch.ht_active = 0;
481 
484  if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
485  vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
486 
487  if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
488  return -EINTR;
489  return 1;
490  } else {
491  printk(KERN_ERR"kvm: Unsupported userspace halt!");
492  return 0;
493  }
494 }
495 
496 static int handle_vm_shutdown(struct kvm_vcpu *vcpu,
497  struct kvm_run *kvm_run)
498 {
499  kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
500  return 0;
501 }
502 
503 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
504  struct kvm_run *kvm_run)
505 {
506  return 1;
507 }
508 
509 static int handle_vcpu_debug(struct kvm_vcpu *vcpu,
510  struct kvm_run *kvm_run)
511 {
512  printk("VMM: %s", vcpu->arch.log_buf);
513  return 1;
514 }
515 
516 static int (*kvm_vti_exit_handlers[])(struct kvm_vcpu *vcpu,
517  struct kvm_run *kvm_run) = {
518  [EXIT_REASON_VM_PANIC] = handle_vm_error,
519  [EXIT_REASON_MMIO_INSTRUCTION] = handle_mmio,
520  [EXIT_REASON_PAL_CALL] = handle_pal_call,
521  [EXIT_REASON_SAL_CALL] = handle_sal_call,
522  [EXIT_REASON_SWITCH_RR6] = handle_switch_rr6,
523  [EXIT_REASON_VM_DESTROY] = handle_vm_shutdown,
524  [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
526  [EXIT_REASON_PTC_G] = handle_global_purge,
527  [EXIT_REASON_DEBUG] = handle_vcpu_debug,
528 
529 };
530 
531 static const int kvm_vti_max_exit_handlers =
532  sizeof(kvm_vti_exit_handlers)/sizeof(*kvm_vti_exit_handlers);
533 
534 static uint32_t kvm_get_exit_reason(struct kvm_vcpu *vcpu)
535 {
536  struct exit_ctl_data *p_exit_data;
537 
538  p_exit_data = kvm_get_exit_data(vcpu);
539  return p_exit_data->exit_reason;
540 }
541 
542 /*
543  * The guest has exited. See if we can fix it or if we need userspace
544  * assistance.
545  */
546 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
547 {
548  u32 exit_reason = kvm_get_exit_reason(vcpu);
549  vcpu->arch.last_exit = exit_reason;
550 
551  if (exit_reason < kvm_vti_max_exit_handlers
552  && kvm_vti_exit_handlers[exit_reason])
553  return kvm_vti_exit_handlers[exit_reason](vcpu, kvm_run);
554  else {
555  kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
556  kvm_run->hw.hardware_exit_reason = exit_reason;
557  }
558  return 0;
559 }
560 
561 static inline void vti_set_rr6(unsigned long rr6)
562 {
563  ia64_set_rr(RR6, rr6);
564  ia64_srlz_i();
565 }
566 
567 static int kvm_insert_vmm_mapping(struct kvm_vcpu *vcpu)
568 {
569  unsigned long pte;
570  struct kvm *kvm = vcpu->kvm;
571  int r;
572 
573  /*Insert a pair of tr to map vmm*/
574  pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
575  r = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
576  if (r < 0)
577  goto out;
578  vcpu->arch.vmm_tr_slot = r;
579  /*Insert a pairt of tr to map data of vm*/
580  pte = pte_val(mk_pte_phys(__pa(kvm->arch.vm_base), PAGE_KERNEL));
582  pte, KVM_VM_DATA_SHIFT);
583  if (r < 0)
584  goto out;
585  vcpu->arch.vm_tr_slot = r;
586 
587 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
588  if (kvm->arch.is_sn2) {
589  r = kvm_sn2_setup_mappings(vcpu);
590  if (r < 0)
591  goto out;
592  }
593 #endif
594 
595  r = 0;
596 out:
597  return r;
598 }
599 
600 static void kvm_purge_vmm_mapping(struct kvm_vcpu *vcpu)
601 {
602  struct kvm *kvm = vcpu->kvm;
603  ia64_ptr_entry(0x3, vcpu->arch.vmm_tr_slot);
604  ia64_ptr_entry(0x3, vcpu->arch.vm_tr_slot);
605 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
606  if (kvm->arch.is_sn2)
607  ia64_ptr_entry(0x3, vcpu->arch.sn_rtc_tr_slot);
608 #endif
609 }
610 
611 static int kvm_vcpu_pre_transition(struct kvm_vcpu *vcpu)
612 {
613  unsigned long psr;
614  int r;
615  int cpu = smp_processor_id();
616 
617  if (vcpu->arch.last_run_cpu != cpu ||
618  per_cpu(last_vcpu, cpu) != vcpu) {
619  per_cpu(last_vcpu, cpu) = vcpu;
620  vcpu->arch.last_run_cpu = cpu;
621  kvm_flush_tlb_all();
622  }
623 
624  vcpu->arch.host_rr6 = ia64_get_rr(RR6);
625  vti_set_rr6(vcpu->arch.vmm_rr);
626  local_irq_save(psr);
627  r = kvm_insert_vmm_mapping(vcpu);
628  local_irq_restore(psr);
629  return r;
630 }
631 
632 static void kvm_vcpu_post_transition(struct kvm_vcpu *vcpu)
633 {
634  kvm_purge_vmm_mapping(vcpu);
635  vti_set_rr6(vcpu->arch.host_rr6);
636 }
637 
638 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
639 {
640  union context *host_ctx, *guest_ctx;
641  int r, idx;
642 
643  idx = srcu_read_lock(&vcpu->kvm->srcu);
644 
645 again:
646  if (signal_pending(current)) {
647  r = -EINTR;
648  kvm_run->exit_reason = KVM_EXIT_INTR;
649  goto out;
650  }
651 
652  preempt_disable();
654 
655  /*Get host and guest context with guest address space.*/
656  host_ctx = kvm_get_host_context(vcpu);
657  guest_ctx = kvm_get_guest_context(vcpu);
658 
660 
661  r = kvm_vcpu_pre_transition(vcpu);
662  if (r < 0)
663  goto vcpu_run_fail;
664 
665  srcu_read_unlock(&vcpu->kvm->srcu, idx);
666  vcpu->mode = IN_GUEST_MODE;
667  kvm_guest_enter();
668 
669  /*
670  * Transition to the guest
671  */
672  kvm_vmm_info->tramp_entry(host_ctx, guest_ctx);
673 
674  kvm_vcpu_post_transition(vcpu);
675 
676  vcpu->arch.launched = 1;
677  set_bit(KVM_REQ_KICK, &vcpu->requests);
679 
680  /*
681  * We must have an instruction between local_irq_enable() and
682  * kvm_guest_exit(), so the timer interrupt isn't delayed by
683  * the interrupt shadow. The stat.exits increment will do nicely.
