Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
ohci.c
Go to the documentation of this file.
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <[email protected]>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20 
21 #include <linux/bitops.h>
22 #include <linux/bug.h>
23 #include <linux/compiler.h>
24 #include <linux/delay.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firewire.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/io.h>
32 #include <linux/kernel.h>
33 #include <linux/list.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mutex.h>
38 #include <linux/pci.h>
39 #include <linux/pci_ids.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/time.h>
44 #include <linux/vmalloc.h>
45 #include <linux/workqueue.h>
46 
47 #include <asm/byteorder.h>
48 #include <asm/page.h>
49 
50 #ifdef CONFIG_PPC_PMAC
51 #include <asm/pmac_feature.h>
52 #endif
53 
54 #include "core.h"
55 #include "ohci.h"
56 
57 #define DESCRIPTOR_OUTPUT_MORE 0
58 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
59 #define DESCRIPTOR_INPUT_MORE (2 << 12)
60 #define DESCRIPTOR_INPUT_LAST (3 << 12)
61 #define DESCRIPTOR_STATUS (1 << 11)
62 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
63 #define DESCRIPTOR_PING (1 << 7)
64 #define DESCRIPTOR_YY (1 << 6)
65 #define DESCRIPTOR_NO_IRQ (0 << 4)
66 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
67 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
68 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
69 #define DESCRIPTOR_WAIT (3 << 0)
70 
71 struct descriptor {
78 } __attribute__((aligned(16)));
79 
80 #define CONTROL_SET(regs) (regs)
81 #define CONTROL_CLEAR(regs) ((regs) + 4)
82 #define COMMAND_PTR(regs) ((regs) + 12)
83 #define CONTEXT_MATCH(regs) ((regs) + 16)
84 
85 #define AR_BUFFER_SIZE (32*1024)
86 #define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
87 /* we need at least two pages for proper list management */
88 #define AR_BUFFERS (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
89 
90 #define MAX_ASYNC_PAYLOAD 4096
91 #define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4)
92 #define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
93 
94 struct ar_context {
95  struct fw_ohci *ohci;
96  struct page *pages[AR_BUFFERS];
97  void *buffer;
100  void *pointer;
101  unsigned int last_buffer_index;
104 };
105 
106 struct context;
107 
109  struct descriptor *d,
110  struct descriptor *last);
111 
112 /*
113  * A buffer that contains a block of DMA-able coherent memory used for
114  * storing a portion of a DMA descriptor program.
115  */
117  struct list_head list;
119  size_t buffer_size;
120  size_t used;
121  struct descriptor buffer[0];
122 };
123 
124 struct context {
125  struct fw_ohci *ohci;
129  bool running;
130  bool flushing;
131 
132  /*
133  * List of page-sized buffers for storing DMA descriptors.
134  * Head of list contains buffers in use and tail of list contains
135  * free buffers.
136  */
138 
139  /*
140  * Pointer to a buffer inside buffer_list that contains the tail
141  * end of the current DMA program.
142  */
144 
145  /*
146  * The descriptor containing the branch address of the first
147  * descriptor that has not yet been filled by the device.
148  */
149  struct descriptor *last;
150 
151  /*
152  * The last descriptor in the DMA program. It contains the branch
153  * address that must be updated upon appending a new descriptor.
154  */
155  struct descriptor *prev;
156 
158 
160 };
161 
162 #define IT_HEADER_SY(v) ((v) << 0)
163 #define IT_HEADER_TCODE(v) ((v) << 4)
164 #define IT_HEADER_CHANNEL(v) ((v) << 8)
165 #define IT_HEADER_TAG(v) ((v) << 14)
166 #define IT_HEADER_SPEED(v) ((v) << 16)
167 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
168 
169 struct iso_context {
171  struct context context;
172  void *header;
174  unsigned long flushing_completions;
180 };
181 
182 #define CONFIG_ROM_SIZE 1024
183 
184 struct fw_ohci {
185  struct fw_card card;
186 
188  int node_id;
190  int request_generation; /* for timestamping incoming requests */
191  unsigned quirks;
192  unsigned int pri_req_max;
195  bool is_root;
197  int n_ir;
198  int n_it;
199  /*
200  * Spinlock for accessing fw_ohci data. Never call out of
201  * this driver with this lock held.
