Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
ns83820.c
Go to the documentation of this file.
1 #define VERSION "0.23"
2 /* ns83820.c by Benjamin LaHaise with contributions.
3  *
4  * Questions/comments/discussion to [email protected].
5  *
6  * $Revision: 1.34.2.23 $
7  *
8  * Copyright 2001 Benjamin LaHaise.
9  * Copyright 2001, 2002 Red Hat.
10  *
11  * Mmmm, chocolate vanilla mocha...
12  *
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License as published by
16  * the Free Software Foundation; either version 2 of the License, or
17  * (at your option) any later version.
18  *
19  * This program is distributed in the hope that it will be useful,
20  * but WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22  * GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with this program; if not, write to the Free Software
26  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
27  *
28  *
29  * ChangeLog
30  * =========
31  * 20010414 0.1 - created
32  * 20010622 0.2 - basic rx and tx.
33  * 20010711 0.3 - added duplex and link state detection support.
34  * 20010713 0.4 - zero copy, no hangs.
35  * 0.5 - 64 bit dma support (davem will hate me for this)
36  * - disable jumbo frames to avoid tx hangs
37  * - work around tx deadlocks on my 1.02 card via
38  * fiddling with TXCFG
39  * 20010810 0.6 - use pci dma api for ringbuffers, work on ia64
40  * 20010816 0.7 - misc cleanups
41  * 20010826 0.8 - fix critical zero copy bugs
42  * 0.9 - internal experiment
43  * 20010827 0.10 - fix ia64 unaligned access.
44  * 20010906 0.11 - accept all packets with checksum errors as
45  * otherwise fragments get lost
46  * - fix >> 32 bugs
47  * 0.12 - add statistics counters
48  * - add allmulti/promisc support
49  * 20011009 0.13 - hotplug support, other smaller pci api cleanups
50  * 20011204 0.13a - optical transceiver support added
51  * by Michael Clark <[email protected]>
52  * 20011205 0.13b - call register_netdev earlier in initialization
53  * suppress duplicate link status messages
54  * 20011117 0.14 - ethtool GDRVINFO, GLINK support from jgarzik
55  * 20011204 0.15 get ppc (big endian) working
56  * 20011218 0.16 various cleanups
57  * 20020310 0.17 speedups
58  * 20020610 0.18 - actually use the pci dma api for highmem
59  * - remove pci latency register fiddling
60  * 0.19 - better bist support
61  * - add ihr and reset_phy parameters
62  * - gmii bus probing
63  * - fix missed txok introduced during performance
64  * tuning
65  * 0.20 - fix stupid RFEN thinko. i am such a smurf.
66  * 20040828 0.21 - add hardware vlan accleration
67  * by Neil Horman <[email protected]>
68  * 20050406 0.22 - improved DAC ifdefs from Andi Kleen
69  * - removal of dead code from Adrian Bunk
70  * - fix half duplex collision behaviour
71  * Driver Overview
72  * ===============
73  *
74  * This driver was originally written for the National Semiconductor
75  * 83820 chip, a 10/100/1000 Mbps 64 bit PCI ethernet NIC. Hopefully
76  * this code will turn out to be a) clean, b) correct, and c) fast.
77  * With that in mind, I'm aiming to split the code up as much as
78  * reasonably possible. At present there are X major sections that
79  * break down into a) packet receive, b) packet transmit, c) link
80  * management, d) initialization and configuration. Where possible,
81  * these code paths are designed to run in parallel.
82  *
83  * This driver has been tested and found to work with the following
84  * cards (in no particular order):
85  *
86  * Cameo SOHO-GA2000T SOHO-GA2500T
87  * D-Link DGE-500T
88  * PureData PDP8023Z-TG
89  * SMC SMC9452TX SMC9462TX
90  * Netgear GA621
91  *
92  * Special thanks to SMC for providing hardware to test this driver on.
93  *
94  * Reports of success or failure would be greatly appreciated.
95  */
96 //#define dprintk printk
97 #define dprintk(x...) do { } while (0)
98 
99 #include <linux/module.h>
100 #include <linux/moduleparam.h>
101 #include <linux/types.h>
102 #include <linux/pci.h>
103 #include <linux/dma-mapping.h>
104 #include <linux/netdevice.h>
105 #include <linux/etherdevice.h>
106 #include <linux/delay.h>
107 #include <linux/workqueue.h>
108 #include <linux/init.h>
109 #include <linux/interrupt.h>
110 #include <linux/ip.h> /* for iph */
111 #include <linux/in.h> /* for IPPROTO_... */
112 #include <linux/compiler.h>
113 #include <linux/prefetch.h>
114 #include <linux/ethtool.h>
115 #include <linux/sched.h>
116 #include <linux/timer.h>
117 #include <linux/if_vlan.h>
118 #include <linux/rtnetlink.h>
119 #include <linux/jiffies.h>
120 #include <linux/slab.h>
121 
122 #include <asm/io.h>
123 #include <asm/uaccess.h>
124 
125 #define DRV_NAME "ns83820"
126 
127 /* Global parameters. See module_param near the bottom. */
128 static int ihr = 2;
129 static int reset_phy = 0;
130 static int lnksts = 0; /* CFG_LNKSTS bit polarity */
131 
132 /* Dprintk is used for more interesting debug events */
133 #undef Dprintk
134 #define Dprintk dprintk
135 
136 /* tunables */
137 #define RX_BUF_SIZE 1500 /* 8192 */
138 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
139 #define NS83820_VLAN_ACCEL_SUPPORT
140 #endif
141 
142 /* Must not exceed ~65000. */
143 #define NR_RX_DESC 64
144 #define NR_TX_DESC 128
145 
146 /* not tunable */
147 #define REAL_RX_BUF_SIZE (RX_BUF_SIZE + 14) /* rx/tx mac addr + type */
148 
149 #define MIN_TX_DESC_FREE 8
150 
151 /* register defines */
152 #define CFGCS 0x04
153 
154 #define CR_TXE 0x00000001
155 #define CR_TXD 0x00000002
156 /* Ramit : Here's a tip, don't do a RXD immediately followed by an RXE
157  * The Receive engine skips one descriptor and moves
158  * onto the next one!! */
159 #define CR_RXE 0x00000004
160 #define CR_RXD 0x00000008
161 #define CR_TXR 0x00000010
162 #define CR_RXR 0x00000020
163 #define CR_SWI 0x00000080
164 #define CR_RST 0x00000100
165 
166 #define PTSCR_EEBIST_FAIL 0x00000001
167 #define PTSCR_EEBIST_EN 0x00000002
168 #define PTSCR_EELOAD_EN 0x00000004
169 #define PTSCR_RBIST_FAIL 0x000001b8
170 #define PTSCR_RBIST_DONE 0x00000200
171 #define PTSCR_RBIST_EN 0x00000400
172 #define PTSCR_RBIST_RST 0x00002000
173 
174 #define MEAR_EEDI 0x00000001
175 #define MEAR_EEDO 0x00000002
176 #define MEAR_EECLK 0x00000004
177 #define MEAR_EESEL 0x00000008
178 #define MEAR_MDIO 0x00000010
179 #define MEAR_MDDIR 0x00000020
180 #define MEAR_MDC 0x00000040
181 
182 #define ISR_TXDESC3 0x40000000
183 #define ISR_TXDESC2 0x20000000
184 #define ISR_TXDESC1 0x10000000
185 #define ISR_TXDESC0 0x08000000
186 #define ISR_RXDESC3 0x04000000
187 #define ISR_RXDESC2 0x02000000
188 #define ISR_RXDESC1 0x01000000
189 #define ISR_RXDESC0 0x00800000
190 #define ISR_TXRCMP 0x00400000
191 #define ISR_RXRCMP 0x00200000
192 #define ISR_DPERR 0x00100000
193 #define ISR_SSERR 0x00080000
194 #define ISR_RMABT 0x00040000
195 #define ISR_RTABT 0x00020000
196 #define ISR_RXSOVR 0x00010000
197 #define ISR_HIBINT 0x00008000
198 #define ISR_PHY 0x00004000
199 #define ISR_PME 0x00002000
200 #define ISR_SWI 0x00001000
201 #define ISR_MIB 0x00000800
202 #define ISR_TXURN 0x00000400
203 #define ISR_TXIDLE 0x00000200
204 #define ISR_TXERR 0x00000100
205 #define ISR_TXDESC 0x00000080
206 #define ISR_TXOK 0x00000040
207 #define ISR_RXORN 0x00000020
208 #define ISR_RXIDLE 0x00000010
209 #define ISR_RXEARLY 0x00000008
210 #define ISR_RXERR 0x00000004
211 #define ISR_RXDESC 0x00000002
212 #define ISR_RXOK 0x00000001
213 
214 #define TXCFG_CSI 0x80000000
215 #define TXCFG_HBI 0x40000000
216 #define TXCFG_MLB 0x20000000
217 #define TXCFG_ATP 0x10000000
218 #define TXCFG_ECRETRY 0x00800000
219 #define TXCFG_BRST_DIS 0x00080000
220 #define TXCFG_MXDMA1024 0x00000000
221 #define TXCFG_MXDMA512 0x00700000
222 #define TXCFG_MXDMA256 0x00600000
223 #define TXCFG_MXDMA128 0x00500000
224 #define TXCFG_MXDMA64 0x00400000
225 #define TXCFG_MXDMA32 0x00300000
226 #define TXCFG_MXDMA16 0x00200000
227 #define TXCFG_MXDMA8 0x00100000
228 
229 #define CFG_LNKSTS 0x80000000
230 #define CFG_SPDSTS 0x60000000
231 #define CFG_SPDSTS1 0x40000000
232 #define CFG_SPDSTS0 0x20000000
233 #define CFG_DUPSTS 0x10000000
234 #define CFG_TBI_EN 0x01000000
235 #define CFG_MODE_1000 0x00400000
236 /* Ramit : Dont' ever use AUTO_1000, it never works and is buggy.