684  * But we need to prevent reordering, hence this barrier():
685  */
686  barrier();
687  kvm_guest_exit();
688  vcpu->mode = OUTSIDE_GUEST_MODE;
689  preempt_enable();
690 
691  idx = srcu_read_lock(&vcpu->kvm->srcu);
692 
693  r = kvm_handle_exit(kvm_run, vcpu);
694 
695  if (r > 0) {
696  if (!need_resched())
697  goto again;
698  }
699 
700 out:
701  srcu_read_unlock(&vcpu->kvm->srcu, idx);
702  if (r > 0) {
703  kvm_resched(vcpu);
704  idx = srcu_read_lock(&vcpu->kvm->srcu);
705  goto again;
706  }
707 
708  return r;
709 
710 vcpu_run_fail:
712  preempt_enable();
713  kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
714  goto out;
715 }
716 
717 static void kvm_set_mmio_data(struct kvm_vcpu *vcpu)
718 {
719  struct kvm_mmio_req *p = kvm_get_vcpu_ioreq(vcpu);
720 
721  if (!vcpu->mmio_is_write)
722  memcpy(&p->data, vcpu->arch.mmio_data, 8);
724 }
725 
726 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
727 {
728  int r;
729  sigset_t sigsaved;
730 
731  if (vcpu->sigset_active)
732  sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
733 
734  if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
735  kvm_vcpu_block(vcpu);
737  r = -EAGAIN;
738  goto out;
739  }
740 
741  if (vcpu->mmio_needed) {
742  memcpy(vcpu->arch.mmio_data, kvm_run->mmio.data, 8);
743  kvm_set_mmio_data(vcpu);
744  vcpu->mmio_read_completed = 1;
745  vcpu->mmio_needed = 0;
746  }
747  r = __vcpu_run(vcpu, kvm_run);
748 out:
749  if (vcpu->sigset_active)
750  sigprocmask(SIG_SETMASK, &sigsaved, NULL);
751 
752  return r;
753 }
754 
755 struct kvm *kvm_arch_alloc_vm(void)
756 {
757 
758  struct kvm *kvm;
759  uint64_t vm_base;
760 
761  BUG_ON(sizeof(struct kvm) > KVM_VM_STRUCT_SIZE);
762 
764 
765  if (!vm_base)
766  return NULL;
767 
768  memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
769  kvm = (struct kvm *)(vm_base +
770  offsetof(struct kvm_vm_data, kvm_vm_struct));
771  kvm->arch.vm_base = vm_base;
772  printk(KERN_DEBUG"kvm: vm's data area:0x%lx\n", vm_base);
773 
774  return kvm;
775 }
776 
778  unsigned long start;
779  unsigned long size;
780  unsigned long type;
781 };
782 
783 static const struct kvm_ia64_io_range io_ranges[] = {
789 };
790 
791 static void kvm_build_io_pmt(struct kvm *kvm)
792 {
793  unsigned long i, j;
794 
795  /* Mark I/O ranges */
796  for (i = 0; i < (sizeof(io_ranges) / sizeof(struct kvm_io_range));
797  i++) {
798  for (j = io_ranges[i].start;
799  j < io_ranges[i].start + io_ranges[i].size;
800  j += PAGE_SIZE)
801  kvm_set_pmt_entry(kvm, j >> PAGE_SHIFT,
802  io_ranges[i].type, 0);
803  }
804 
805 }
806 
807 /*Use unused rids to virtualize guest rid.*/
808 #define GUEST_PHYSICAL_RR0 0x1739
809 #define GUEST_PHYSICAL_RR4 0x2739
810 #define VMM_INIT_RR 0x1660
811 
812 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
813 {
814  BUG_ON(!kvm);
815 
816  if (type)
817  return -EINVAL;
818 
819  kvm->arch.is_sn2 = ia64_platform_is("sn2");
820 
821  kvm->arch.metaphysical_rr0 = GUEST_PHYSICAL_RR0;
822  kvm->arch.metaphysical_rr4 = GUEST_PHYSICAL_RR4;
823  kvm->arch.vmm_init_rr = VMM_INIT_RR;
824 
825  /*
826  *Fill P2M entries for MMIO/IO ranges
827  */
828  kvm_build_io_pmt(kvm);
829 
830  INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
831 
832  /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
833  set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
834 
835  return 0;
836 }
837 
838 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm,
839  struct kvm_irqchip *chip)
840 {
841  int r;
842 
843  r = 0;
844  switch (chip->chip_id) {
845  case KVM_IRQCHIP_IOAPIC:
846  r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
847  break;
848  default:
849  r = -EINVAL;
850  break;
851  }
852  return r;
853 }
854 
855 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
856 {
857  int r;
858 
859  r = 0;
860  switch (chip->chip_id) {
861  case KVM_IRQCHIP_IOAPIC:
862  r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
863  break;
864  default:
865  r = -EINVAL;
866  break;
867  }
868  return r;
869 }
870 
871 #define RESTORE_REGS(_x) vcpu->arch._x = regs->_x
872 
873 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
874 {
875  struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
876  int i;
877 
878  for (i = 0; i < 16; i++) {
879  vpd->vgr[i] = regs->vpd.vgr[i];
880  vpd->vbgr[i] = regs->vpd.vbgr[i];
881  }
882  for (i = 0; i < 128; i++)
883  vpd->vcr[i] = regs->vpd.vcr[i];
884  vpd->vhpi = regs->vpd.vhpi;
885  vpd->vnat = regs->vpd.vnat;
886  vpd->vbnat = regs->vpd.vbnat;
887  vpd->vpsr = regs->vpd.vpsr;
888 
889  vpd->vpr = regs->vpd.vpr;
890 