202  */
204 
206 
207  void *misc_buffer;
209 
214 
216  u32 it_context_mask; /* unoccupied IT contexts */
218  u64 ir_context_channels; /* unoccupied channels */
220  u32 ir_context_mask; /* unoccupied IR contexts */
222  u64 mc_channels; /* channels in use by the multichannel IR context */
224 
230 
234 
236 };
237 
238 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
239 {
240  return container_of(card, struct fw_ohci, card);
241 }
242 
243 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
244 #define IR_CONTEXT_BUFFER_FILL 0x80000000
245 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
246 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
247 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
248 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
249 
250 #define CONTEXT_RUN 0x8000
251 #define CONTEXT_WAKE 0x1000
252 #define CONTEXT_DEAD 0x0800
253 #define CONTEXT_ACTIVE 0x0400
254 
255 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
256 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
257 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
258 
259 #define OHCI1394_REGISTER_SIZE 0x800
260 #define OHCI1394_PCI_HCI_Control 0x40
261 #define SELF_ID_BUF_SIZE 0x800
262 #define OHCI_TCODE_PHY_PACKET 0x0e
263 #define OHCI_VERSION_1_1 0x010010
264 
265 static char ohci_driver_name[] = KBUILD_MODNAME;
266 
267 #define PCI_DEVICE_ID_AGERE_FW643 0x5901
268 #define PCI_DEVICE_ID_CREATIVE_SB1394 0x4001
269 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
270 #define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
271 #define PCI_DEVICE_ID_TI_TSB12LV26 0x8020
272 #define PCI_DEVICE_ID_TI_TSB82AA2 0x8025
273 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS 0x11bd
274 
275 #define QUIRK_CYCLE_TIMER 1
276 #define QUIRK_RESET_PACKET 2
277 #define QUIRK_BE_HEADERS 4
278 #define QUIRK_NO_1394A 8
279 #define QUIRK_NO_MSI 16
280 #define QUIRK_TI_SLLZ059 32
281 
282 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
283 static const struct {
284  unsigned short vendor, device, revision, flags;
285 } ohci_quirks[] = {
288 
291 
293  QUIRK_NO_MSI},
294 
297 
299  QUIRK_NO_MSI},
300 
303 
305  QUIRK_NO_MSI},
306 
309 
312 
315 
318 
321 
324 };
325 
326 /* This overrides anything that was found in ohci_quirks[]. */
327 static int param_quirks;
328 module_param_named(quirks, param_quirks, int, 0644);
329 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
330  ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER)
331  ", reset packet generation = " __stringify(QUIRK_RESET_PACKET)
332  ", AR/selfID endianess = " __stringify(QUIRK_BE_HEADERS)
333  ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A)
334  ", disable MSI = " __stringify(QUIRK_NO_MSI)
335  ", TI SLLZ059 erratum = " __stringify(QUIRK_TI_SLLZ059)
336  ")");
337 
338 #define OHCI_PARAM_DEBUG_AT_AR 1
339 #define OHCI_PARAM_DEBUG_SELFIDS 2
340 #define OHCI_PARAM_DEBUG_IRQS 4
341 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
342 
343 static int param_debug;
344 module_param_named(debug, param_debug, int, 0644);
345 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
346  ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
347  ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS)
349  ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
350  ", or a combination, or all = -1)");
351 
352 static void log_irqs(struct fw_ohci *ohci, u32 evt)
353 {
354  if (likely(!(param_debug &
356  return;
357 
358  if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
359  !(evt & OHCI1394_busReset))
360  return;
361 
362  dev_notice(ohci->card.device,
363  "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
364  evt & OHCI1394_selfIDComplete ? " selfID" : "",
365  evt & OHCI1394_RQPkt ? " AR_req" : "",
366  evt & OHCI1394_RSPkt ? " AR_resp" : "",
367  evt & OHCI1394_reqTxComplete ? " AT_req" : "",
368  evt & OHCI1394_respTxComplete ? " AT_resp" : "",
369  evt & OHCI1394_isochRx ? " IR" : "",
370  evt & OHCI1394_isochTx ? " IT" : "",
371  evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "",
372  evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "",
373  evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "",
374  evt & OHCI1394_cycleInconsistent ? " cycleInconsistent" : "",
375  evt & OHCI1394_regAccessFail ? " regAccessFail" : "",
376  evt & OHCI1394_unrecoverableError ? " unrecoverableError" : "",
377  evt & OHCI1394_busReset ? " busReset" : "",
378  evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
379  OHCI1394_RSPkt | OHCI1394_reqTxComplete |
380  OHCI1394_respTxComplete | OHCI1394_isochRx |
381  OHCI1394_isochTx | OHCI1394_postedWriteErr |
382  OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
383  OHCI1394_cycleInconsistent |
384  OHCI1394_regAccessFail | OHCI1394_busReset)
385  ? " ?" : "");
386 }
387 
388 static const char *speed[] = {
389  [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
390 };
391 static const char *power[] = {
392  [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