237  * Read the Phy response and then configure the MAC accordingly */
238 #define CFG_AUTO_1000 0x00200000
239 #define CFG_PINT_CTL 0x001c0000
240 #define CFG_PINT_DUPSTS 0x00100000
241 #define CFG_PINT_LNKSTS 0x00080000
242 #define CFG_PINT_SPDSTS 0x00040000
243 #define CFG_TMRTEST 0x00020000
244 #define CFG_MRM_DIS 0x00010000
245 #define CFG_MWI_DIS 0x00008000
246 #define CFG_T64ADDR 0x00004000
247 #define CFG_PCI64_DET 0x00002000
248 #define CFG_DATA64_EN 0x00001000
249 #define CFG_M64ADDR 0x00000800
250 #define CFG_PHY_RST 0x00000400
251 #define CFG_PHY_DIS 0x00000200
252 #define CFG_EXTSTS_EN 0x00000100
253 #define CFG_REQALG 0x00000080
254 #define CFG_SB 0x00000040
255 #define CFG_POW 0x00000020
256 #define CFG_EXD 0x00000010
257 #define CFG_PESEL 0x00000008
258 #define CFG_BROM_DIS 0x00000004
259 #define CFG_EXT_125 0x00000002
260 #define CFG_BEM 0x00000001
261 
262 #define EXTSTS_UDPPKT 0x00200000
263 #define EXTSTS_TCPPKT 0x00080000
264 #define EXTSTS_IPPKT 0x00020000
265 #define EXTSTS_VPKT 0x00010000
266 #define EXTSTS_VTG_MASK 0x0000ffff
267 
268 #define SPDSTS_POLARITY (CFG_SPDSTS1 | CFG_SPDSTS0 | CFG_DUPSTS | (lnksts ? CFG_LNKSTS : 0))
269 
270 #define MIBC_MIBS 0x00000008
271 #define MIBC_ACLR 0x00000004
272 #define MIBC_FRZ 0x00000002
273 #define MIBC_WRN 0x00000001
274 
275 #define PCR_PSEN (1 << 31)
276 #define PCR_PS_MCAST (1 << 30)
277 #define PCR_PS_DA (1 << 29)
278 #define PCR_STHI_8 (3 << 23)
279 #define PCR_STLO_4 (1 << 23)
280 #define PCR_FFHI_8K (3 << 21)
281 #define PCR_FFLO_4K (1 << 21)
282 #define PCR_PAUSE_CNT 0xFFFE
283 
284 #define RXCFG_AEP 0x80000000
285 #define RXCFG_ARP 0x40000000
286 #define RXCFG_STRIPCRC 0x20000000
287 #define RXCFG_RX_FD 0x10000000
288 #define RXCFG_ALP 0x08000000
289 #define RXCFG_AIRL 0x04000000
290 #define RXCFG_MXDMA512 0x00700000
291 #define RXCFG_DRTH 0x0000003e
292 #define RXCFG_DRTH0 0x00000002
293 
294 #define RFCR_RFEN 0x80000000
295 #define RFCR_AAB 0x40000000
296 #define RFCR_AAM 0x20000000
297 #define RFCR_AAU 0x10000000
298 #define RFCR_APM 0x08000000
299 #define RFCR_APAT 0x07800000
300 #define RFCR_APAT3 0x04000000
301 #define RFCR_APAT2 0x02000000
302 #define RFCR_APAT1 0x01000000
303 #define RFCR_APAT0 0x00800000
304 #define RFCR_AARP 0x00400000
305 #define RFCR_MHEN 0x00200000
306 #define RFCR_UHEN 0x00100000
307 #define RFCR_ULM 0x00080000
308 
309 #define VRCR_RUDPE 0x00000080
310 #define VRCR_RTCPE 0x00000040
311 #define VRCR_RIPE 0x00000020
312 #define VRCR_IPEN 0x00000010
313 #define VRCR_DUTF 0x00000008
314 #define VRCR_DVTF 0x00000004
315 #define VRCR_VTREN 0x00000002
316 #define VRCR_VTDEN 0x00000001
317 
318 #define VTCR_PPCHK 0x00000008
319 #define VTCR_GCHK 0x00000004
320 #define VTCR_VPPTI 0x00000002
321 #define VTCR_VGTI 0x00000001
322 
323 #define CR 0x00
324 #define CFG 0x04
325 #define MEAR 0x08
326 #define PTSCR 0x0c
327 #define ISR 0x10
328 #define IMR 0x14
329 #define IER 0x18
330 #define IHR 0x1c
331 #define TXDP 0x20
332 #define TXDP_HI 0x24
333 #define TXCFG 0x28
334 #define GPIOR 0x2c
335 #define RXDP 0x30
336 #define RXDP_HI 0x34
337 #define RXCFG 0x38
338 #define PQCR 0x3c
339 #define WCSR 0x40
340 #define PCR 0x44
341 #define RFCR 0x48
342 #define RFDR 0x4c
343 
344 #define SRR 0x58
345 
346 #define VRCR 0xbc
347 #define VTCR 0xc0
348 #define VDR 0xc4
349 #define CCSR 0xcc
350 
351 #define TBICR 0xe0
352 #define TBISR 0xe4
353 #define TANAR 0xe8
354 #define TANLPAR 0xec
355 #define TANER 0xf0
356 #define TESR 0xf4
357 
358 #define TBICR_MR_AN_ENABLE 0x00001000
359 #define TBICR_MR_RESTART_AN 0x00000200
360 
361 #define TBISR_MR_LINK_STATUS 0x00000020
362 #define TBISR_MR_AN_COMPLETE 0x00000004
363 
364 #define TANAR_PS2 0x00000100
365 #define TANAR_PS1 0x00000080
366 #define TANAR_HALF_DUP 0x00000040
367 #define TANAR_FULL_DUP 0x00000020
368 
369 #define GPIOR_GP5_OE 0x00000200
370 #define GPIOR_GP4_OE 0x00000100
371 #define GPIOR_GP3_OE 0x00000080
372 #define GPIOR_GP2_OE 0x00000040
373 #define GPIOR_GP1_OE 0x00000020
374 #define GPIOR_GP3_OUT 0x00000004
375 #define GPIOR_GP1_OUT 0x00000001
376 
377 #define LINK_AUTONEGOTIATE 0x01
378 #define LINK_DOWN 0x02
379 #define LINK_UP 0x04
380 
381 #define HW_ADDR_LEN sizeof(dma_addr_t)
382 #define desc_addr_set(desc, addr) \
383  do { \
384  ((desc)[0] = cpu_to_le32(addr)); \
385  if (HW_ADDR_LEN == 8) \
386  (desc)[1] = cpu_to_le32(((u64)addr) >> 32); \
387  } while(0)
388 #define desc_addr_get(desc) \
389  (le32_to_cpu((desc)[0]) | \
390  (HW_ADDR_LEN == 8 ? ((dma_addr_t)le32_to_cpu((desc)[1]))<<32 : 0))
391 
392 #define DESC_LINK 0
393 #define DESC_BUFPTR (DESC_LINK + HW_ADDR_LEN/4)
394 #define DESC_CMDSTS (DESC_BUFPTR + HW_ADDR_LEN/4)
395 #define DESC_EXTSTS (DESC_CMDSTS + 4/4)
396 
397 #define CMDSTS_OWN 0x80000000
398 #define CMDSTS_MORE 0x40000000
399 #define CMDSTS_INTR 0x20000000
400 #define CMDSTS_ERR 0x10000000
401 #define CMDSTS_OK 0x08000000
402 #define CMDSTS_RUNT 0x00200000
403 #define CMDSTS_LEN_MASK 0x0000ffff
404 
405 #define CMDSTS_DEST_MASK 0x01800000
406 #define CMDSTS_DEST_SELF 0x00800000
407 #define CMDSTS_DEST_MULTI 0x01000000
408 
409 #define DESC_SIZE 8 /* Should be cache line sized */
410 
411 struct rx_info {
413  int up;
414  unsigned long idle;
415 
417 
420 
423 };
424 
425 
426 struct ns83820 {
428 
429  struct pci_dev *pci_dev;
430  struct net_device *ndev;
431 
432  struct rx_info rx_info;
434 
435  unsigned ihr;
437 
438  /* protects everything below. irqsave when using. */
440 
442 
445 
446  unsigned linkstate;
447 
449 
452  volatile u16 tx_free_idx; /* idx of free desc chain */
454 
457 
458  char pad[16] __attribute__((aligned(16)));
461 
463 };
464 
465 static inline struct ns83820 *PRIV(struct net_device *dev)
466 {
467  return netdev_priv(dev);
468 }
469 
470 #define __kick_rx(dev) writel(CR_RXE, dev->base + CR)
471 
472 static inline void kick_rx(struct net_device *ndev)
473 {
474  struct ns83820 *dev = PRIV(ndev);
475  dprintk("kick_rx: maybe kicking\n");
476  if (test_and_clear_bit(0, &dev->rx_info.idle)) {
477  dprintk("actually kicking\n");
478  writel(dev->rx_info.phy_descs +
479  (4 * DESC_SIZE * dev->rx_info.next_rx),
480  dev->base + RXDP);
481  if (dev->rx_info.next_rx == dev->rx_info.next_empty)
482  printk(KERN_DEBUG "%s: uh-oh: next_rx == next_empty???\n",
483  ndev->name);
484  __kick_rx(dev);
485  }
486 }
487 
488 //free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC
489 #define start_tx_okay(dev) \
490  (((NR_TX_DESC-2 + dev->tx_done_idx - dev->tx_free_idx) % NR_TX_DESC) > MIN_TX_DESC_FREE)
491 
492 /* Packet Receiver
493  *
494  * The hardware supports linked lists of receive descriptors for
495  * which ownership is transferred back and forth by means of an
496  * ownership bit. While the hardware does support the use of a
497  * ring for receive descriptors, we only make use of a chain in
498  * an attempt to reduce bus traffic under heavy load scenarios.
499  * This will also make bugs a bit more obvious. The current code
500  * only makes use of a single rx chain; I hope to implement
501  * priority based rx for version 1.0. Goal: even under overload
502  * conditions, still route realtime traffic with as low jitter as
503  * possible.