891  memcpy(&vcpu->arch.guest, &regs->saved_guest, sizeof(union context));
892 
893  RESTORE_REGS(mp_state);
894  RESTORE_REGS(vmm_rr);
895  memcpy(vcpu->arch.itrs, regs->itrs, sizeof(struct thash_data) * NITRS);
896  memcpy(vcpu->arch.dtrs, regs->dtrs, sizeof(struct thash_data) * NDTRS);
897  RESTORE_REGS(itr_regions);
898  RESTORE_REGS(dtr_regions);
899  RESTORE_REGS(tc_regions);
900  RESTORE_REGS(irq_check);
901  RESTORE_REGS(itc_check);
902  RESTORE_REGS(timer_check);
903  RESTORE_REGS(timer_pending);
904  RESTORE_REGS(last_itc);
905  for (i = 0; i < 8; i++) {
906  vcpu->arch.vrr[i] = regs->vrr[i];
907  vcpu->arch.ibr[i] = regs->ibr[i];
908  vcpu->arch.dbr[i] = regs->dbr[i];
909  }
910  for (i = 0; i < 4; i++)
911  vcpu->arch.insvc[i] = regs->insvc[i];
912  RESTORE_REGS(xtp);
913  RESTORE_REGS(metaphysical_rr0);
914  RESTORE_REGS(metaphysical_rr4);
915  RESTORE_REGS(metaphysical_saved_rr0);
916  RESTORE_REGS(metaphysical_saved_rr4);
917  RESTORE_REGS(fp_psr);
918  RESTORE_REGS(saved_gp);
919 
920  vcpu->arch.irq_new_pending = 1;
921  vcpu->arch.itc_offset = regs->saved_itc - kvm_get_itc(vcpu);
923 
924  return 0;
925 }
926 
927 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event)
928 {
929  if (!irqchip_in_kernel(kvm))
930  return -ENXIO;
931 
933  irq_event->irq, irq_event->level);
934  return 0;
935 }
936 
937 long kvm_arch_vm_ioctl(struct file *filp,
938  unsigned int ioctl, unsigned long arg)
939 {
940  struct kvm *kvm = filp->private_data;
941  void __user *argp = (void __user *)arg;
942  int r = -ENOTTY;
943 
944  switch (ioctl) {
945  case KVM_SET_MEMORY_REGION: {
946  struct kvm_memory_region kvm_mem;
947  struct kvm_userspace_memory_region kvm_userspace_mem;
948 
949  r = -EFAULT;
950  if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
951  goto out;
952  kvm_userspace_mem.slot = kvm_mem.slot;
953  kvm_userspace_mem.flags = kvm_mem.flags;
954  kvm_userspace_mem.guest_phys_addr =
955  kvm_mem.guest_phys_addr;
956  kvm_userspace_mem.memory_size = kvm_mem.memory_size;
958  &kvm_userspace_mem, 0);
959  if (r)
960  goto out;
961  break;
962  }
963  case KVM_CREATE_IRQCHIP:
964  r = -EFAULT;
965  r = kvm_ioapic_init(kvm);
966  if (r)
967  goto out;
969  if (r) {
970  mutex_lock(&kvm->slots_lock);
971  kvm_ioapic_destroy(kvm);
972  mutex_unlock(&kvm->slots_lock);
973  goto out;
974  }
975  break;
976  case KVM_GET_IRQCHIP: {
977  /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
978  struct kvm_irqchip chip;
979 
980  r = -EFAULT;
981  if (copy_from_user(&chip, argp, sizeof chip))
982  goto out;
983  r = -ENXIO;
984  if (!irqchip_in_kernel(kvm))
985  goto out;
986  r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
987  if (r)
988  goto out;
989  r = -EFAULT;
990  if (copy_to_user(argp, &chip, sizeof chip))
991  goto out;
992  r = 0;
993  break;
994  }
995  case KVM_SET_IRQCHIP: {
996  /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
997  struct kvm_irqchip chip;
998 
999  r = -EFAULT;
1000  if (copy_from_user(&chip, argp, sizeof chip))
1001  goto out;
1002  r = -ENXIO;
1003  if (!irqchip_in_kernel(kvm))
1004  goto out;
1005  r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
1006  if (r)
1007  goto out;
1008  r = 0;
1009  break;
1010  }
1011  default:
1012  ;
1013  }
1014 out:
1015  return r;
1016 }
1017 
1019  struct kvm_sregs *sregs)
1020 {
1021  return -EINVAL;
1022 }
1023 
1025  struct kvm_sregs *sregs)
1026 {
1027  return -EINVAL;
1028 
1029 }
1031  struct kvm_translation *tr)
1032 {
1033 
1034  return -EINVAL;
1035 }
1036 
1037 static int kvm_alloc_vmm_area(void)
1038 {
1039  if (!kvm_vmm_base && (kvm_vm_buffer_size < KVM_VM_BUFFER_SIZE)) {
1040  kvm_vmm_base = __get_free_pages(GFP_KERNEL,
1042  if (!kvm_vmm_base)
1043  return -ENOMEM;
1044 
1045  memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1046  kvm_vm_buffer = kvm_vmm_base + VMM_SIZE;
1047 
1048  printk(KERN_DEBUG"kvm:VMM's Base Addr:0x%lx, vm_buffer:0x%lx\n",
1049  kvm_vmm_base, kvm_vm_buffer);
1050  }
1051 
1052  return 0;
1053 }
1054 
1055 static void kvm_free_vmm_area(void)
1056 {
1057  if (kvm_vmm_base) {
1058  /*Zero this area before free to avoid bits leak!!*/
1059  memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1060  free_pages(kvm_vmm_base, get_order(KVM_VMM_SIZE));
1061  kvm_vmm_base = 0;
1062  kvm_vm_buffer = 0;
1063  kvm_vsa_base = 0;
1064  }
1065 }
1066 
1067 static int vti_init_vpd(struct kvm_vcpu *vcpu)
1068 {
1069  int i;
1070  union cpuid3_t cpuid3;
1071  struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1072 
1073  if (IS_ERR(vpd))
1074  return PTR_ERR(vpd);
1075 
1076  /* CPUID init */
1077  for (i = 0; i < 5; i++)