393  [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
394 };
395 static const char port[] = { '.', '-', 'p', 'c', };
396 
397 static char _p(u32 *s, int shift)
398 {
399  return port[*s >> shift & 3];
400 }
401 
402 static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
403 {
404  u32 *s;
405 
406  if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
407  return;
408 
409  dev_notice(ohci->card.device,
410  "%d selfIDs, generation %d, local node ID %04x\n",
411  self_id_count, generation, ohci->node_id);
412 
413  for (s = ohci->self_id_buffer; self_id_count--; ++s)
414  if ((*s & 1 << 23) == 0)
415  dev_notice(ohci->card.device,
416  "selfID 0: %08x, phy %d [%c%c%c] "
417  "%s gc=%d %s %s%s%s\n",
418  *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
419  speed[*s >> 14 & 3], *s >> 16 & 63,
420  power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
421  *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
422  else
423  dev_notice(ohci->card.device,
424  "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
425  *s, *s >> 24 & 63,
426  _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
427  _p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2));
428 }
429 
430 static const char *evts[] = {
431  [0x00] = "evt_no_status", [0x01] = "-reserved-",
432  [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
433  [0x04] = "evt_underrun", [0x05] = "evt_overrun",
434  [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
435  [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
436  [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
437  [0x0c] = "-reserved-", [0x0d] = "-reserved-",
438  [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
439  [0x10] = "-reserved-", [0x11] = "ack_complete",
440  [0x12] = "ack_pending ", [0x13] = "-reserved-",
441  [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
442  [0x16] = "ack_busy_B", [0x17] = "-reserved-",
443  [0x18] = "-reserved-", [0x19] = "-reserved-",
444  [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
445  [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
446  [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
447  [0x20] = "pending/cancelled",
448 };
449 static const char *tcodes[] = {
450  [0x0] = "QW req", [0x1] = "BW req",
451  [0x2] = "W resp", [0x3] = "-reserved-",
452  [0x4] = "QR req", [0x5] = "BR req",
453  [0x6] = "QR resp", [0x7] = "BR resp",
454  [0x8] = "cycle start", [0x9] = "Lk req",
455  [0xa] = "async stream packet", [0xb] = "Lk resp",
456  [0xc] = "-reserved-", [0xd] = "-reserved-",
457  [0xe] = "link internal", [0xf] = "-reserved-",
458 };
459 
460 static void log_ar_at_event(struct fw_ohci *ohci,
461  char dir, int speed, u32 *header, int evt)
462 {
463  int tcode = header[0] >> 4 & 0xf;
464  char specific[12];
465 
466  if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
467  return;
468 
469  if (unlikely(evt >= ARRAY_SIZE(evts)))
470  evt = 0x1f;
471 
472  if (evt == OHCI1394_evt_bus_reset) {
473  dev_notice(ohci->card.device,
474  "A%c evt_bus_reset, generation %d\n",
475  dir, (header[2] >> 16) & 0xff);
476  return;
477  }
478 
479  switch (tcode) {
480  case 0x0: case 0x6: case 0x8:
481  snprintf(specific, sizeof(specific), " = %08x",
482  be32_to_cpu((__force __be32)header[3]));
483  break;
484  case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
485  snprintf(specific, sizeof(specific), " %x,%x",
486  header[3] >> 16, header[3] & 0xffff);
487  break;
488  default:
489  specific[0] = '\0';
490  }
491 
492  switch (tcode) {
493  case 0xa:
494  dev_notice(ohci->card.device,
495  "A%c %s, %s\n",
496  dir, evts[evt], tcodes[tcode]);
497  break;
498  case 0xe:
499  dev_notice(ohci->card.device,
500  "A%c %s, PHY %08x %08x\n",
501  dir, evts[evt], header[1], header[2]);
502  break;
503  case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
504  dev_notice(ohci->card.device,
505  "A%c spd %x tl %02x, "
506  "%04x -> %04x, %s, "
507  "%s, %04x%08x%s\n",
508  dir, speed, header[0] >> 10 & 0x3f,
509  header[1] >> 16, header[0] >> 16, evts[evt],
510  tcodes[tcode], header[1] & 0xffff, header[2], specific);
511  break;
512  default:
513  dev_notice(ohci->card.device,
514  "A%c spd %x tl %02x, "
515  "%04x -> %04x, %s, "
516  "%s%s\n",
517  dir, speed, header[0] >> 10 & 0x3f,
518  header[1] >> 16, header[0] >> 16, evts[evt],
519  tcodes[tcode], specific);
520  }
521 }
522 
523 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
524 {
525  writel(data, ohci->registers + offset);
526 }
527 
528 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
529 {
530  return readl(ohci->registers + offset);
531 }
532 
533 static inline void flush_writes(const struct fw_ohci *ohci)
534 {
535  /* Do a dummy read to flush writes. */
536  reg_read(ohci, OHCI1394_Version);
537 }
538 
539 /*
540  * Beware! read_phy_reg(), write_phy_reg(), update_phy_reg(), and
541  * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
542  * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
543  * directly. Exceptions are intrinsically serialized contexts like pci_probe.