504  */
505 static inline void build_rx_desc(struct ns83820 *dev, __le32 *desc, dma_addr_t link, dma_addr_t buf, u32 cmdsts, u32 extsts)
506 {
507  desc_addr_set(desc + DESC_LINK, link);
508  desc_addr_set(desc + DESC_BUFPTR, buf);
509  desc[DESC_EXTSTS] = cpu_to_le32(extsts);
510  mb();
511  desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
512 }
513 
514 #define nr_rx_empty(dev) ((NR_RX_DESC-2 + dev->rx_info.next_rx - dev->rx_info.next_empty) % NR_RX_DESC)
515 static inline int ns83820_add_rx_skb(struct ns83820 *dev, struct sk_buff *skb)
516 {
517  unsigned next_empty;
518  u32 cmdsts;
519  __le32 *sg;
520  dma_addr_t buf;
521 
522  next_empty = dev->rx_info.next_empty;
523 
524  /* don't overrun last rx marker */
525  if (unlikely(nr_rx_empty(dev) <= 2)) {
526  kfree_skb(skb);
527  return 1;
528  }
529 
530 #if 0
531  dprintk("next_empty[%d] nr_used[%d] next_rx[%d]\n",
532  dev->rx_info.next_empty,
533  dev->rx_info.nr_used,
534  dev->rx_info.next_rx
535  );
536 #endif
537 
538  sg = dev->rx_info.descs + (next_empty * DESC_SIZE);
539  BUG_ON(NULL != dev->rx_info.skbs[next_empty]);
540  dev->rx_info.skbs[next_empty] = skb;
541 
542  dev->rx_info.next_empty = (next_empty + 1) % NR_RX_DESC;
543  cmdsts = REAL_RX_BUF_SIZE | CMDSTS_INTR;
544  buf = pci_map_single(dev->pci_dev, skb->data,
546  build_rx_desc(dev, sg, 0, buf, cmdsts, 0);
547  /* update link of previous rx */
548  if (likely(next_empty != dev->rx_info.next_rx))
549  dev->rx_info.descs[((NR_RX_DESC + next_empty - 1) % NR_RX_DESC) * DESC_SIZE] = cpu_to_le32(dev->rx_info.phy_descs + (next_empty * DESC_SIZE * 4));
550 
551  return 0;
552 }
553 
554 static inline int rx_refill(struct net_device *ndev, gfp_t gfp)
555 {
556  struct ns83820 *dev = PRIV(ndev);
557  unsigned i;
558  unsigned long flags = 0;
559 
560  if (unlikely(nr_rx_empty(dev) <= 2))
561  return 0;
562 
563  dprintk("rx_refill(%p)\n", ndev);
564  if (gfp == GFP_ATOMIC)
565  spin_lock_irqsave(&dev->rx_info.lock, flags);
566  for (i=0; i<NR_RX_DESC; i++) {
567  struct sk_buff *skb;
568  long res;
569 
570  /* extra 16 bytes for alignment */
571  skb = __netdev_alloc_skb(ndev, REAL_RX_BUF_SIZE+16, gfp);
572  if (unlikely(!skb))
573  break;
574 
575  skb_reserve(skb, skb->data - PTR_ALIGN(skb->data, 16));
576  if (gfp != GFP_ATOMIC)
577  spin_lock_irqsave(&dev->rx_info.lock, flags);
578  res = ns83820_add_rx_skb(dev, skb);
579  if (gfp != GFP_ATOMIC)
580  spin_unlock_irqrestore(&dev->rx_info.lock, flags);
581  if (res) {
582  i = 1;
583  break;
584  }
585  }
586  if (gfp == GFP_ATOMIC)
587  spin_unlock_irqrestore(&dev->rx_info.lock, flags);
588 
589  return i ? 0 : -ENOMEM;
590 }
591 
592 static void rx_refill_atomic(struct net_device *ndev)
593 {
594  rx_refill(ndev, GFP_ATOMIC);
595 }
596 
597 /* REFILL */
598 static inline void queue_refill(struct work_struct *work)
599 {
600  struct ns83820 *dev = container_of(work, struct ns83820, tq_refill);
601  struct net_device *ndev = dev->ndev;
602 
603  rx_refill(ndev, GFP_KERNEL);
604  if (dev->rx_info.up)
605  kick_rx(ndev);
606 }
607 
608 static inline void clear_rx_desc(struct ns83820 *dev, unsigned i)
609 {
610  build_rx_desc(dev, dev->rx_info.descs + (DESC_SIZE * i), 0, 0, CMDSTS_OWN, 0);
611 }
612 
613 static void phy_intr(struct net_device *ndev)
614 {
615  struct ns83820 *dev = PRIV(ndev);
616  static const char *speeds[] = { "10", "100", "1000", "1000(?)", "1000F" };
617  u32 cfg, new_cfg;
618  u32 tbisr, tanar, tanlpar;
619  int speed, fullduplex, newlinkstate;
620 
621  cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
622 
623  if (dev->CFG_cache & CFG_TBI_EN) {
624  /* we have an optical transceiver */
625  tbisr = readl(dev->base + TBISR);
626  tanar = readl(dev->base + TANAR);
627  tanlpar = readl(dev->base + TANLPAR);
628  dprintk("phy_intr: tbisr=%08x, tanar=%08x, tanlpar=%08x\n",
629  tbisr, tanar, tanlpar);
630 
631  if ( (fullduplex = (tanlpar & TANAR_FULL_DUP) &&
632  (tanar & TANAR_FULL_DUP)) ) {
633 
634  /* both of us are full duplex */
635  writel(readl(dev->base + TXCFG)
637  dev->base + TXCFG);
638  writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
639  dev->base + RXCFG);
640  /* Light up full duplex LED */
641  writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
642  dev->base + GPIOR);
643 
644  } else if (((tanlpar & TANAR_HALF_DUP) &&
645  (tanar & TANAR_HALF_DUP)) ||
646  ((tanlpar & TANAR_FULL_DUP) &&
647  (tanar & TANAR_HALF_DUP)) ||
648  ((tanlpar & TANAR_HALF_DUP) &&
649  (tanar & TANAR_FULL_DUP))) {
650 
651  /* one or both of us are half duplex */
652  writel((readl(dev->base + TXCFG)
653  & ~(TXCFG_CSI | TXCFG_HBI)) | TXCFG_ATP,
654  dev->base + TXCFG);
655  writel(readl(dev->base + RXCFG) & ~RXCFG_RX_FD,
656  dev->base + RXCFG);
657  /* Turn off full duplex LED */
658  writel(readl(dev->base + GPIOR) & ~GPIOR_GP1_OUT,
659  dev->base + GPIOR);
660  }
661 
662  speed = 4; /* 1000F */
663 
664  } else {
665  /* we have a copper transceiver */
666  new_cfg = dev->CFG_cache & ~(CFG_SB | CFG_MODE_1000 | CFG_SPDSTS);
667 
668  if (cfg & CFG_SPDSTS1)
669  new_cfg |= CFG_MODE_1000;
670  else
671  new_cfg &= ~CFG_MODE_1000;
672 
673  speed = ((cfg / CFG_SPDSTS0) & 3);
674  fullduplex = (cfg & CFG_DUPSTS);
675 
676  if (fullduplex) {
677  new_cfg |= CFG_SB;
678  writel(readl(dev->base + TXCFG)
679  | TXCFG_CSI | TXCFG_HBI,
680  dev->base + TXCFG);
681  writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
682  dev->base + RXCFG);
683  } else {
684  writel(readl(dev->base + TXCFG)
685  & ~(TXCFG_CSI | TXCFG_HBI),
686  dev->base + TXCFG);
687  writel(readl(dev->base + RXCFG) & ~(RXCFG_RX_FD),
688  dev->base + RXCFG);
689  }
690 
691  if ((cfg & CFG_LNKSTS) &&
692  ((new_cfg ^ dev->CFG_cache) != 0)) {
693  writel(new_cfg, dev->base + CFG);
694  dev->CFG_cache = new_cfg;
695  }
696 
697  dev->CFG_cache &= ~CFG_SPDSTS;
698  dev->CFG_cache |= cfg & CFG_SPDSTS;
699  }
700 
701  newlinkstate = (cfg & CFG_LNKSTS) ? LINK_UP : LINK_DOWN;
702 
703  if (newlinkstate & LINK_UP &&
704  dev->linkstate != newlinkstate) {
705  netif_start_queue(ndev);
706  netif_wake_queue(ndev);
707  printk(KERN_INFO "%s: link now %s mbps, %s duplex and up.\n",
708  ndev->name,
709  speeds[speed],
710  fullduplex ? "full" : "half");
711  } else if (newlinkstate & LINK_DOWN &&
712  dev->linkstate != newlinkstate) {
713  netif_stop_queue(ndev);
714  printk(KERN_INFO "%s: link now down.\n", ndev->name);
715  }
716 
717  dev->linkstate = newlinkstate;
718 }
719 
720 static int ns83820_setup_rx(struct net_device *ndev)
721 {
722  struct ns83820 *dev = PRIV(ndev);
723  unsigned i;
724  int ret;
725 
726  dprintk("ns83820_setup_rx(%p)\n", ndev);
727 
728  dev->rx_info.idle = 1;
729  dev->rx_info.next_rx = 0;
730  dev->rx_info.next_rx_desc = dev->rx_info.descs;
731  dev->rx_info.next_empty = 0;
732 
733  for (i=0; i<NR_RX_DESC; i++)
734  clear_rx_desc(dev, i);
735 
736  writel(0, dev->base + RXDP_HI);
737  writel(dev->rx_info.phy_descs, dev->base + RXDP);
738 
739  ret = rx_refill(ndev, GFP_KERNEL);
740  if (!ret) {
741  dprintk("starting receiver\n");
742  /* prevent the interrupt handler from stomping on us */
743  spin_lock_irq(&dev->rx_info.lock);
744 
745  writel(0x0001, dev->base + CCSR);
746  writel(0, dev->base + RFCR);
747  writel(0x7fc00000, dev->base + RFCR);
748  writel(0xffc00000, dev->base + RFCR);
749 
750  dev->rx_info.up = 1;
751 
752  phy_intr(ndev);
753 
754  /* Okay, let it rip */
755  spin_lock(&dev->misc_lock);
756  dev->IMR_cache |= ISR_PHY;
757  dev->IMR_cache |= ISR_RXRCMP;
758  //dev->IMR_cache |= ISR_RXERR;
759  //dev->IMR_cache |= ISR_RXOK;
760  dev->IMR_cache |= ISR_RXORN;
761  dev->IMR_cache |= ISR_RXSOVR;
762  dev->IMR_cache |= ISR_RXDESC;
763  dev->IMR_cache |= ISR_RXIDLE;
764  dev->IMR_cache |= ISR_TXDESC;
765  dev->IMR_cache |= ISR_TXIDLE;
766 
767  writel(dev->IMR_cache, dev->base + IMR);
768  writel(1, dev->base + IER);
769  spin_unlock(&dev->misc_lock);
770 
771  kick_rx(ndev);
772 
773  spin_unlock_irq(&dev->rx_info.lock);
774  }
775  return ret;
776 }
777 
778 static void ns83820_cleanup_rx(struct ns83820 *dev)
779 {
780  unsigned i;
781  unsigned long flags;
782 
783  dprintk("ns83820_cleanup_rx(%p)\n", dev);
784 
785  /* disable receive interrupts */
786  spin_lock_irqsave(&dev->misc_lock, flags);
788  writel(dev->IMR_cache, dev->base + IMR);
789  spin_unlock_irqrestore(&dev->misc_lock, flags);
790 
791  /* synchronize with the interrupt handler and kill it */
792  dev->rx_info.up = 0;
793  synchronize_irq(dev->pci_dev->irq);
794 
795  /* touch the pci bus... */
796  readl(dev->base + IMR);
797 
798  /* assumes the transmitter is already disabled and reset */
799  writel(0, dev->base + RXDP_HI);
800  writel(0, dev->base + RXDP);
801 
802  for (i=0; i<NR_RX_DESC; i++) {
803  struct sk_buff *skb = dev->rx_info.skbs[i];
804  dev->rx_info.skbs[i] = NULL;
805  clear_rx_desc(dev, i);
806  kfree_skb(skb);
807  }
808 }
809 
810 static void ns83820_rx_kick(struct net_device *ndev)
811 {
812  struct ns83820 *dev = PRIV(ndev);
813  /*if (nr_rx_empty(dev) >= NR_RX_DESC/4)*/ {
814  if (dev->rx_info.up) {
815  rx_refill_atomic(ndev);
816  kick_rx(ndev);
817  }
818  }
819 
820  if (dev->rx_info.up && nr_rx_empty(dev) > NR_RX_DESC*3/4)
821  schedule_work(&dev->tq_refill);
822  else
823  kick_rx(ndev);
824  if (dev->rx_info.idle)
825  printk(KERN_DEBUG "%s: BAD\n", ndev->name);
826 }
827 
828 /* rx_irq
829  *
830  */
831 static void rx_irq(struct net_device *ndev)
832 {
833  struct ns83820 *dev = PRIV(ndev);
834  struct rx_info *info = &dev->rx_info;
835  unsigned next_rx;
836  int rx_rc, len;
837  u32 cmdsts;
838  __le32 *desc;
839  unsigned long flags;
840  int nr = 0;
841 
842  dprintk("rx_irq(%p)\n", ndev);
843  dprintk("rxdp: %08x, descs: %08lx next_rx[%d]: %p next_empty[%d]: %p\n",
844  readl(dev->base + RXDP),
845  (long)(dev->rx_info.phy_descs),
846  (int)dev->rx_info.next_rx,
847  (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_rx)),
848  (int)dev->rx_info.next_empty,
849  (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_empty))
850  );
851 
852  spin_lock_irqsave(&info->lock, flags);
853  if (!info->up)
854  goto out;
855 
856  dprintk("walking descs\n");
857  next_rx = info->next_rx;
858  desc = info->next_rx_desc;
859  while ((CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) &&
860  (cmdsts != CMDSTS_OWN)) {
861  struct sk_buff *skb;
862  u32 extsts = le32_to_cpu(desc[DESC_EXTSTS]);
864 
865  dprintk("cmdsts: %08x\n", cmdsts);
866  dprintk("link: %08x\n", cpu_to_le32(desc[DESC_LINK]));
867  dprintk("extsts: %08x\n", extsts);
868 
869  skb = info->skbs[next_rx];
870  info->skbs[next_rx] = NULL;
871  info->next_rx = (next_rx + 1) % NR_RX_DESC;
872 
873  mb();
874  clear_rx_desc(dev, next_rx);
875 
876  pci_unmap_single(dev->pci_dev, bufptr,
878  len = cmdsts & CMDSTS_LEN_MASK;
879 #ifdef NS83820_VLAN_ACCEL_SUPPORT
880  /* NH: As was mentioned below, this chip is kinda
881  * brain dead about vlan tag stripping. Frames
882  * that are 64 bytes with a vlan header appended
883  * like arp frames, or pings, are flagged as Runts
884  * when the tag is stripped and hardware. This
885  * also means that the OK bit in the descriptor
886  * is cleared when the frame comes in so we have
887  * to do a specific length check here to make sure
888  * the frame would have been ok, had we not stripped
889  * the tag.