1078  vpd->vcpuid[i] = ia64_get_cpuid(i);
1079 
1080  /* Limit the CPUID number to 5 */
1081  cpuid3.value = vpd->vcpuid[3];
1082  cpuid3.number = 4; /* 5 - 1 */
1083  vpd->vcpuid[3] = cpuid3.value;
1084 
1085  /*Set vac and vdc fields*/
1086  vpd->vac.a_from_int_cr = 1;
1087  vpd->vac.a_to_int_cr = 1;
1088  vpd->vac.a_from_psr = 1;
1089  vpd->vac.a_from_cpuid = 1;
1090  vpd->vac.a_cover = 1;
1091  vpd->vac.a_bsw = 1;
1092  vpd->vac.a_int = 1;
1093  vpd->vdc.d_vmsw = 1;
1094 
1095  /*Set virtual buffer*/
1097 
1098  return 0;
1099 }
1100 
1101 static int vti_create_vp(struct kvm_vcpu *vcpu)
1102 {
1103  long ret;
1104  struct vpd *vpd = vcpu->arch.vpd;
1105  unsigned long vmm_ivt;
1106 
1107  vmm_ivt = kvm_vmm_info->vmm_ivt;
1108 
1109  printk(KERN_DEBUG "kvm: vcpu:%p,ivt: 0x%lx\n", vcpu, vmm_ivt);
1110 
1111  ret = ia64_pal_vp_create((u64 *)vpd, (u64 *)vmm_ivt, 0);
1112 
1113  if (ret) {
1114  printk(KERN_ERR"kvm: ia64_pal_vp_create failed!\n");
1115  return -EINVAL;
1116  }
1117  return 0;
1118 }
1119 
1120 static void init_ptce_info(struct kvm_vcpu *vcpu)
1121 {
1122  ia64_ptce_info_t ptce = {0};
1123 
1124  ia64_get_ptce(&ptce);
1125  vcpu->arch.ptce_base = ptce.base;
1126  vcpu->arch.ptce_count[0] = ptce.count[0];
1127  vcpu->arch.ptce_count[1] = ptce.count[1];
1128  vcpu->arch.ptce_stride[0] = ptce.stride[0];
1129  vcpu->arch.ptce_stride[1] = ptce.stride[1];
1130 }
1131 
1132 static void kvm_migrate_hlt_timer(struct kvm_vcpu *vcpu)
1133 {
1134  struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
1135 
1136  if (hrtimer_cancel(p_ht))
1137  hrtimer_start_expires(p_ht, HRTIMER_MODE_ABS);
1138 }
1139 
1140 static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data)
1141 {
1142  struct kvm_vcpu *vcpu;
1144 
1145  vcpu = container_of(data, struct kvm_vcpu, arch.hlt_timer);
1146  q = &vcpu->wq;
1147 
1148  if (vcpu->arch.mp_state != KVM_MP_STATE_HALTED)
1149  goto out;
1150 
1151  if (waitqueue_active(q))
1153 
1154 out:
1155  vcpu->arch.timer_fired = 1;
1156  vcpu->arch.timer_check = 1;
1157  return HRTIMER_NORESTART;
1158 }
1159 
1160 #define PALE_RESET_ENTRY 0x80000000ffffffb0UL
1161 
1162 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
1163 {
1164  return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
1165 }
1166 
1167 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1168 {
1169  struct kvm_vcpu *v;
1170  int r;
1171  int i;
1172  long itc_offset;
1173  struct kvm *kvm = vcpu->kvm;
1174  struct kvm_pt_regs *regs = vcpu_regs(vcpu);
1175 
1176  union context *p_ctx = &vcpu->arch.guest;
1177  struct kvm_vcpu *vmm_vcpu = to_guest(vcpu->kvm, vcpu);
1178 
1179  /*Init vcpu context for first run.*/
1180  if (IS_ERR(vmm_vcpu))
1181  return PTR_ERR(vmm_vcpu);
1182 
1183  if (kvm_vcpu_is_bsp(vcpu)) {
1184  vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1185 
1186  /*Set entry address for first run.*/
1187  regs->cr_iip = PALE_RESET_ENTRY;
1188 
1189  /*Initialize itc offset for vcpus*/
1190  itc_offset = 0UL - kvm_get_itc(vcpu);
1191  for (i = 0; i < KVM_MAX_VCPUS; i++) {
1192  v = (struct kvm_vcpu *)((char *)vcpu +
1193  sizeof(struct kvm_vcpu_data) * i);
1194  v->arch.itc_offset = itc_offset;
1195  v->arch.last_itc = 0;
1196  }
1197  } else
1198  vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
1199 
1200  r = -ENOMEM;
1201  vcpu->arch.apic = kzalloc(sizeof(struct kvm_lapic), GFP_KERNEL);
1202  if (!vcpu->arch.apic)
1203  goto out;
1204  vcpu->arch.apic->vcpu = vcpu;
1205 
1206  p_ctx->gr[1] = 0;
1207  p_ctx->gr[12] = (unsigned long)((char *)vmm_vcpu + KVM_STK_OFFSET);
1208  p_ctx->gr[13] = (unsigned long)vmm_vcpu;
1209  p_ctx->psr = 0x1008522000UL;
1210  p_ctx->ar[40] = FPSR_DEFAULT; /*fpsr*/
1211  p_ctx->caller_unat = 0;
1212  p_ctx->pr = 0x0;
1213  p_ctx->ar[36] = 0x0; /*unat*/
1214  p_ctx->ar[19] = 0x0; /*rnat*/
1215  p_ctx->ar[18] = (unsigned long)vmm_vcpu +
1216  ((sizeof(struct kvm_vcpu)+15) & ~15);
1217  p_ctx->ar[64] = 0x0; /*pfs*/
1218  p_ctx->cr[0] = 0x7e04UL;
1219  p_ctx->cr[2] = (unsigned long)kvm_vmm_info->vmm_ivt;
1220  p_ctx->cr[8] = 0x3c;
1221 
1222  /*Initialize region register*/
1223  p_ctx->rr[0] = 0x30;
1224  p_ctx->rr[1] = 0x30;
1225  p_ctx->rr[2] = 0x30;
1226  p_ctx->rr[3] = 0x30;
1227  p_ctx->rr[4] = 0x30;
1228  p_ctx->rr[5] = 0x30;
1229  p_ctx->rr[7] = 0x30;
1230 
1231  /*Initialize branch register 0*/
1232  p_ctx->br[0] = *(unsigned long *)kvm_vmm_info->vmm_entry;
1233 
1234  vcpu->arch.vmm_rr = kvm->arch.vmm_init_rr;
1235  vcpu->arch.metaphysical_rr0 = kvm->arch.metaphysical_rr0;
1236  vcpu->arch.metaphysical_rr4 = kvm->arch.metaphysical_rr4;
1237 