544  */
545 static int read_phy_reg(struct fw_ohci *ohci, int addr)
546 {
547  u32 val;
548  int i;
549 
551  for (i = 0; i < 3 + 100; i++) {
552  val = reg_read(ohci, OHCI1394_PhyControl);
553  if (!~val)
554  return -ENODEV; /* Card was ejected. */
555 
557  return OHCI1394_PhyControl_ReadData(val);
558 
559  /*
560  * Try a few times without waiting. Sleeping is necessary
561  * only when the link/PHY interface is busy.
562  */
563  if (i >= 3)
564  msleep(1);
565  }
566  dev_err(ohci->card.device, "failed to read phy reg\n");
567 
568  return -EBUSY;
569 }
570 
571 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
572 {
573  int i;
574 
576  OHCI1394_PhyControl_Write(addr, val));
577  for (i = 0; i < 3 + 100; i++) {
578  val = reg_read(ohci, OHCI1394_PhyControl);
579  if (!~val)
580  return -ENODEV; /* Card was ejected. */
581 
583  return 0;
584 
585  if (i >= 3)
586  msleep(1);
587  }
588  dev_err(ohci->card.device, "failed to write phy reg\n");
589 
590  return -EBUSY;
591 }
592 
593 static int update_phy_reg(struct fw_ohci *ohci, int addr,
594  int clear_bits, int set_bits)
595 {
596  int ret = read_phy_reg(ohci, addr);
597  if (ret < 0)
598  return ret;
599 
600  /*
601  * The interrupt status bits are cleared by writing a one bit.
602  * Avoid clearing them unless explicitly requested in set_bits.
603  */
604  if (addr == 5)
605  clear_bits |= PHY_INT_STATUS_BITS;
606 
607  return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
608 }
609 
610 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
611 {
612  int ret;
613 
614  ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
615  if (ret < 0)
616  return ret;
617 
618  return read_phy_reg(ohci, addr);
619 }
620 
621 static int ohci_read_phy_reg(struct fw_card *card, int addr)
622 {
623  struct fw_ohci *ohci = fw_ohci(card);
624  int ret;
625 
626  mutex_lock(&ohci->phy_reg_mutex);
627  ret = read_phy_reg(ohci, addr);
628  mutex_unlock(&ohci->phy_reg_mutex);
629 
630  return ret;
631 }
632 
633 static int ohci_update_phy_reg(struct fw_card *card, int addr,
634  int clear_bits, int set_bits)
635 {
636  struct fw_ohci *ohci = fw_ohci(card);
637  int ret;
638 
639  mutex_lock(&ohci->phy_reg_mutex);
640  ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
641  mutex_unlock(&ohci->phy_reg_mutex);
642 
643  return ret;
644 }
645 
646 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
647 {
648  return page_private(ctx->pages[i]);
649 }
650 
651 static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
652 {
653  struct descriptor *d;
654 
655  d = &ctx->descriptors[index];
656  d->branch_address &= cpu_to_le32(~0xf);
658  d->transfer_status = 0;
659 
660  wmb(); /* finish init of new descriptors before branch_address update */
661  d = &ctx->descriptors[ctx->last_buffer_index];
662  d->branch_address |= cpu_to_le32(1);
663 
664  ctx->last_buffer_index = index;
665 
667 }
668 
669 static void ar_context_release(struct ar_context *ctx)
670 {
671  unsigned int i;
672 
673  if (ctx->buffer)
675 
676  for (i = 0; i < AR_BUFFERS; i++)
677  if (ctx->pages[i]) {
678  dma_unmap_page(ctx->ohci->card.device,
679  ar_buffer_bus(ctx, i),
681  __free_page(ctx->pages[i]);
682  }
683 }
684 
685 static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
686 {
687  struct fw_ohci *ohci = ctx->ohci;
688 
689  if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
690  reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
691  flush_writes(ohci);
692 
693  dev_err(ohci->card.device, "AR error: %s; DMA stopped\n",
694  error_msg);
695  }
696  /* FIXME: restart? */
697 }
698 
699 static inline unsigned int ar_next_buffer_index(unsigned int index)
700 {
701  return (index + 1) % AR_BUFFERS;
702 }
703 
704 static inline unsigned int ar_prev_buffer_index(unsigned int index)
705 {
706  return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
707 }
708 
709 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
710 {
711  return ar_next_buffer_index(ctx->last_buffer_index);
712 }
713 
714 /*
715  * We search for the buffer that contains the last AR packet DMA data written
716  * by the controller.