890  */
891  if (likely((CMDSTS_OK & cmdsts) ||
892  ((cmdsts & CMDSTS_RUNT) && len >= 56))) {
893 #else
894  if (likely(CMDSTS_OK & cmdsts)) {
895 #endif
896  skb_put(skb, len);
897  if (unlikely(!skb))
898  goto netdev_mangle_me_harder_failed;
899  if (cmdsts & CMDSTS_DEST_MULTI)
900  ndev->stats.multicast++;
901  ndev->stats.rx_packets++;
902  ndev->stats.rx_bytes += len;
903  if ((extsts & 0x002a0000) && !(extsts & 0x00540000)) {
905  } else {
906  skb_checksum_none_assert(skb);
907  }
908  skb->protocol = eth_type_trans(skb, ndev);
909 #ifdef NS83820_VLAN_ACCEL_SUPPORT
910  if(extsts & EXTSTS_VPKT) {
911  unsigned short tag;
912 
913  tag = ntohs(extsts & EXTSTS_VTG_MASK);
914  __vlan_hwaccel_put_tag(skb, tag);
915  }
916 #endif
917  rx_rc = netif_rx(skb);
918  if (NET_RX_DROP == rx_rc) {
919 netdev_mangle_me_harder_failed:
920  ndev->stats.rx_dropped++;
921  }
922  } else {
923  kfree_skb(skb);
924  }
925 
926  nr++;
927  next_rx = info->next_rx;
928  desc = info->descs + (DESC_SIZE * next_rx);
929  }
930  info->next_rx = next_rx;
931  info->next_rx_desc = info->descs + (DESC_SIZE * next_rx);
932 
933 out:
934  if (0 && !nr) {
935  Dprintk("dazed: cmdsts_f: %08x\n", cmdsts);
936  }
937 
938  spin_unlock_irqrestore(&info->lock, flags);
939 }
940 
941 static void rx_action(unsigned long _dev)
942 {
943  struct net_device *ndev = (void *)_dev;
944  struct ns83820 *dev = PRIV(ndev);
945  rx_irq(ndev);
946  writel(ihr, dev->base + IHR);
947 
948  spin_lock_irq(&dev->misc_lock);
949  dev->IMR_cache |= ISR_RXDESC;
950  writel(dev->IMR_cache, dev->base + IMR);
951  spin_unlock_irq(&dev->misc_lock);
952 
953  rx_irq(ndev);
954  ns83820_rx_kick(ndev);
955 }
956 
957 /* Packet Transmit code
958  */
959 static inline void kick_tx(struct ns83820 *dev)
960 {
961  dprintk("kick_tx(%p): tx_idx=%d free_idx=%d\n",
962  dev, dev->tx_idx, dev->tx_free_idx);
963  writel(CR_TXE, dev->base + CR);
964 }
965 
966 /* No spinlock needed on the transmit irq path as the interrupt handler is
967  * serialized.
968  */
969 static void do_tx_done(struct net_device *ndev)
970 {
971  struct ns83820 *dev = PRIV(ndev);
972  u32 cmdsts, tx_done_idx;
973  __le32 *desc;
974 
975  dprintk("do_tx_done(%p)\n", ndev);
976  tx_done_idx = dev->tx_done_idx;
977  desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
978 
979  dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
980  tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
981  while ((tx_done_idx != dev->tx_free_idx) &&
982  !(CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) ) {
983  struct sk_buff *skb;
984  unsigned len;
986 
987  if (cmdsts & CMDSTS_ERR)
988  ndev->stats.tx_errors++;
989  if (cmdsts & CMDSTS_OK)
990  ndev->stats.tx_packets++;
991  if (cmdsts & CMDSTS_OK)
992  ndev->stats.tx_bytes += cmdsts & 0xffff;
993 
994  dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
995  tx_done_idx, dev->tx_free_idx, cmdsts);
996  skb = dev->tx_skbs[tx_done_idx];
997  dev->tx_skbs[tx_done_idx] = NULL;
998  dprintk("done(%p)\n", skb);
999 
1000  len = cmdsts & CMDSTS_LEN_MASK;
1001  addr = desc_addr_get(desc + DESC_BUFPTR);
1002  if (skb) {
1003  pci_unmap_single(dev->pci_dev,
1004  addr,
1005  len,
1007  dev_kfree_skb_irq(skb);
1008  atomic_dec(&dev->nr_tx_skbs);
1009  } else
1010  pci_unmap_page(dev->pci_dev,
1011  addr,
1012  len,
1014 
1015  tx_done_idx = (tx_done_idx + 1) % NR_TX_DESC;
1016  dev->tx_done_idx = tx_done_idx;
1017  desc[DESC_CMDSTS] = cpu_to_le32(0);
1018  mb();
1019  desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1020  }
1021 
1022  /* Allow network stack to resume queueing packets after we've
1023  * finished transmitting at least 1/4 of the packets in the queue.
1024  */
1025  if (netif_queue_stopped(ndev) && start_tx_okay(dev)) {
1026  dprintk("start_queue(%p)\n", ndev);
1027  netif_start_queue(ndev);
1028  netif_wake_queue(ndev);
1029  }
1030 }
1031 
1032 static void ns83820_cleanup_tx(struct ns83820 *dev)
1033 {
1034  unsigned i;
1035 
1036  for (i=0; i<NR_TX_DESC; i++) {
1037  struct sk_buff *skb = dev->tx_skbs[i];
1038  dev->tx_skbs[i] = NULL;
1039  if (skb) {
1040  __le32 *desc = dev->tx_descs + (i * DESC_SIZE);
1041  pci_unmap_single(dev->pci_dev,
1042  desc_addr_get(desc + DESC_BUFPTR),
1043  le32_to_cpu(desc[DESC_CMDSTS]) & CMDSTS_LEN_MASK,
1045  dev_kfree_skb_irq(skb);
1046  atomic_dec(&dev->nr_tx_skbs);
1047  }
1048  }
1049 
1050  memset(dev->tx_descs, 0, NR_TX_DESC * DESC_SIZE * 4);
1051 }
1052 
1053 /* transmit routine. This code relies on the network layer serializing
1054  * its calls in, but will run happily in parallel with the interrupt
1055  * handler. This code currently has provisions for fragmenting tx buffers
1056  * while trying to track down a bug in either the zero copy code or
1057  * the tx fifo (hence the MAX_FRAG_LEN).
1058  */
1059 static netdev_tx_t ns83820_hard_start_xmit(struct sk_buff *skb,
1060  struct net_device *ndev)
1061 {
1062  struct ns83820 *dev = PRIV(ndev);
1063  u32 free_idx, cmdsts, extsts;
1064  int nr_free, nr_frags;
1065  unsigned tx_done_idx, last_idx;
1066  dma_addr_t buf;
1067  unsigned len;
1068  skb_frag_t *frag;
1069  int stopped = 0;
1070  int do_intr = 0;
1071  volatile __le32 *first_desc;
1072 
1073  dprintk("ns83820_hard_start_xmit\n");
1074 
1075  nr_frags = skb_shinfo(skb)->nr_frags;
1076 again:
1077  if (unlikely(dev->CFG_cache & CFG_LNKSTS)) {
1078  netif_stop_queue(ndev);
1079  if (unlikely(dev->CFG_cache & CFG_LNKSTS))
1080  return NETDEV_TX_BUSY;
1081  netif_start_queue(ndev);
1082  }
1083 
1084  last_idx = free_idx = dev->tx_free_idx;
1085  tx_done_idx = dev->tx_done_idx;
1086  nr_free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC;
1087  nr_free -= 1;
1088  if (nr_free <= nr_frags) {
1089  dprintk("stop_queue - not enough(%p)\n", ndev);
1090  netif_stop_queue(ndev);
1091 
1092  /* Check again: we may have raced with a tx done irq */
1093  if (dev->tx_done_idx != tx_done_idx) {
1094  dprintk("restart queue(%p)\n", ndev);
1095  netif_start_queue(ndev);
1096  goto again;
1097  }
1098  return NETDEV_TX_BUSY;
1099  }
1100 
1101  if (free_idx == dev->tx_intr_idx) {
1102  do_intr = 1;
1103  dev->tx_intr_idx = (dev->tx_intr_idx + NR_TX_DESC/4) % NR_TX_DESC;
1104  }
1105 
1106  nr_free -= nr_frags;
1107  if (nr_free < MIN_TX_DESC_FREE) {
1108  dprintk("stop_queue - last entry(%p)\n", ndev);
1109  netif_stop_queue(ndev);
1110  stopped = 1;
1111  }
1112 
1113  frag = skb_shinfo(skb)->frags;
1114  if (!nr_frags)
1115  frag = NULL;
1116  extsts = 0;
1117  if (skb->ip_summed == CHECKSUM_PARTIAL) {
1118  extsts |= EXTSTS_IPPKT;
1119  if (IPPROTO_TCP == ip_hdr(skb)->protocol)
1120  extsts |= EXTSTS_TCPPKT;
1121  else if (IPPROTO_UDP == ip_hdr(skb)->protocol)
1122  extsts |= EXTSTS_UDPPKT;
1123  }
1124 
1125 #ifdef NS83820_VLAN_ACCEL_SUPPORT
1126  if(vlan_tx_tag_present(skb)) {
1127  /* fetch the vlan tag info out of the
1128  * ancillary data if the vlan code
1129  * is using hw vlan acceleration
1130  */
1131  short tag = vlan_tx_tag_get(skb);
1132  extsts |= (EXTSTS_VPKT | htons(tag));
1133  }
1134 #endif
1135 
1136  len = skb->len;
1137  if (nr_frags)
1138  len -= skb->data_len;
1139  buf = pci_map_single(dev->pci_dev, skb->data, len, PCI_DMA_TODEVICE);
1140 
1141  first_desc = dev->tx_descs + (free_idx * DESC_SIZE);
1142 
1143  for (;;) {
1144  volatile __le32 *desc = dev->tx_descs + (free_idx * DESC_SIZE);
1145 
1146  dprintk("frag[%3u]: %4u @ 0x%08Lx\n", free_idx, len,
1147  (unsigned long long)buf);
1148  last_idx = free_idx;
1149  free_idx = (free_idx + 1) % NR_TX_DESC;
1150  desc[DESC_LINK] = cpu_to_le32(dev->tx_phy_descs + (free_idx * DESC_SIZE * 4));
1151  desc_addr_set(desc + DESC_BUFPTR, buf);
1152  desc[DESC_EXTSTS] = cpu_to_le32(extsts);
1153 
1154  cmdsts = ((nr_frags) ? CMDSTS_MORE : do_intr ? CMDSTS_INTR : 0);
1155  cmdsts |= (desc == first_desc) ? 0 : CMDSTS_OWN;
1156  cmdsts |= len;
1157  desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
1158 
1159  if (!nr_frags)
1160  break;
1161 
1162  buf = skb_frag_dma_map(&dev->pci_dev->dev, frag, 0,
1163  skb_frag_size(frag), DMA_TO_DEVICE);
1164  dprintk("frag: buf=%08Lx page=%08lx offset=%08lx\n",
1165  (long long)buf, (long) page_to_pfn(frag->page),
1166  frag->page_offset);
1167  len = skb_frag_size(frag);
1168  frag++;
1169  nr_frags--;
1170  }
1171  dprintk("done pkt\n");
1172 
1173  spin_lock_irq(&dev->tx_lock);
1174  dev->tx_skbs[last_idx] = skb;
1175  first_desc[DESC_CMDSTS] |= cpu_to_le32(CMDSTS_OWN);
1176  dev->tx_free_idx = free_idx;
1177  atomic_inc(&dev->nr_tx_skbs);
1178  spin_unlock_irq(&dev->tx_lock);