1238  hrtimer_init(&vcpu->arch.hlt_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1239  vcpu->arch.hlt_timer.function = hlt_timer_fn;
1240 
1241  vcpu->arch.last_run_cpu = -1;
1242  vcpu->arch.vpd = (struct vpd *)VPD_BASE(vcpu->vcpu_id);
1243  vcpu->arch.vsa_base = kvm_vsa_base;
1244  vcpu->arch.__gp = kvm_vmm_gp;
1245  vcpu->arch.dirty_log_lock_pa = __pa(&kvm->arch.dirty_log_lock);
1246  vcpu->arch.vhpt.hash = (struct thash_data *)VHPT_BASE(vcpu->vcpu_id);
1247  vcpu->arch.vtlb.hash = (struct thash_data *)VTLB_BASE(vcpu->vcpu_id);
1248  init_ptce_info(vcpu);
1249 
1250  r = 0;
1251 out:
1252  return r;
1253 }
1254 
1255 static int vti_vcpu_setup(struct kvm_vcpu *vcpu, int id)
1256 {
1257  unsigned long psr;
1258  int r;
1259 
1260  local_irq_save(psr);
1261  r = kvm_insert_vmm_mapping(vcpu);
1262  local_irq_restore(psr);
1263  if (r)
1264  goto fail;
1265  r = kvm_vcpu_init(vcpu, vcpu->kvm, id);
1266  if (r)
1267  goto fail;
1268 
1269  r = vti_init_vpd(vcpu);
1270  if (r) {
1271  printk(KERN_DEBUG"kvm: vpd init error!!\n");
1272  goto uninit;
1273  }
1274 
1275  r = vti_create_vp(vcpu);
1276  if (r)
1277  goto uninit;
1278 
1279  kvm_purge_vmm_mapping(vcpu);
1280 
1281  return 0;
1282 uninit:
1283  kvm_vcpu_uninit(vcpu);
1284 fail:
1285  return r;
1286 }
1287 
1288 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
1289  unsigned int id)
1290 {
1291  struct kvm_vcpu *vcpu;
1292  unsigned long vm_base = kvm->arch.vm_base;
1293  int r;
1294  int cpu;
1295 
1296  BUG_ON(sizeof(struct kvm_vcpu) > VCPU_STRUCT_SIZE/2);
1297 
1298  r = -EINVAL;
1299  if (id >= KVM_MAX_VCPUS) {
1300  printk(KERN_ERR"kvm: Can't configure vcpus > %ld",
1301  KVM_MAX_VCPUS);
1302  goto fail;
1303  }
1304 
1305  r = -ENOMEM;
1306  if (!vm_base) {
1307  printk(KERN_ERR"kvm: Create vcpu[%d] error!\n", id);
1308  goto fail;
1309  }
1310  vcpu = (struct kvm_vcpu *)(vm_base + offsetof(struct kvm_vm_data,
1311  vcpu_data[id].vcpu_struct));
1312  vcpu->kvm = kvm;
1313 
1314  cpu = get_cpu();
1315  r = vti_vcpu_setup(vcpu, id);
1316  put_cpu();
1317 
1318  if (r) {
1319  printk(KERN_DEBUG"kvm: vcpu_setup error!!\n");
1320  goto fail;
1321  }
1322 
1323  return vcpu;
1324 fail:
1325  return ERR_PTR(r);
1326 }
1327 
1329 {
1330  return 0;
1331 }
1332 
1334 {
1335  return -EINVAL;
1336 }
1337 
1339 {
1340  return -EINVAL;
1341 }
1342 
1344  struct kvm_guest_debug *dbg)
1345 {
1346  return -EINVAL;
1347 }
1348 
1349 void kvm_arch_free_vm(struct kvm *kvm)
1350 {
1351  unsigned long vm_base = kvm->arch.vm_base;
1352 
1353  if (vm_base) {
1354  memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
1356  }
1357 
1358 }
1359 
1360 static void kvm_release_vm_pages(struct kvm *kvm)
1361 {
1362  struct kvm_memslots *slots;
1363  struct kvm_memory_slot *memslot;
1364  int j;
1365  unsigned long base_gfn;
1366 
1367  slots = kvm_memslots(kvm);
1368  kvm_for_each_memslot(memslot, slots) {
1369  base_gfn = memslot->base_gfn;
1370  for (j = 0; j < memslot->npages; j++) {
1371  if (memslot->rmap[j])
1372  put_page((struct page *)memslot->rmap[j]);
1373  }
1374  }
1375 }
1376 
1377 void kvm_arch_sync_events(struct kvm *kvm)
1378 {
1379 }
1380 
1381 void kvm_arch_destroy_vm(struct kvm *kvm)
1382 {
1383  kvm_iommu_unmap_guest(kvm);
1384 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
1386 #endif
1387  kfree(kvm->arch.vioapic);
1388  kvm_release_vm_pages(kvm);
1389 }
1390 
1391 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1392 {
1393 }
1394 
1395 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1396 {
1397  if (cpu != vcpu->cpu) {
1398  vcpu->cpu = cpu;
1399  if (vcpu->arch.ht_active)
1400  kvm_migrate_hlt_timer(vcpu);
1401  }
1402 }
1403 
1404 #define SAVE_REGS(_x) regs->_x = vcpu->arch._x
1405 
1406 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1407 {
1408  struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1409  int i;
1410 
1411  vcpu_load(vcpu);
1412 
1413  for (i = 0; i < 16; i++) {
1414  regs->vpd.vgr[i] = vpd->vgr[i];
1415  regs->vpd.vbgr[i] = vpd->vbgr[i];
1416  }
1417  for (i = 0; i < 128; i++)
1418  regs->vpd.vcr[i] = vpd->vcr[i];
1419  regs->vpd.vhpi = vpd->vhpi;
1420  regs->vpd.vnat = vpd->vnat;
1421  regs->vpd.vbnat = vpd->vbnat;
1422  regs->vpd.vpsr = vpd->vpsr;
1423  regs->vpd.vpr = vpd->vpr;
1424 
1425  memcpy(&regs->saved_guest, &vcpu->arch.guest, sizeof(union context));
1426 
1427  SAVE_REGS(mp_state);
1428  SAVE_REGS(vmm_rr);
1429  memcpy(regs->itrs, vcpu->arch.itrs, sizeof(struct thash_data) * NITRS);
1430  memcpy(regs->dtrs, vcpu->arch.dtrs, sizeof(struct thash_data) * NDTRS);
1431  SAVE_REGS(itr_regions);
1432  SAVE_REGS(dtr_regions);