717  */
718 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
719  unsigned int *buffer_offset)
720 {
721  unsigned int i, next_i, last = ctx->last_buffer_index;
722  __le16 res_count, next_res_count;
723 
724  i = ar_first_buffer_index(ctx);
725  res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);
726 
727  /* A buffer that is not yet completely filled must be the last one. */
728  while (i != last && res_count == 0) {
729 
730  /* Peek at the next descriptor. */
731  next_i = ar_next_buffer_index(i);
732  rmb(); /* read descriptors in order */
733  next_res_count = ACCESS_ONCE(
734  ctx->descriptors[next_i].res_count);
735  /*
736  * If the next descriptor is still empty, we must stop at this
737  * descriptor.
738  */
739  if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
740  /*
741  * The exception is when the DMA data for one packet is
742  * split over three buffers; in this case, the middle
743  * buffer's descriptor might be never updated by the
744  * controller and look still empty, and we have to peek
745  * at the third one.
746  */
747  if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
748  next_i = ar_next_buffer_index(next_i);
749  rmb();
750  next_res_count = ACCESS_ONCE(
751  ctx->descriptors[next_i].res_count);
752  if (next_res_count != cpu_to_le16(PAGE_SIZE))
753  goto next_buffer_is_active;
754  }
755 
756  break;
757  }
758 
759 next_buffer_is_active:
760  i = next_i;
761  res_count = next_res_count;
762  }
763 
764  rmb(); /* read res_count before the DMA data */
765 
766  *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
767  if (*buffer_offset > PAGE_SIZE) {
768  *buffer_offset = 0;
769  ar_context_abort(ctx, "corrupted descriptor");
770  }
771 
772  return i;
773 }
774 
775 static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
776  unsigned int end_buffer_index,
777  unsigned int end_buffer_offset)
778 {
779  unsigned int i;
780 
781  i = ar_first_buffer_index(ctx);
782  while (i != end_buffer_index) {
783  dma_sync_single_for_cpu(ctx->ohci->card.device,
784  ar_buffer_bus(ctx, i),
786  i = ar_next_buffer_index(i);
787  }
788  if (end_buffer_offset > 0)
789  dma_sync_single_for_cpu(ctx->ohci->card.device,
790  ar_buffer_bus(ctx, i),
791  end_buffer_offset, DMA_FROM_DEVICE);
792 }
793 
794 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
795 #define cond_le32_to_cpu(v) \
796  (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
797 #else
798 #define cond_le32_to_cpu(v) le32_to_cpu(v)
799 #endif
800 
801 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
802 {
803  struct fw_ohci *ohci = ctx->ohci;
804  struct fw_packet p;
805  u32 status, length, tcode;
806  int evt;
807 
808  p.header[0] = cond_le32_to_cpu(buffer[0]);
809  p.header[1] = cond_le32_to_cpu(buffer[1]);
810  p.header[2] = cond_le32_to_cpu(buffer[2]);
811 
812  tcode = (p.header[0] >> 4) & 0x0f;
813  switch (tcode) {
816  p.header[3] = (__force __u32) buffer[3];
817  p.header_length = 16;
818  p.payload_length = 0;
819  break;
820 
822  p.header[3] = cond_le32_to_cpu(buffer[3]);
823  p.header_length = 16;
824  p.payload_length = 0;
825  break;
826 
829  case TCODE_LOCK_REQUEST:
830  case TCODE_LOCK_RESPONSE:
831  p.header[3] = cond_le32_to_cpu(buffer[3]);
832  p.header_length = 16;
833  p.payload_length = p.header[3] >> 16;
835  ar_context_abort(ctx, "invalid packet length");
836  return NULL;
837  }
838  break;
839 
843  p.header_length = 12;
844  p.payload_length = 0;
845  break;
846 
847  default:
848  ar_context_abort(ctx, "invalid tcode");
849  return NULL;
850  }
851 
852  p.payload = (void *) buffer + p.header_length;
853 
854  /* FIXME: What to do about evt_* errors? */
855  length = (p.header_length + p.payload_length + 3) / 4;
856  status = cond_le32_to_cpu(buffer[length]);
857  evt = (status >> 16) & 0x1f;
858 
859  p.ack = evt - 16;
860  p.speed = (status >> 21) & 0x7;
861  p.timestamp = status & 0xffff;
862  p.generation = ohci->request_generation;
863 
864  log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
865 
866  /*
867  * Several controllers, notably from NEC and VIA, forget to
868  * write ack_complete status at PHY packet reception.