1179 
1180  kick_tx(dev);
1181 
1182  /* Check again: we may have raced with a tx done irq */
1183  if (stopped && (dev->tx_done_idx != tx_done_idx) && start_tx_okay(dev))
1184  netif_start_queue(ndev);
1185 
1186  return NETDEV_TX_OK;
1187 }
1188 
1189 static void ns83820_update_stats(struct ns83820 *dev)
1190 {
1191  struct net_device *ndev = dev->ndev;
1192  u8 __iomem *base = dev->base;
1193 
1194  /* the DP83820 will freeze counters, so we need to read all of them */
1195  ndev->stats.rx_errors += readl(base + 0x60) & 0xffff;
1196  ndev->stats.rx_crc_errors += readl(base + 0x64) & 0xffff;
1197  ndev->stats.rx_missed_errors += readl(base + 0x68) & 0xffff;
1198  ndev->stats.rx_frame_errors += readl(base + 0x6c) & 0xffff;
1199  /*ndev->stats.rx_symbol_errors +=*/ readl(base + 0x70);
1200  ndev->stats.rx_length_errors += readl(base + 0x74) & 0xffff;
1201  ndev->stats.rx_length_errors += readl(base + 0x78) & 0xffff;
1202  /*ndev->stats.rx_badopcode_errors += */ readl(base + 0x7c);
1203  /*ndev->stats.rx_pause_count += */ readl(base + 0x80);
1204  /*ndev->stats.tx_pause_count += */ readl(base + 0x84);
1205  ndev->stats.tx_carrier_errors += readl(base + 0x88) & 0xff;
1206 }
1207 
1208 static struct net_device_stats *ns83820_get_stats(struct net_device *ndev)
1209 {
1210  struct ns83820 *dev = PRIV(ndev);
1211 
1212  /* somewhat overkill */
1213  spin_lock_irq(&dev->misc_lock);
1214  ns83820_update_stats(dev);
1215  spin_unlock_irq(&dev->misc_lock);
1216 
1217  return &ndev->stats;
1218 }
1219 
1220 /* Let ethtool retrieve info */
1221 static int ns83820_get_settings(struct net_device *ndev,
1222  struct ethtool_cmd *cmd)
1223 {
1224  struct ns83820 *dev = PRIV(ndev);
1225  u32 cfg, tanar, tbicr;
1226  int fullduplex = 0;
1227 
1228  /*
1229  * Here's the list of available ethtool commands from other drivers:
1230  * cmd->advertising =
1231  * ethtool_cmd_speed_set(cmd, ...)
1232  * cmd->duplex =
1233  * cmd->port = 0;
1234  * cmd->phy_address =
1235  * cmd->transceiver = 0;
1236  * cmd->autoneg =
1237  * cmd->maxtxpkt = 0;
1238  * cmd->maxrxpkt = 0;
1239  */
1240 
1241  /* read current configuration */
1242  cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1243  tanar = readl(dev->base + TANAR);
1244  tbicr = readl(dev->base + TBICR);
1245 
1246  fullduplex = (cfg & CFG_DUPSTS) ? 1 : 0;
1247 
1249 
1250  if (dev->CFG_cache & CFG_TBI_EN) {
1251  /* we have optical interface */
1255  cmd->port = PORT_FIBRE;
1256  } else {
1257  /* we have copper */
1262  SUPPORTED_MII;
1263  cmd->port = PORT_MII;
1264  }
1265 
1266  cmd->duplex = fullduplex ? DUPLEX_FULL : DUPLEX_HALF;
1267  switch (cfg / CFG_SPDSTS0 & 3) {
1268  case 2:
1269  ethtool_cmd_speed_set(cmd, SPEED_1000);
1270  break;
1271  case 1:
1272  ethtool_cmd_speed_set(cmd, SPEED_100);
1273  break;
1274  default:
1275  ethtool_cmd_speed_set(cmd, SPEED_10);
1276  break;
1277  }
1278  cmd->autoneg = (tbicr & TBICR_MR_AN_ENABLE)
1280  return 0;
1281 }
1282 
1283 /* Let ethool change settings*/
1284 static int ns83820_set_settings(struct net_device *ndev,
1285  struct ethtool_cmd *cmd)
1286 {
1287  struct ns83820 *dev = PRIV(ndev);
1288  u32 cfg, tanar;
1289  int have_optical = 0;
1290  int fullduplex = 0;
1291 
1292  /* read current configuration */
1293  cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1294  tanar = readl(dev->base + TANAR);
1295 
1296  if (dev->CFG_cache & CFG_TBI_EN) {
1297  /* we have optical */
1298  have_optical = 1;
1299  fullduplex = (tanar & TANAR_FULL_DUP);
1300 
1301  } else {
1302  /* we have copper */
1303  fullduplex = cfg & CFG_DUPSTS;
1304  }
1305 
1306  spin_lock_irq(&dev->misc_lock);
1307  spin_lock(&dev->tx_lock);
1308 
1309  /* Set duplex */
1310  if (cmd->duplex != fullduplex) {
1311  if (have_optical) {
1312  /*set full duplex*/
1313  if (cmd->duplex == DUPLEX_FULL) {
1314  /* force full duplex */
1315  writel(readl(dev->base + TXCFG)
1317  dev->base + TXCFG);
1318  writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
1319  dev->base + RXCFG);
1320  /* Light up full duplex LED */
1321  writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
1322  dev->base + GPIOR);
1323  } else {
1324  /*TODO: set half duplex */
1325  }
1326 
1327  } else {
1328  /*we have copper*/
1329  /* TODO: Set duplex for copper cards */
1330  }
1331  printk(KERN_INFO "%s: Duplex set via ethtool\n",
1332  ndev->name);
1333  }
1334 
1335  /* Set autonegotiation */
1336  if (1) {
1337  if (cmd->autoneg == AUTONEG_ENABLE) {
1338  /* restart auto negotiation */
1340  dev->base + TBICR);
1343 
1344  printk(KERN_INFO "%s: autoneg enabled via ethtool\n",
1345  ndev->name);
1346  } else {
1347  /* disable auto negotiation */
1348  writel(0x00000000, dev->base + TBICR);
1349  }
1350 
1351  printk(KERN_INFO "%s: autoneg %s via ethtool\n", ndev->name,
1352  cmd->autoneg ? "ENABLED" : "DISABLED");
1353  }
1354 
1355  phy_intr(ndev);
1356  spin_unlock(&dev->tx_lock);
1357  spin_unlock_irq(&dev->misc_lock);
1358 
1359  return 0;
1360 }
1361 /* end ethtool get/set support -df */
1362 
1363 static void ns83820_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *info)
1364 {
1365  struct ns83820 *dev = PRIV(ndev);
1366  strlcpy(info->driver, "ns83820", sizeof(info->driver));
1367  strlcpy(info->version, VERSION, sizeof(info->version));
1368  strlcpy(info->bus_info, pci_name(dev->pci_dev), sizeof(info->bus_info));
1369 }
1370 
1371 static u32 ns83820_get_link(struct net_device *ndev)
1372 {
1373  struct ns83820 *dev = PRIV(ndev);
1374  u32 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1375  return cfg & CFG_LNKSTS ? 1 : 0;
1376 }
1377 
1378 static const struct ethtool_ops ops = {
1379  .get_settings = ns83820_get_settings,
1380  .set_settings = ns83820_set_settings,
1381  .get_drvinfo = ns83820_get_drvinfo,
1382  .get_link = ns83820_get_link
1383 };
1384 
1385 static inline void ns83820_disable_interrupts(struct ns83820 *dev)
1386 {
1387  writel(0, dev->base + IMR);
1388  writel(0, dev->base + IER);
1389  readl(dev->base + IER);
1390 }
1391 
1392 /* this function is called in irq context from the ISR */
1393 static void ns83820_mib_isr(struct ns83820 *dev)
1394 {
1395  unsigned long flags;
1396  spin_lock_irqsave(&dev->misc_lock, flags);
1397  ns83820_update_stats(dev);
1398  spin_unlock_irqrestore(&dev->misc_lock, flags);
1399 }
1400 
1401 static void ns83820_do_isr(struct net_device *ndev, u32 isr);
1402 static irqreturn_t ns83820_irq(int foo, void *data)
1403 {
1404  struct net_device *ndev = data;
1405  struct ns83820 *dev = PRIV(ndev);
1406  u32 isr;
1407  dprintk("ns83820_irq(%p)\n", ndev);
1408 
1409  dev->ihr = 0;
1410 
1411  isr = readl(dev->base + ISR);
1412  dprintk("irq: %08x\n", isr);
1413  ns83820_do_isr(ndev, isr);
1414  return IRQ_HANDLED;
1415 }
1416 
1417 static void ns83820_do_isr(struct net_device *ndev, u32 isr)
1418 {
1419  struct ns83820 *dev = PRIV(ndev);
1420  unsigned long flags;
1421 
1422 #ifdef DEBUG
1424  Dprintk("odd isr? 0x%08x\n", isr);
1425 #endif
1426 
1427  if (ISR_RXIDLE & isr) {
1428  dev->rx_info.idle = 1;
1429  Dprintk("oh dear, we are idle\n");
1430  ns83820_rx_kick(ndev);
1431  }
1432 
1433  if ((ISR_RXDESC | ISR_RXOK) & isr) {
1434  prefetch(dev->rx_info.next_rx_desc);
1435 
1436  spin_lock_irqsave(&dev->misc_lock, flags);
1437  dev->IMR_cache &= ~(ISR_RXDESC | ISR_RXOK);
1438  writel(dev->IMR_cache, dev->base + IMR);
1439  spin_unlock_irqrestore(&dev->misc_lock, flags);
1440 
1441  tasklet_schedule(&dev->rx_tasklet);
1442  //rx_irq(ndev);
1443  //writel(4, dev->base + IHR);
1444  }
1445 
1446  if ((ISR_RXIDLE | ISR_RXORN | ISR_RXDESC | ISR_RXOK | ISR_RXERR) & isr)
1447  ns83820_rx_kick(ndev);
1448 
1449  if (unlikely(ISR_RXSOVR & isr)) {
1450  //printk("overrun: rxsovr\n");
1451  ndev->stats.rx_fifo_errors++;
1452  }
1453 
1454  if (unlikely(ISR_RXORN & isr)) {
1455  //printk("overrun: rxorn\n");
1456  ndev->stats.rx_fifo_errors++;
1457  }
1458 
1459  if ((ISR_RXRCMP & isr) && dev->rx_info.up)
1460  writel(CR_RXE, dev->base + CR);
1461 
1462  if (ISR_TXIDLE & isr) {
1463  u32 txdp;
1464  txdp = readl(dev->base + TXDP);
1465  dprintk("txdp: %08x\n", txdp);
1466  txdp -= dev->tx_phy_descs;
1467  dev->tx_idx = txdp / (DESC_SIZE * 4);
1468  if (dev->tx_idx >= NR_TX_DESC) {
1469  printk(KERN_ALERT "%s: BUG -- txdp out of range\n", ndev->name);
1470  dev->tx_idx = 0;
1471  }
1472  /* The may have been a race between a pci originated read
1473  * and the descriptor update from the cpu. Just in case,
1474  * kick the transmitter if the hardware thinks it is on a
1475  * different descriptor than we are.