1433  SAVE_REGS(tc_regions);
1434  SAVE_REGS(irq_check);
1435  SAVE_REGS(itc_check);
1436  SAVE_REGS(timer_check);
1437  SAVE_REGS(timer_pending);
1438  SAVE_REGS(last_itc);
1439  for (i = 0; i < 8; i++) {
1440  regs->vrr[i] = vcpu->arch.vrr[i];
1441  regs->ibr[i] = vcpu->arch.ibr[i];
1442  regs->dbr[i] = vcpu->arch.dbr[i];
1443  }
1444  for (i = 0; i < 4; i++)
1445  regs->insvc[i] = vcpu->arch.insvc[i];
1446  regs->saved_itc = vcpu->arch.itc_offset + kvm_get_itc(vcpu);
1447  SAVE_REGS(xtp);
1448  SAVE_REGS(metaphysical_rr0);
1449  SAVE_REGS(metaphysical_rr4);
1450  SAVE_REGS(metaphysical_saved_rr0);
1451  SAVE_REGS(metaphysical_saved_rr4);
1452  SAVE_REGS(fp_psr);
1453  SAVE_REGS(saved_gp);
1454 
1455  vcpu_put(vcpu);
1456  return 0;
1457 }
1458 
1460  struct kvm_ia64_vcpu_stack *stack)
1461 {
1462  memcpy(stack, vcpu, sizeof(struct kvm_ia64_vcpu_stack));
1463  return 0;
1464 }
1465 
1467  struct kvm_ia64_vcpu_stack *stack)
1468 {
1469  memcpy(vcpu + 1, &stack->stack[0] + sizeof(struct kvm_vcpu),
1470  sizeof(struct kvm_ia64_vcpu_stack) - sizeof(struct kvm_vcpu));
1471 
1472  vcpu->arch.exit_data = ((struct kvm_vcpu *)stack)->arch.exit_data;
1473  return 0;
1474 }
1475 
1476 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
1477 {
1478 
1479  hrtimer_cancel(&vcpu->arch.hlt_timer);
1480  kfree(vcpu->arch.apic);
1481 }
1482 
1483 
1484 long kvm_arch_vcpu_ioctl(struct file *filp,
1485  unsigned int ioctl, unsigned long arg)
1486 {
1487  struct kvm_vcpu *vcpu = filp->private_data;
1488  void __user *argp = (void __user *)arg;
1489  struct kvm_ia64_vcpu_stack *stack = NULL;
1490  long r;
1491 
1492  switch (ioctl) {
1493  case KVM_IA64_VCPU_GET_STACK: {
1494  struct kvm_ia64_vcpu_stack __user *user_stack;
1495  void __user *first_p = argp;
1496 
1497  r = -EFAULT;
1498  if (copy_from_user(&user_stack, first_p, sizeof(void *)))
1499  goto out;
1500 
1501  if (!access_ok(VERIFY_WRITE, user_stack,
1502  sizeof(struct kvm_ia64_vcpu_stack))) {
1503  printk(KERN_INFO "KVM_IA64_VCPU_GET_STACK: "
1504  "Illegal user destination address for stack\n");
1505  goto out;
1506  }
1507  stack = kzalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
1508  if (!stack) {
1509  r = -ENOMEM;
1510  goto out;
1511  }
1512 
1513  r = kvm_arch_vcpu_ioctl_get_stack(vcpu, stack);
1514  if (r)
1515  goto out;
1516 
1517  if (copy_to_user(user_stack, stack,
1518  sizeof(struct kvm_ia64_vcpu_stack))) {
1519  r = -EFAULT;
1520  goto out;
1521  }
1522 
1523  break;
1524  }
1525  case KVM_IA64_VCPU_SET_STACK: {
1526  struct kvm_ia64_vcpu_stack __user *user_stack;
1527  void __user *first_p = argp;
1528 
1529  r = -EFAULT;
1530  if (copy_from_user(&user_stack, first_p, sizeof(void *)))
1531  goto out;
1532 
1533  if (!access_ok(VERIFY_READ, user_stack,
1534  sizeof(struct kvm_ia64_vcpu_stack))) {
1535  printk(KERN_INFO "KVM_IA64_VCPU_SET_STACK: "
1536  "Illegal user address for stack\n");
1537  goto out;
1538  }
1539  stack = kmalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
1540  if (!stack) {
1541  r = -ENOMEM;
1542  goto out;
1543  }
1544  if (copy_from_user(stack, user_stack,
1545  sizeof(struct kvm_ia64_vcpu_stack)))
1546  goto out;
1547 
1548  r = kvm_arch_vcpu_ioctl_set_stack(vcpu, stack);
1549  break;
1550  }
1551 
1552  default:
1553  r = -EINVAL;
1554  }
1555 
1556 out:
1557  kfree(stack);
1558  return r;
1559 }
1560 
1561 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1562 {
1563  return VM_FAULT_SIGBUS;
1564 }
1565 
1567  struct kvm_memory_slot *dont)
1568 {
1569 }
1570 
1571 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
1572 {
1573  return 0;
1574 }
1575 
1577  struct kvm_memory_slot *memslot,
1578  struct kvm_memory_slot old,
1580  int user_alloc)
1581 {
1582  unsigned long i;
1583  unsigned long pfn;
1584  int npages = memslot->npages;
1585  unsigned long base_gfn = memslot->base_gfn;
1586 
1587  if (base_gfn + npages > (KVM_MAX_MEM_SIZE >> PAGE_SHIFT))
1588  return -ENOMEM;
1589 
1590  for (i = 0; i < npages; i++) {
1591  pfn = gfn_to_pfn(kvm, base_gfn + i);
1592  if (!kvm_is_mmio_pfn(pfn)) {
1593  kvm_set_pmt_entry(kvm, base_gfn + i,
1594  pfn << PAGE_SHIFT,
1596  memslot->rmap[i] = (unsigned long)pfn_to_page(pfn);
1597  } else {
1598  kvm_set_pmt_entry(kvm, base_gfn + i,
1599  GPFN_PHYS_MMIO | (pfn << PAGE_SHIFT),
1600  _PAGE_MA_UC);
1601  memslot->rmap[i] = 0;
1602  }
1603  }
1604 
1605  return 0;
1606 }
1607 
1608 void kvm_arch_commit_memory_region(struct kvm *kvm,
1610  struct kvm_memory_slot old,
1611  int user_alloc)
1612 {
1613  return;
1614 }
1615 
1616 void kvm_arch_flush_shadow_all(struct kvm *kvm)
1617 {