869  */
870  if (evt == OHCI1394_evt_no_status &&
871  (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
872  p.ack = ACK_COMPLETE;
873 
874  /*
875  * The OHCI bus reset handler synthesizes a PHY packet with
876  * the new generation number when a bus reset happens (see
877  * section 8.4.2.3). This helps us determine when a request
878  * was received and make sure we send the response in the same
879  * generation. We only need this for requests; for responses
880  * we use the unique tlabel for finding the matching
881  * request.
882  *
883  * Alas some chips sometimes emit bus reset packets with a
884  * wrong generation. We set the correct generation for these
885  * at a slightly incorrect time (in bus_reset_work).
886  */
887  if (evt == OHCI1394_evt_bus_reset) {
888  if (!(ohci->quirks & QUIRK_RESET_PACKET))
889  ohci->request_generation = (p.header[2] >> 16) & 0xff;
890  } else if (ctx == &ohci->ar_request_ctx) {
891  fw_core_handle_request(&ohci->card, &p);
892  } else {
893  fw_core_handle_response(&ohci->card, &p);
894  }
895 
896  return buffer + length + 1;
897 }
898 
899 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
900 {
901  void *next;
902 
903  while (p < end) {
904  next = handle_ar_packet(ctx, p);
905  if (!next)
906  return p;
907  p = next;
908  }
909 
910  return p;
911 }
912 
913 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
914 {
915  unsigned int i;
916 
917  i = ar_first_buffer_index(ctx);
918  while (i != end_buffer) {
919  dma_sync_single_for_device(ctx->ohci->card.device,
920  ar_buffer_bus(ctx, i),
922  ar_context_link_page(ctx, i);
923  i = ar_next_buffer_index(i);
924  }
925 }
926 
927 static void ar_context_tasklet(unsigned long data)
928 {
929  struct ar_context *ctx = (struct ar_context *)data;
930  unsigned int end_buffer_index, end_buffer_offset;
931  void *p, *end;
932 
933  p = ctx->pointer;
934  if (!p)
935  return;
936 
937  end_buffer_index = ar_search_last_active_buffer(ctx,
938  &end_buffer_offset);
939  ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
940  end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
941 
942  if (end_buffer_index < ar_first_buffer_index(ctx)) {
943  /*
944  * The filled part of the overall buffer wraps around; handle
945  * all packets up to the buffer end here. If the last packet
946  * wraps around, its tail will be visible after the buffer end
947  * because the buffer start pages are mapped there again.
948  */
949  void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
950  p = handle_ar_packets(ctx, p, buffer_end);
951  if (p < buffer_end)
952  goto error;
953  /* adjust p to point back into the actual buffer */
954  p -= AR_BUFFERS * PAGE_SIZE;
955  }
956 
957  p = handle_ar_packets(ctx, p, end);
958  if (p != end) {
959  if (p > end)
960  ar_context_abort(ctx, "inconsistent descriptor");
961  goto error;
962  }
963 
964  ctx->pointer = p;
965  ar_recycle_buffers(ctx, end_buffer_index);
966 
967  return;
968 
969 error:
970  ctx->pointer = NULL;
971 }
972 
973 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
974  unsigned int descriptors_offset, u32 regs)
975 {
976  unsigned int i;
978  struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
979  struct descriptor *d;
980 
981  ctx->regs = regs;
982  ctx->ohci = ohci;
983  tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
984 
985  for (i = 0; i < AR_BUFFERS; i++) {
987  if (!ctx->pages[i])
988  goto out_of_memory;
989  dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
990  0, PAGE_SIZE, DMA_FROM_DEVICE);
991  if (dma_mapping_error(ohci->card.device, dma_addr)) {
992  __free_page(ctx->pages[i]);
993  ctx->pages[i] = NULL;
994  goto out_of_memory;
995  }
996  set_page_private(ctx->pages[i], dma_addr);
997  }
998 
999  for (i = 0; i < AR_BUFFERS; i++)
1000  pages[i] = ctx->pages[i];
1001  for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
1002  pages[AR_BUFFERS + i] = ctx->pages[i];
1003  ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
1004  -1, PAGE_KERNEL);
1005  if (!ctx->buffer)
1006  goto out_of_memory;
1007 
1008  ctx->descriptors = ohci->misc_buffer + descriptors_offset;