1476  */
1477  if (dev->tx_idx != dev->tx_free_idx)
1478  kick_tx(dev);
1479  }
1480 
1481  /* Defer tx ring processing until more than a minimum amount of
1482  * work has accumulated
1483  */
1484  if ((ISR_TXDESC | ISR_TXIDLE | ISR_TXOK | ISR_TXERR) & isr) {
1485  spin_lock_irqsave(&dev->tx_lock, flags);
1486  do_tx_done(ndev);
1487  spin_unlock_irqrestore(&dev->tx_lock, flags);
1488 
1489  /* Disable TxOk if there are no outstanding tx packets.
1490  */
1491  if ((dev->tx_done_idx == dev->tx_free_idx) &&
1492  (dev->IMR_cache & ISR_TXOK)) {
1493  spin_lock_irqsave(&dev->misc_lock, flags);
1494  dev->IMR_cache &= ~ISR_TXOK;
1495  writel(dev->IMR_cache, dev->base + IMR);
1496  spin_unlock_irqrestore(&dev->misc_lock, flags);
1497  }
1498  }
1499 
1500  /* The TxIdle interrupt can come in before the transmit has
1501  * completed. Normally we reap packets off of the combination
1502  * of TxDesc and TxIdle and leave TxOk disabled (since it
1503  * occurs on every packet), but when no further irqs of this
1504  * nature are expected, we must enable TxOk.
1505  */
1506  if ((ISR_TXIDLE & isr) && (dev->tx_done_idx != dev->tx_free_idx)) {
1507  spin_lock_irqsave(&dev->misc_lock, flags);
1508  dev->IMR_cache |= ISR_TXOK;
1509  writel(dev->IMR_cache, dev->base + IMR);
1510  spin_unlock_irqrestore(&dev->misc_lock, flags);
1511  }
1512 
1513  /* MIB interrupt: one of the statistics counters is about to overflow */
1514  if (unlikely(ISR_MIB & isr))
1515  ns83820_mib_isr(dev);
1516 
1517  /* PHY: Link up/down/negotiation state change */
1518  if (unlikely(ISR_PHY & isr))
1519  phy_intr(ndev);
1520 
1521 #if 0 /* Still working on the interrupt mitigation strategy */
1522  if (dev->ihr)
1523  writel(dev->ihr, dev->base + IHR);
1524 #endif
1525 }
1526 
1527 static void ns83820_do_reset(struct ns83820 *dev, u32 which)
1528 {
1529  Dprintk("resetting chip...\n");
1530  writel(which, dev->base + CR);
1531  do {
1532  schedule();
1533  } while (readl(dev->base + CR) & which);
1534  Dprintk("okay!\n");
1535 }
1536 
1537 static int ns83820_stop(struct net_device *ndev)
1538 {
1539  struct ns83820 *dev = PRIV(ndev);
1540 
1541  /* FIXME: protect against interrupt handler? */
1542  del_timer_sync(&dev->tx_watchdog);
1543 
1544  ns83820_disable_interrupts(dev);
1545 
1546  dev->rx_info.up = 0;
1547  synchronize_irq(dev->pci_dev->irq);
1548 
1549  ns83820_do_reset(dev, CR_RST);
1550 
1551  synchronize_irq(dev->pci_dev->irq);
1552 
1553  spin_lock_irq(&dev->misc_lock);
1555  spin_unlock_irq(&dev->misc_lock);
1556 
1557  ns83820_cleanup_rx(dev);
1558  ns83820_cleanup_tx(dev);
1559 
1560  return 0;
1561 }
1562 
1563 static void ns83820_tx_timeout(struct net_device *ndev)
1564 {
1565  struct ns83820 *dev = PRIV(ndev);
1566  u32 tx_done_idx;
1567  __le32 *desc;
1568  unsigned long flags;
1569 
1570  spin_lock_irqsave(&dev->tx_lock, flags);
1571 
1572  tx_done_idx = dev->tx_done_idx;
1573  desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1574 
1575  printk(KERN_INFO "%s: tx_timeout: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1576  ndev->name,
1577  tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1578 
1579 #if defined(DEBUG)
1580  {
1581  u32 isr;
1582  isr = readl(dev->base + ISR);
1583  printk("irq: %08x imr: %08x\n", isr, dev->IMR_cache);
1584  ns83820_do_isr(ndev, isr);
1585  }
1586 #endif
1587 
1588  do_tx_done(ndev);
1589 
1590  tx_done_idx = dev->tx_done_idx;
1591  desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1592 
1593  printk(KERN_INFO "%s: after: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1594  ndev->name,
1595  tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1596 
1597  spin_unlock_irqrestore(&dev->tx_lock, flags);
1598 }
1599 
1600 static void ns83820_tx_watch(unsigned long data)
1601 {
1602  struct net_device *ndev = (void *)data;
1603  struct ns83820 *dev = PRIV(ndev);
1604 
1605 #if defined(DEBUG)
1606  printk("ns83820_tx_watch: %u %u %d\n",
1607  dev->tx_done_idx, dev->tx_free_idx, atomic_read(&dev->nr_tx_skbs)
1608  );
1609 #endif
1610 
1611  if (time_after(jiffies, dev_trans_start(ndev) + 1*HZ) &&
1612  dev->tx_done_idx != dev->tx_free_idx) {
1613  printk(KERN_DEBUG "%s: ns83820_tx_watch: %u %u %d\n",
1614  ndev->name,
1615  dev->tx_done_idx, dev->tx_free_idx,
1616  atomic_read(&dev->nr_tx_skbs));
1617  ns83820_tx_timeout(ndev);
1618  }
1619 
1620  mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1621 }
1622 
1623 static int ns83820_open(struct net_device *ndev)
1624 {
1625  struct ns83820 *dev = PRIV(ndev);
1626  unsigned i;
1627  u32 desc;
1628  int ret;
1629 
1630  dprintk("ns83820_open\n");
1631 
1632  writel(0, dev->base + PQCR);
1633 
1634  ret = ns83820_setup_rx(ndev);
1635  if (ret)
1636  goto failed;
1637 
1638  memset(dev->tx_descs, 0, 4 * NR_TX_DESC * DESC_SIZE);
1639  for (i=0; i<NR_TX_DESC; i++) {
1640  dev->tx_descs[(i * DESC_SIZE) + DESC_LINK]
1641  = cpu_to_le32(
1642  dev->tx_phy_descs
1643  + ((i+1) % NR_TX_DESC) * DESC_SIZE * 4);
1644  }
1645 
1646  dev->tx_idx = 0;
1647  dev->tx_done_idx = 0;
1648  desc = dev->tx_phy_descs;
1649  writel(0, dev->base + TXDP_HI);
1650  writel(desc, dev->base + TXDP);
1651 
1652  init_timer(&dev->tx_watchdog);
1653  dev->tx_watchdog.data = (unsigned long)ndev;
1654  dev->tx_watchdog.function = ns83820_tx_watch;
1655  mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1656 
1657  netif_start_queue(ndev); /* FIXME: wait for phy to come up */
1658 
1659  return 0;
1660 
1661 failed:
1662  ns83820_stop(ndev);
1663  return ret;
1664 }
1665 
1666 static void ns83820_getmac(struct ns83820 *dev, u8 *mac)
1667 {
1668  unsigned i;
1669  for (i=0; i<3; i++) {
1670  u32 data;
1671 
1672  /* Read from the perfect match memory: this is loaded by
1673  * the chip from the EEPROM via the EELOAD self test.