1618  kvm_flush_remote_tlbs(kvm);
1619 }
1620 
1621 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1622  struct kvm_memory_slot *slot)
1623 {
1625 }
1626 
1627 long kvm_arch_dev_ioctl(struct file *filp,
1628  unsigned int ioctl, unsigned long arg)
1629 {
1630  return -EINVAL;
1631 }
1632 
1634 {
1635  kvm_vcpu_uninit(vcpu);
1636 }
1637 
1638 static int vti_cpu_has_kvm_support(void)
1639 {
1640  long avail = 1, status = 1, control = 1;
1641  long ret;
1642 
1643  ret = ia64_pal_proc_get_features(&avail, &status, &control, 0);
1644  if (ret)
1645  goto out;
1646 
1647  if (!(avail & PAL_PROC_VM_BIT))
1648  goto out;
1649 
1650  printk(KERN_DEBUG"kvm: Hardware Supports VT\n");
1651 
1652  ret = ia64_pal_vp_env_info(&kvm_vm_buffer_size, &vp_env_info);
1653  if (ret)
1654  goto out;
1655  printk(KERN_DEBUG"kvm: VM Buffer Size:0x%lx\n", kvm_vm_buffer_size);
1656 
1657  if (!(vp_env_info & VP_OPCODE)) {
1658  printk(KERN_WARNING"kvm: No opcode ability on hardware, "
1659  "vm_env_info:0x%lx\n", vp_env_info);
1660  }
1661 
1662  return 1;
1663 out:
1664  return 0;
1665 }
1666 
1667 
1668 /*
1669  * On SN2, the ITC isn't stable, so copy in fast path code to use the
1670  * SN2 RTC, replacing the ITC based default verion.
1671  */
1672 static void kvm_patch_vmm(struct kvm_vmm_info *vmm_info,
1673  struct module *module)
1674 {
1675  unsigned long new_ar, new_ar_sn2;
1676  unsigned long module_base;
1677 
1678  if (!ia64_platform_is("sn2"))
1679  return;
1680 
1681  module_base = (unsigned long)module->module_core;
1682 
1683  new_ar = kvm_vmm_base + vmm_info->patch_mov_ar - module_base;
1684  new_ar_sn2 = kvm_vmm_base + vmm_info->patch_mov_ar_sn2 - module_base;
1685 
1686  printk(KERN_INFO "kvm: Patching ITC emulation to use SGI SN2 RTC "
1687  "as source\n");
1688 
1689  /*
1690  * Copy the SN2 version of mov_ar into place. They are both
1691  * the same size, so 6 bundles is sufficient (6 * 0x10).
1692  */
1693  memcpy((void *)new_ar, (void *)new_ar_sn2, 0x60);
1694 }
1695 
1696 static int kvm_relocate_vmm(struct kvm_vmm_info *vmm_info,
1697  struct module *module)
1698 {
1699  unsigned long module_base;
1700  unsigned long vmm_size;
1701 
1702  unsigned long vmm_offset, func_offset, fdesc_offset;
1703  struct fdesc *p_fdesc;
1704 
1705  BUG_ON(!module);
1706 
1707  if (!kvm_vmm_base) {
1708  printk("kvm: kvm area hasn't been initialized yet!!\n");
1709  return -EFAULT;
1710  }
1711 
1712  /*Calculate new position of relocated vmm module.*/
1713  module_base = (unsigned long)module->module_core;
1714  vmm_size = module->core_size;
1715  if (unlikely(vmm_size > KVM_VMM_SIZE))
1716  return -EFAULT;
1717 
1718  memcpy((void *)kvm_vmm_base, (void *)module_base, vmm_size);
1719  kvm_patch_vmm(vmm_info, module);
1720  kvm_flush_icache(kvm_vmm_base, vmm_size);
1721 
1722  /*Recalculate kvm_vmm_info based on new VMM*/
1723  vmm_offset = vmm_info->vmm_ivt - module_base;
1724  kvm_vmm_info->vmm_ivt = KVM_VMM_BASE + vmm_offset;
1725  printk(KERN_DEBUG"kvm: Relocated VMM's IVT Base Addr:%lx\n",
1726  kvm_vmm_info->vmm_ivt);
1727 
1728  fdesc_offset = (unsigned long)vmm_info->vmm_entry - module_base;
1729  kvm_vmm_info->vmm_entry = (kvm_vmm_entry *)(KVM_VMM_BASE +
1730  fdesc_offset);
1731  func_offset = *(unsigned long *)vmm_info->vmm_entry - module_base;
1732  p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1733  p_fdesc->ip = KVM_VMM_BASE + func_offset;
1734  p_fdesc->gp = KVM_VMM_BASE+(p_fdesc->gp - module_base);
1735 
1736  printk(KERN_DEBUG"kvm: Relocated VMM's Init Entry Addr:%lx\n",
1737  KVM_VMM_BASE+func_offset);
1738 
1739  fdesc_offset = (unsigned long)vmm_info->tramp_entry - module_base;
1740  kvm_vmm_info->tramp_entry = (kvm_tramp_entry *)(KVM_VMM_BASE +
1741  fdesc_offset);
1742  func_offset = *(unsigned long *)vmm_info->tramp_entry - module_base;
1743  p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1744  p_fdesc->ip = KVM_VMM_BASE + func_offset;
1745  p_fdesc->gp = KVM_VMM_BASE + (p_fdesc->gp - module_base);
1746 
1747  kvm_vmm_gp = p_fdesc->gp;
1748 
1749  printk(KERN_DEBUG"kvm: Relocated VMM's Entry IP:%p\n",
1750  kvm_vmm_info->vmm_entry);
1751  printk(KERN_DEBUG"kvm: Relocated VMM's Trampoline Entry IP:0x%lx\n",
1752  KVM_VMM_BASE + func_offset);
1753 
1754  return 0;
1755 }
1756 
1757 int kvm_arch_init(void *opaque)
1758 {
1759  int r;
1760  struct kvm_vmm_info *vmm_info = (struct kvm_vmm_info *)opaque;
1761 
1762  if (!vti_cpu_has_kvm_support()) {
1763  printk(KERN_ERR "kvm: No Hardware Virtualization Support!\n");
1764  r = -EOPNOTSUPP;
1765  goto out;
1766  }
1767 
1768  if (kvm_vmm_info) {