1009  ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1010 
1011  for (i = 0; i < AR_BUFFERS; i++) {
1012  d = &ctx->descriptors[i];
1013  d->req_count = cpu_to_le16(PAGE_SIZE);
1017  d->data_address = cpu_to_le32(ar_buffer_bus(ctx, i));
1019  ar_next_buffer_index(i) * sizeof(struct descriptor));
1020  }
1021 
1022  return 0;
1023 
1025  ar_context_release(ctx);
1026 
1027  return -ENOMEM;
1028 }
1029 
1030 static void ar_context_run(struct ar_context *ctx)
1031 {
1032  unsigned int i;
1033 
1034  for (i = 0; i < AR_BUFFERS; i++)
1035  ar_context_link_page(ctx, i);
1036 
1037  ctx->pointer = ctx->buffer;
1038 
1039  reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1040  reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1041 }
1042 
1043 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1044 {
1045  __le16 branch;
1046 
1048 
1049  /* figure out which descriptor the branch address goes in */
1050  if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1051  return d;
1052  else
1053  return d + z - 1;
1054 }
1055 
1056 static void context_tasklet(unsigned long data)
1057 {
1058  struct context *ctx = (struct context *) data;
1059  struct descriptor *d, *last;
1060  u32 address;
1061  int z;
1062  struct descriptor_buffer *desc;
1063 
1064  desc = list_entry(ctx->buffer_list.next,
1065  struct descriptor_buffer, list);
1066  last = ctx->last;
1067  while (last->branch_address != 0) {
1068  struct descriptor_buffer *old_desc = desc;
1069  address = le32_to_cpu(last->branch_address);
1070  z = address & 0xf;
1071  address &= ~0xf;
1072  ctx->current_bus = address;
1073 
1074  /* If the branch address points to a buffer outside of the
1075  * current buffer, advance to the next buffer. */
1077  address >= desc->buffer_bus + desc->used)
1078  desc = list_entry(desc->list.next,
1079  struct descriptor_buffer, list);
1080  d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1081  last = find_branch_descriptor(d, z);
1082 
1083  if (!ctx->callback(ctx, d, last))
1084  break;
1085 
1086  if (old_desc != desc) {
1087  /* If we've advanced to the next buffer, move the
1088  * previous buffer to the free list. */
1089  unsigned long flags;
1090  old_desc->used = 0;
1091  spin_lock_irqsave(&ctx->ohci->lock, flags);
1092  list_move_tail(&old_desc->list, &ctx->buffer_list);
1093  spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1094  }
1095  ctx->last = last;
1096  }
1097 }
1098 
1099 /*
1100  * Allocate a new buffer and add it to the list of free buffers for this
1101  * context. Must be called with ohci->lock held.
1102  */
1103 static int context_add_buffer(struct context *ctx)
1104 {
1105  struct descriptor_buffer *desc;
1106  dma_addr_t uninitialized_var(bus_addr);
1107  int offset;
1108 
1109  /*
1110  * 16MB of descriptors should be far more than enough for any DMA
1111  * program. This will catch run-away userspace or DoS attacks.
1112  */
1113  if (ctx->total_allocation >= 16*1024*1024)
1114  return -ENOMEM;
1115 
1116  desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1117  &bus_addr, GFP_ATOMIC);
1118  if (!desc)
1119  return -ENOMEM;
1120 
1121  offset = (void *)&desc->buffer - (void *)desc;
1122  desc->buffer_size = PAGE_SIZE - offset;
1123  desc->buffer_bus = bus_addr + offset;
1124  desc->used = 0;
1125 
1126  list_add_tail(&desc->list, &ctx->buffer_list);
1127  ctx->total_allocation += PAGE_SIZE;
1128 
1129  return 0;
1130 }
1131 
1132 static int context_init(struct context *ctx, struct fw_ohci *ohci,
1134 {
1135  ctx->ohci = ohci;
1136  ctx->regs = regs;
1137  ctx->total_allocation = 0;
1138 
1139  INIT_LIST_HEAD(&ctx->buffer_list);
1140  if (context_add_buffer(ctx) < 0)
1141  return -ENOMEM;
1142 
1143  ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1144  struct descriptor_buffer, list);
1145 
1146  tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1147  ctx->callback = callback;
1148 
1149  /*
1150  * We put a dummy descriptor in the buffer that has a NULL
1151  * branch address and looks like it's been sent. That way we
1152  * have a descriptor to append DMA programs to.