1674  */
1675  writel(i*2, dev->base + RFCR);
1676  data = readl(dev->base + RFDR);
1677 
1678  *mac++ = data;
1679  *mac++ = data >> 8;
1680  }
1681 }
1682 
1683 static int ns83820_change_mtu(struct net_device *ndev, int new_mtu)
1684 {
1685  if (new_mtu > RX_BUF_SIZE)
1686  return -EINVAL;
1687  ndev->mtu = new_mtu;
1688  return 0;
1689 }
1690 
1691 static void ns83820_set_multicast(struct net_device *ndev)
1692 {
1693  struct ns83820 *dev = PRIV(ndev);
1694  u8 __iomem *rfcr = dev->base + RFCR;
1695  u32 and_mask = 0xffffffff;
1696  u32 or_mask = 0;
1697  u32 val;
1698 
1699  if (ndev->flags & IFF_PROMISC)
1700  or_mask |= RFCR_AAU | RFCR_AAM;
1701  else
1702  and_mask &= ~(RFCR_AAU | RFCR_AAM);
1703 
1704  if (ndev->flags & IFF_ALLMULTI || netdev_mc_count(ndev))
1705  or_mask |= RFCR_AAM;
1706  else
1707  and_mask &= ~RFCR_AAM;
1708 
1709  spin_lock_irq(&dev->misc_lock);
1710  val = (readl(rfcr) & and_mask) | or_mask;
1711  /* Ramit : RFCR Write Fix doc says RFEN must be 0 modify other bits */
1712  writel(val & ~RFCR_RFEN, rfcr);
1713  writel(val, rfcr);
1714  spin_unlock_irq(&dev->misc_lock);
1715 }
1716 
1717 static void ns83820_run_bist(struct net_device *ndev, const char *name, u32 enable, u32 done, u32 fail)
1718 {
1719  struct ns83820 *dev = PRIV(ndev);
1720  int timed_out = 0;
1721  unsigned long start;
1722  u32 status;
1723  int loops = 0;
1724 
1725  dprintk("%s: start %s\n", ndev->name, name);
1726 
1727  start = jiffies;
1728 
1729  writel(enable, dev->base + PTSCR);
1730  for (;;) {
1731  loops++;
1732  status = readl(dev->base + PTSCR);
1733  if (!(status & enable))
1734  break;
1735  if (status & done)
1736  break;
1737  if (status & fail)
1738  break;
1739  if (time_after_eq(jiffies, start + HZ)) {
1740  timed_out = 1;
1741  break;
1742  }
1744  }
1745 
1746  if (status & fail)
1747  printk(KERN_INFO "%s: %s failed! (0x%08x & 0x%08x)\n",
1748  ndev->name, name, status, fail);
1749  else if (timed_out)
1750  printk(KERN_INFO "%s: run_bist %s timed out! (%08x)\n",
1751  ndev->name, name, status);
1752 
1753  dprintk("%s: done %s in %d loops\n", ndev->name, name, loops);
1754 }
1755 
1756 #ifdef PHY_CODE_IS_FINISHED
1757 static void ns83820_mii_write_bit(struct ns83820 *dev, int bit)
1758 {
1759  /* drive MDC low */
1760  dev->MEAR_cache &= ~MEAR_MDC;
1761  writel(dev->MEAR_cache, dev->base + MEAR);
1762  readl(dev->base + MEAR);
1763 
1764  /* enable output, set bit */
1765  dev->MEAR_cache |= MEAR_MDDIR;
1766  if (bit)
1767  dev->MEAR_cache |= MEAR_MDIO;
1768  else
1769  dev->MEAR_cache &= ~MEAR_MDIO;
1770 
1771  /* set the output bit */
1772  writel(dev->MEAR_cache, dev->base + MEAR);
1773  readl(dev->base + MEAR);
1774 
1775  /* Wait. Max clock rate is 2.5MHz, this way we come in under 1MHz */
1776  udelay(1);
1777 
1778  /* drive MDC high causing the data bit to be latched */
1779  dev->MEAR_cache |= MEAR_MDC;
1780  writel(dev->MEAR_cache, dev->base + MEAR);
1781  readl(dev->base + MEAR);
1782 
1783  /* Wait again... */
1784  udelay(1);
1785 }
1786 
1787 static int ns83820_mii_read_bit(struct ns83820 *dev)
1788 {
1789  int bit;
1790 
1791  /* drive MDC low, disable output */
1792  dev->MEAR_cache &= ~MEAR_MDC;
1793  dev->MEAR_cache &= ~MEAR_MDDIR;
1794  writel(dev->MEAR_cache, dev->base + MEAR);
1795  readl(dev->base + MEAR);
1796 
1797  /* Wait. Max clock rate is 2.5MHz, this way we come in under 1MHz */
1798  udelay(1);
1799 
1800  /* drive MDC high causing the data bit to be latched */
1801  bit = (readl(dev->base + MEAR) & MEAR_MDIO) ? 1 : 0;
1802  dev->MEAR_cache |= MEAR_MDC;
1803  writel(dev->MEAR_cache, dev->base + MEAR);
1804 
1805  /* Wait again... */
1806  udelay(1);
1807 
1808  return bit;
1809 }
1810 
1811 static unsigned ns83820_mii_read_reg(struct ns83820 *dev, unsigned phy, unsigned reg)
1812 {
1813  unsigned data = 0;
1814  int i;
1815 
1816  /* read some garbage so that we eventually sync up */
1817  for (i=0; i<64; i++)
1818  ns83820_mii_read_bit(dev);
1819 
1820  ns83820_mii_write_bit(dev, 0); /* start */
1821  ns83820_mii_write_bit(dev, 1);
1822  ns83820_mii_write_bit(dev, 1); /* opcode read */
1823  ns83820_mii_write_bit(dev, 0);
1824 
1825  /* write out the phy address: 5 bits, msb first */
1826  for (i=0; i<5; i++)
1827  ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1828 
1829  /* write out the register address, 5 bits, msb first */
1830  for (i=0; i<5; i++)
1831  ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1832 
1833  ns83820_mii_read_bit(dev); /* turn around cycles */
1834  ns83820_mii_read_bit(dev);
1835 
1836  /* read in the register data, 16 bits msb first */
1837  for (i=0; i<16; i++) {
1838  data <<= 1;
1839  data |= ns83820_mii_read_bit(dev);
1840  }
1841 
1842  return data;
1843 }
1844 
1845 static unsigned ns83820_mii_write_reg(struct ns83820 *dev, unsigned phy, unsigned reg, unsigned data)
1846 {
1847  int i;
1848 
1849  /* read some garbage so that we eventually sync up */
1850  for (i=0; i<64; i++)
1851  ns83820_mii_read_bit(dev);
1852 
1853  ns83820_mii_write_bit(dev, 0); /* start */
1854  ns83820_mii_write_bit(dev, 1);
1855  ns83820_mii_write_bit(dev, 0); /* opcode read */
1856  ns83820_mii_write_bit(dev, 1);
1857 
1858  /* write out the phy address: 5 bits, msb first */
1859  for (i=0; i<5; i++)
1860  ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1861 
1862  /* write out the register address, 5 bits, msb first */
1863  for (i=0; i<5; i++)
1864  ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1865 
1866  ns83820_mii_read_bit(dev); /* turn around cycles */
1867  ns83820_mii_read_bit(dev);
1868 
1869  /* read in the register data, 16 bits msb first */
1870  for (i=0; i<16; i++)
1871  ns83820_mii_write_bit(dev, (data >> (15 - i)) & 1);
1872 
1873  return data;
1874 }
1875 
1876 static void ns83820_probe_phy(struct net_device *ndev)
1877 {
1878  struct ns83820 *dev = PRIV(ndev);
1879  static int first;
1880  int i;
1881 #define MII_PHYIDR1 0x02
1882 #define MII_PHYIDR2 0x03
1883 
1884 #if 0
1885  if (!first) {
1886  unsigned tmp;
1887  ns83820_mii_read_reg(dev, 1, 0x09);
1888  ns83820_mii_write_reg(dev, 1, 0x10, 0x0d3e);
1889 
1890  tmp = ns83820_mii_read_reg(dev, 1, 0x00);
1891  ns83820_mii_write_reg(dev, 1, 0x00, tmp | 0x8000);
1892  udelay(1300);
1893  ns83820_mii_read_reg(dev, 1, 0x09);
1894  }
1895 #endif
1896  first = 1;
1897 
1898  for (i=1; i<2; i++) {
1899  int j;
1900  unsigned a, b;
1901  a = ns83820_mii_read_reg(dev, i, MII_PHYIDR1);
1902  b = ns83820_mii_read_reg(dev, i, MII_PHYIDR2);
1903 
1904  //printk("%s: phy %d: 0x%04x 0x%04x\n",
1905  // ndev->name, i, a, b);
1906 
1907  for (j=0; j<0x16; j+=4) {
1908  dprintk("%s: [0x%02x] %04x %04x %04x %04x\n",
1909  ndev->name, j,
1910  ns83820_mii_read_reg(dev, i, 0 + j),
1911  ns83820_mii_read_reg(dev, i, 1 + j),
1912  ns83820_mii_read_reg(dev, i, 2 + j),
1913  ns83820_mii_read_reg(dev, i, 3 + j)
1914  );
1915  }
1916  }
1917  {
1918  unsigned a, b;
1919  /* read firmware version: memory addr is 0x8402 and 0x8403 */
1920  ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1921  ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1922  a = ns83820_mii_read_reg(dev, 1, 0x1d);
1923 
1924  ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1925  ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1926  b = ns83820_mii_read_reg(dev, 1, 0x1d);
1927  dprintk("version: 0x%04x 0x%04x\n", a, b);
1928  }
1929 }
1930 #endif
1931 
1932 static const struct net_device_ops netdev_ops = {
1933  .ndo_open = ns83820_open,
1934  .ndo_stop = ns83820_stop,
1935  .ndo_start_xmit = ns83820_hard_start_xmit,
1936  .ndo_get_stats = ns83820_get_stats,
1937  .ndo_change_mtu = ns83820_change_mtu,
1938  .ndo_set_rx_mode = ns83820_set_multicast,
1939  .ndo_validate_addr = eth_validate_addr,
1940  .ndo_set_mac_address = eth_mac_addr,
1941  .ndo_tx_timeout = ns83820_tx_timeout,
1942 };
1943 
1944 static int __devinit ns83820_init_one(struct pci_dev *pci_dev,
1945  const struct pci_device_id *id)
1946 {
1947  struct net_device *ndev;
1948  struct ns83820 *dev;
1949  long addr;
1950  int err;
1951  int using_dac = 0;
1952 
1953  /* See if we can set the dma mask early on; failure is fatal. */
1954  if (sizeof(dma_addr_t) == 8 &&
1955  !pci_set_dma_mask(pci_dev, DMA_BIT_MASK(64))) {
1956  using_dac = 1;
1957  } else if (!pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32))) {
1958  using_dac = 0;
1959  } else {
1960  dev_warn(&pci_dev->dev, "pci_set_dma_mask failed!\n");
1961  return -ENODEV;
1962  }
1963 
1964  ndev = alloc_etherdev(sizeof(struct ns83820));
1965  err = -ENOMEM;
1966  if (!ndev)
1967  goto out;
1968 
1969  dev = PRIV(ndev);
1970  dev->ndev = ndev;
1971 
1972  spin_lock_init(&dev->rx_info.lock);
1973  spin_lock_init(&dev->tx_lock);
1974  spin_lock_init(&dev->misc_lock);
1975  dev->pci_dev = pci_dev;
1976 
1977  SET_NETDEV_DEV(ndev, &pci_dev->dev);
1978 
1979  INIT_WORK(&dev->tq_refill, queue_refill);
1980  tasklet_init(&dev->rx_tasklet, rx_action, (unsigned long)ndev);
1981 
1982  err = pci_enable_device(pci_dev);
1983  if (err) {
1984  dev_info(&pci_dev->dev, "pci_enable_dev failed: %d\n", err);
1985  goto out_free;
1986  }
1987 
1988  pci_set_master(pci_dev);
1989  addr = pci_resource_start(pci_dev, 1);
1990  dev->base = ioremap_nocache(addr, PAGE_SIZE);
1991  dev->tx_descs = pci_alloc_consistent(pci_dev,
1992  4 * DESC_SIZE * NR_TX_DESC, &dev->tx_phy_descs);
1993  dev->rx_info.descs = pci_alloc_consistent(pci_dev,
1994  4 * DESC_SIZE * NR_RX_DESC, &dev->rx_info.phy_descs);
1995  err = -ENOMEM;
1996  if (!dev->base || !dev->tx_descs || !dev->rx_info.descs)
1997  goto out_disable;
1998 
1999  dprintk("%p: %08lx %p: %08lx\n",
2000  dev->tx_descs, (long)dev->tx_phy_descs,
2001  dev->rx_info.descs, (long)dev->rx_info.phy_descs);
2002 
2003  ns83820_disable_interrupts(dev);
2004 
2005  dev->IMR_cache = 0;
2006 
2007  err = request_irq(pci_dev->irq, ns83820_irq, IRQF_SHARED,
2008  DRV_NAME, ndev);
2009  if (err) {
2010  dev_info(&pci_dev->dev, "unable to register irq %d, err %d\n",
2011  pci_dev->irq, err);
2012  goto out_disable;
2013  }
2014 
2015  /*
2016  * FIXME: we are holding rtnl_lock() over obscenely long area only
2017  * because some of the setup code uses dev->name. It's Wrong(tm) -
2018  * we should be using driver-specific names for all that stuff.
2019  * For now that will do, but we really need to come back and kill
2020  * most of the dev_alloc_name() users later.