1769  printk(KERN_ERR "kvm: Already loaded VMM module!\n");
1770  r = -EEXIST;
1771  goto out;
1772  }
1773 
1774  r = -ENOMEM;
1775  kvm_vmm_info = kzalloc(sizeof(struct kvm_vmm_info), GFP_KERNEL);
1776  if (!kvm_vmm_info)
1777  goto out;
1778 
1779  if (kvm_alloc_vmm_area())
1780  goto out_free0;
1781 
1782  r = kvm_relocate_vmm(vmm_info, vmm_info->module);
1783  if (r)
1784  goto out_free1;
1785 
1786  return 0;
1787 
1788 out_free1:
1789  kvm_free_vmm_area();
1790 out_free0:
1791  kfree(kvm_vmm_info);
1792 out:
1793  return r;
1794 }
1795 
1796 void kvm_arch_exit(void)
1797 {
1798  kvm_free_vmm_area();
1799  kfree(kvm_vmm_info);
1800  kvm_vmm_info = NULL;
1801 }
1802 
1803 static void kvm_ia64_sync_dirty_log(struct kvm *kvm,
1804  struct kvm_memory_slot *memslot)
1805 {
1806  int i;
1807  long base;
1808  unsigned long n;
1809  unsigned long *dirty_bitmap = (unsigned long *)(kvm->arch.vm_base +
1810  offsetof(struct kvm_vm_data, kvm_mem_dirty_log));
1811 
1812  n = kvm_dirty_bitmap_bytes(memslot);
1813  base = memslot->base_gfn / BITS_PER_LONG;
1814 
1815  spin_lock(&kvm->arch.dirty_log_lock);
1816  for (i = 0; i < n/sizeof(long); ++i) {
1817  memslot->dirty_bitmap[i] = dirty_bitmap[base + i];
1818  dirty_bitmap[base + i] = 0;
1819  }
1820  spin_unlock(&kvm->arch.dirty_log_lock);
1821 }
1822 
1823 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1824  struct kvm_dirty_log *log)
1825 {
1826  int r;
1827  unsigned long n;
1828  struct kvm_memory_slot *memslot;
1829  int is_dirty = 0;
1830 
1831  mutex_lock(&kvm->slots_lock);
1832 
1833  r = -EINVAL;
1834  if (log->slot >= KVM_MEMORY_SLOTS)
1835  goto out;
1836 
1837  memslot = id_to_memslot(kvm->memslots, log->slot);
1838  r = -ENOENT;
1839  if (!memslot->dirty_bitmap)
1840  goto out;
1841 
1842  kvm_ia64_sync_dirty_log(kvm, memslot);
1843  r = kvm_get_dirty_log(kvm, log, &is_dirty);
1844  if (r)
1845  goto out;
1846 
1847  /* If nothing is dirty, don't bother messing with page tables. */
1848  if (is_dirty) {
1849  kvm_flush_remote_tlbs(kvm);
1850  n = kvm_dirty_bitmap_bytes(memslot);
1851  memset(memslot->dirty_bitmap, 0, n);
1852  }
1853  r = 0;
1854 out:
1855  mutex_unlock(&kvm->slots_lock);
1856  return r;
1857 }
1858 
1860 {
1861  return 0;
1862 }
1863 
1865 {
1866 }
1867 
1868 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq)
1869 {
1870  return __apic_accept_irq(vcpu, irq->vector);
1871 }
1872 
1874 {
1875  return apic->vcpu->vcpu_id == dest;
1876 }
1877 
1879 {
1880  return 0;
1881 }
1882 
1883 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
1884 {
1885  return vcpu1->arch.xtp - vcpu2->arch.xtp;
1886 }
1887 
1888 int kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
1889  int short_hand, int dest, int dest_mode)
1890 {
1891  struct kvm_lapic *target = vcpu->arch.apic;
1892  return (dest_mode == 0) ?
1893  kvm_apic_match_physical_addr(target, dest) :
1894  kvm_apic_match_logical_addr(target, dest);
1895 }
1896 
1897 static int find_highest_bits(int *dat)
1898 {
1899  u32 bits, bitnum;
1900  int i;
1901 
1902  /* loop for all 256 bits */
1903  for (i = 7; i >= 0 ; i--) {
1904  bits = dat[i];
1905  if (bits) {
1906  bitnum = fls(bits);
1907  return i * 32 + bitnum - 1;
1908  }
1909  }
1910 
1911  return -1;
1912 }
1913 
1915 {
1916  struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1917 
1918  if (vpd->irr[0] & (1UL << NMI_VECTOR))
1919  return NMI_VECTOR;
1920  if (vpd->irr[0] & (1UL << ExtINT_VECTOR))
1921  return ExtINT_VECTOR;
1922 
1923  return find_highest_bits((int *)&vpd->irr[0]);
1924 }
1925 
1927 {
1928  return vcpu->arch.timer_fired;
1929 }
1930 
1932 {
1933  return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE) ||
1934  (kvm_highest_pending_irq(vcpu) != -1);
1935 }
1936 
1938 {
1939  return (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests));
1940 }
1941 
1943  struct kvm_mp_state *mp_state)
1944 {
1945  mp_state->mp_state = vcpu->arch.mp_state;
1946  return 0;
1947 }
1948 
1949 static int vcpu_reset(struct kvm_vcpu *vcpu)
1950 {
1951  int r;
1952  long psr;
1953  local_irq_save(psr);
1954  r = kvm_insert_vmm_mapping(vcpu);
1955  local_irq_restore(psr);
1956  if (r)
1957  goto fail;
1958 
1959  vcpu->arch.launched = 0;
1960  kvm_arch_vcpu_uninit(vcpu);
1961  r = kvm_arch_vcpu_init(vcpu);
1962  if (r)
1963  goto fail;
1964 
1965  kvm_purge_vmm_mapping(vcpu);
1966  r = 0;
1967 fail:
1968  return r;
1969 }
1970 
1972  struct kvm_mp_state *mp_state)
1973 {
1974  int r = 0;
1975 
1976  vcpu->arch.mp_state = mp_state->mp_state;
1977  if (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)
1978  r = vcpu_reset(vcpu);
1979  return r;
1980 }