2021  */
2022  rtnl_lock();
2023  err = dev_alloc_name(ndev, ndev->name);
2024  if (err < 0) {
2025  dev_info(&pci_dev->dev, "unable to get netdev name: %d\n", err);
2026  goto out_free_irq;
2027  }
2028 
2029  printk("%s: ns83820.c: 0x22c: %08x, subsystem: %04x:%04x\n",
2030  ndev->name, le32_to_cpu(readl(dev->base + 0x22c)),
2031  pci_dev->subsystem_vendor, pci_dev->subsystem_device);
2032 
2033  ndev->netdev_ops = &netdev_ops;
2034  SET_ETHTOOL_OPS(ndev, &ops);
2035  ndev->watchdog_timeo = 5 * HZ;
2036  pci_set_drvdata(pci_dev, ndev);
2037 
2038  ns83820_do_reset(dev, CR_RST);
2039 
2040  /* Must reset the ram bist before running it */
2041  writel(PTSCR_RBIST_RST, dev->base + PTSCR);
2042  ns83820_run_bist(ndev, "sram bist", PTSCR_RBIST_EN,
2044  ns83820_run_bist(ndev, "eeprom bist", PTSCR_EEBIST_EN, 0,
2046  ns83820_run_bist(ndev, "eeprom load", PTSCR_EELOAD_EN, 0, 0);
2047 
2048  /* I love config registers */
2049  dev->CFG_cache = readl(dev->base + CFG);
2050 
2051  if ((dev->CFG_cache & CFG_PCI64_DET)) {
2052  printk(KERN_INFO "%s: detected 64 bit PCI data bus.\n",
2053  ndev->name);
2054  /*dev->CFG_cache |= CFG_DATA64_EN;*/
2055  if (!(dev->CFG_cache & CFG_DATA64_EN))
2056  printk(KERN_INFO "%s: EEPROM did not enable 64 bit bus. Disabled.\n",
2057  ndev->name);
2058  } else
2059  dev->CFG_cache &= ~(CFG_DATA64_EN);
2060 
2063  CFG_M64ADDR);
2066  dev->CFG_cache |= CFG_REQALG;
2067  dev->CFG_cache |= CFG_POW;
2068  dev->CFG_cache |= CFG_TMRTEST;
2069 
2070  /* When compiled with 64 bit addressing, we must always enable
2071  * the 64 bit descriptor format.
2072  */
2073  if (sizeof(dma_addr_t) == 8)
2074  dev->CFG_cache |= CFG_M64ADDR;
2075  if (using_dac)
2076  dev->CFG_cache |= CFG_T64ADDR;
2077 
2078  /* Big endian mode does not seem to do what the docs suggest */
2079  dev->CFG_cache &= ~CFG_BEM;
2080 
2081  /* setup optical transceiver if we have one */
2082  if (dev->CFG_cache & CFG_TBI_EN) {
2083  printk(KERN_INFO "%s: enabling optical transceiver\n",
2084  ndev->name);
2085  writel(readl(dev->base + GPIOR) | 0x3e8, dev->base + GPIOR);
2086 
2087  /* setup auto negotiation feature advertisement */
2088  writel(readl(dev->base + TANAR)
2089  | TANAR_HALF_DUP | TANAR_FULL_DUP,
2090  dev->base + TANAR);
2091 
2092  /* start auto negotiation */
2094  dev->base + TBICR);
2097 
2098  dev->CFG_cache |= CFG_MODE_1000;
2099  }
2100 
2101  writel(dev->CFG_cache, dev->base + CFG);
2102  dprintk("CFG: %08x\n", dev->CFG_cache);
2103 
2104  if (reset_phy) {
2105  printk(KERN_INFO "%s: resetting phy\n", ndev->name);
2106  writel(dev->CFG_cache | CFG_PHY_RST, dev->base + CFG);
2107  msleep(10);
2108  writel(dev->CFG_cache, dev->base + CFG);
2109  }
2110 
2111 #if 0 /* Huh? This sets the PCI latency register. Should be done via
2112  * the PCI layer. FIXME.
2113  */
2114  if (readl(dev->base + SRR))
2115  writel(readl(dev->base+0x20c) | 0xfe00, dev->base + 0x20c);
2116 #endif
2117 
2118  /* Note! The DMA burst size interacts with packet
2119  * transmission, such that the largest packet that
2120  * can be transmitted is 8192 - FLTH - burst size.
2121  * If only the transmit fifo was larger...
2122  */
2123  /* Ramit : 1024 DMA is not a good idea, it ends up banging
2124  * some DELL and COMPAQ SMP systems */
2126  | ((1600 / 32) * 0x100),
2127  dev->base + TXCFG);
2128 
2129  /* Flush the interrupt holdoff timer */
2130  writel(0x000, dev->base + IHR);
2131  writel(0x100, dev->base + IHR);
2132  writel(0x000, dev->base + IHR);
2133 
2134  /* Set Rx to full duplex, don't accept runt, errored, long or length
2135  * range errored packets. Use 512 byte DMA.
2136  */
2137  /* Ramit : 1024 DMA is not a good idea, it ends up banging
2138  * some DELL and COMPAQ SMP systems
2139  * Turn on ALP, only we are accpeting Jumbo Packets */
2141  | RXCFG_STRIPCRC
2142  //| RXCFG_ALP
2143  | (RXCFG_MXDMA512) | 0, dev->base + RXCFG);
2144 
2145  /* Disable priority queueing */
2146  writel(0, dev->base + PQCR);
2147 
2148  /* Enable IP checksum validation and detetion of VLAN headers.
2149  * Note: do not set the reject options as at least the 0x102
2150  * revision of the chip does not properly accept IP fragments
2151  * at least for UDP.
2152  */
2153  /* Ramit : Be sure to turn on RXCFG_ARP if VLAN's are enabled, since
2154  * the MAC it calculates the packetsize AFTER stripping the VLAN
2155  * header, and if a VLAN Tagged packet of 64 bytes is received (like
2156  * a ping with a VLAN header) then the card, strips the 4 byte VLAN
2157  * tag and then checks the packet size, so if RXCFG_ARP is not enabled,
2158  * it discrards it!. These guys......
2159  * also turn on tag stripping if hardware acceleration is enabled
2160  */
2161 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2162 #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN|VRCR_VTREN)
2163 #else
2164 #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN)
2165 #endif
2166  writel(VRCR_INIT_VALUE, dev->base + VRCR);
2167 
2168  /* Enable per-packet TCP/UDP/IP checksumming
2169  * and per packet vlan tag insertion if
2170  * vlan hardware acceleration is enabled
2171  */
2172 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2173 #define VTCR_INIT_VALUE (VTCR_PPCHK|VTCR_VPPTI)
2174 #else
2175 #define VTCR_INIT_VALUE VTCR_PPCHK
2176 #endif
2177  writel(VTCR_INIT_VALUE, dev->base + VTCR);
2178 
2179  /* Ramit : Enable async and sync pause frames */
2180  /* writel(0, dev->base + PCR); */
2183  dev->base + PCR);
2184 
2185  /* Disable Wake On Lan */
2186  writel(0, dev->base + WCSR);
2187 
2188  ns83820_getmac(dev, ndev->dev_addr);
2189 
2190  /* Yes, we support dumb IP checksum on transmit */
2191  ndev->features |= NETIF_F_SG;
2192  ndev->features |= NETIF_F_IP_CSUM;
2193 
2194 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2195  /* We also support hardware vlan acceleration */
2197 #endif
2198 
2199  if (using_dac) {
2200  printk(KERN_INFO "%s: using 64 bit addressing.\n",
2201  ndev->name);
2202  ndev->features |= NETIF_F_HIGHDMA;
2203  }
2204 
2205  printk(KERN_INFO "%s: ns83820 v" VERSION ": DP83820 v%u.%u: %pM io=0x%08lx irq=%d f=%s\n",
2206  ndev->name,
2207  (unsigned)readl(dev->base + SRR) >> 8,
2208  (unsigned)readl(dev->base + SRR) & 0xff,
2209  ndev->dev_addr, addr, pci_dev->irq,
2210  (ndev->features & NETIF_F_HIGHDMA) ? "h,sg" : "sg"
2211  );
2212 
2213 #ifdef PHY_CODE_IS_FINISHED
2214  ns83820_probe_phy(ndev);
2215 #endif
2216 
2217  err = register_netdevice(ndev);
2218  if (err) {
2219  printk(KERN_INFO "ns83820: unable to register netdev: %d\n", err);
2220  goto out_cleanup;
2221  }
2222  rtnl_unlock();
2223 
2224  return 0;
2225 
2226 out_cleanup:
2227  ns83820_disable_interrupts(dev); /* paranoia */
2228 out_free_irq:
2229  rtnl_unlock();
2230  free_irq(pci_dev->irq, ndev);
2231 out_disable:
2232  if (dev->base)
2233  iounmap(dev->base);
2234  pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_TX_DESC, dev->tx_descs, dev->tx_phy_descs);
2235  pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_RX_DESC, dev->rx_info.descs, dev->rx_info.phy_descs);
2236  pci_disable_device(pci_dev);
2237 out_free:
2238  free_netdev(ndev);
2239  pci_set_drvdata(pci_dev, NULL);
2240 out:
2241  return err;
2242 }
2243 
2244 static void __devexit ns83820_remove_one(struct pci_dev *pci_dev)
2245 {
2246  struct net_device *ndev = pci_get_drvdata(pci_dev);
2247  struct ns83820 *dev = PRIV(ndev); /* ok even if NULL */
2248 
2249  if (!ndev) /* paranoia */
2250  return;
2251 
2252  ns83820_disable_interrupts(dev); /* paranoia */
2253 
2254  unregister_netdev(ndev);
2255  free_irq(dev->pci_dev->irq, ndev);
2256  iounmap(dev->base);
2257  pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_TX_DESC,
2258  dev->tx_descs, dev->tx_phy_descs);
2259  pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_RX_DESC,
2260  dev->rx_info.descs, dev->rx_info.phy_descs);
2262  free_netdev(ndev);
2263  pci_set_drvdata(pci_dev, NULL);
2264 }
2265 
2266 static DEFINE_PCI_DEVICE_TABLE(ns83820_pci_tbl) = {
2267  { 0x100b, 0x0022, PCI_ANY_ID, PCI_ANY_ID, 0, .driver_data = 0, },
2268  { 0, },
2269 };
2270 
2271 static struct pci_driver driver = {
2272  .name = "ns83820",
2273  .id_table = ns83820_pci_tbl,
2274  .probe = ns83820_init_one,
2275  .remove = __devexit_p(ns83820_remove_one),
2276 #if 0 /* FIXME: implement */
2277  .suspend = ,
2278  .resume = ,
2279 #endif
2280 };
2281 
2282 
2283 static int __init ns83820_init(void)
2284 {
2285  printk(KERN_INFO "ns83820.c: National Semiconductor DP83820 10/100/1000 driver.\n");
2286  return pci_register_driver(&driver);
2287 }
2288 
2289 static void __exit ns83820_exit(void)
2290 {
2291  pci_unregister_driver(&driver);
2292 }
2293 
2294 MODULE_AUTHOR("Benjamin LaHaise <[email protected]>");
2295 MODULE_DESCRIPTION("National Semiconductor DP83820 10/100/1000 driver");
2296 MODULE_LICENSE("GPL");
2297 
2298 MODULE_DEVICE_TABLE(pci, ns83820_pci_tbl);
2299 
2300 module_param(lnksts, int, 0);
2301 MODULE_PARM_DESC(lnksts, "Polarity of LNKSTS bit");
2302 
2303 module_param(ihr, int, 0);
2304 MODULE_PARM_DESC(ihr, "Time in 100 us increments to delay interrupts (range 0-127)");
2305 
2306 module_param(reset_phy, int, 0);
2307 MODULE_PARM_DESC(reset_phy, "Set to 1 to reset the PHY on startup");
2308 
2309 module_init(ns83820_init);
2310 module_exit(ns83820_exit);