1153  */
1154  memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1155  ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1156  ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1157  ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1158  ctx->last = ctx->buffer_tail->buffer;
1159  ctx->prev = ctx->buffer_tail->buffer;
1160 
1161  return 0;
1162 }
1163 
1164 static void context_release(struct context *ctx)
1165 {
1166  struct fw_card *card = &ctx->ohci->card;
1167  struct descriptor_buffer *desc, *tmp;
1168 
1169  list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1170  dma_free_coherent(card->device, PAGE_SIZE, desc,
1171  desc->buffer_bus -
1172  ((void *)&desc->buffer - (void *)desc));
1173 }
1174 
1175 /* Must be called with ohci->lock held */
1176 static struct descriptor *context_get_descriptors(struct context *ctx,
1177  int z, dma_addr_t *d_bus)
1178 {
1179  struct descriptor *d = NULL;
1180  struct descriptor_buffer *desc = ctx->buffer_tail;
1181 
1182  if (z * sizeof(*d) > desc->buffer_size)
1183  return NULL;
1184 
1185  if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1186  /* No room for the descriptor in this buffer, so advance to the
1187  * next one. */
1188 
1189  if (desc->list.next == &ctx->buffer_list) {
1190  /* If there is no free buffer next in the list,
1191  * allocate one. */
1192  if (context_add_buffer(ctx) < 0)
1193  return NULL;
1194  }
1195  desc = list_entry(desc->list.next,
1196  struct descriptor_buffer, list);
1197  ctx->buffer_tail = desc;
1198  }
1199 
1200  d = desc->buffer + desc->used / sizeof(*d);
1201  memset(d, 0, z * sizeof(*d));
1202  *d_bus = desc->buffer_bus + desc->used;
1203 
1204  return d;
1205 }
1206 
1207 static void context_run(struct context *ctx, u32 extra)
1208 {
1209  struct fw_ohci *ohci = ctx->ohci;
1210 
1211  reg_write(ohci, COMMAND_PTR(ctx->regs),
1212  le32_to_cpu(ctx->last->branch_address));
1213  reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1214  reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1215  ctx->running = true;
1216  flush_writes(ohci);
1217 }
1218 
1219 static void context_append(struct context *ctx,
1220  struct descriptor *d, int z, int extra)
1221 {
1222  dma_addr_t d_bus;
1223  struct descriptor_buffer *desc = ctx->buffer_tail;
1224 
1225  d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1226 
1227  desc->used += (z + extra) * sizeof(*d);
1228 
1229  wmb(); /* finish init of new descriptors before branch_address update */
1230  ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1231  ctx->prev = find_branch_descriptor(d, z);
1232 }
1233 
1234 static void context_stop(struct context *ctx)
1235 {
1236  struct fw_ohci *ohci = ctx->ohci;
1237  u32 reg;
1238  int i;
1239 
1240  reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1241  ctx->running = false;
1242 
1243  for (i = 0; i < 1000; i++) {
1244  reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1245  if ((reg & CONTEXT_ACTIVE) == 0)
1246  return;
1247 
1248  if (i)
1249  udelay(10);
1250  }
1251  dev_err(ohci->card.device, "DMA context still active (0x%08x)\n", reg);
1252 }
1253 
1254 struct driver_data {
1257 };
1258 
1259 /*
1260  * This function apppends a packet to the DMA queue for transmission.
1261  * Must always be called with the ochi->lock held to ensure proper
1262  * generation handling and locking around packet queue manipulation.
1263  */
1264 static int at_context_queue_packet(struct context *ctx,
1265  struct fw_packet *packet)
1266 {
1267  struct fw_ohci *ohci = ctx->ohci;
1268  dma_addr_t d_bus, uninitialized_var(payload_bus);
1269  struct driver_data *driver_data;
1270  struct descriptor *d, *last;
1271  __le32 *header;
1272  int z, tcode;
1273 
1274  d = context_get_descriptors(ctx, 4, &d_bus);
1275  if (d == NULL) {
1276  packet->ack = RCODE_SEND_ERROR;
1277  return -1;
1278  }
1279 
1281  d[0].res_count = cpu_to_le16(packet->timestamp);
1282 
1283  /*
1284  * The DMA format for asyncronous link packets is different
1285  * from the IEEE1394 layout, so shift the fields around
1286  * accordingly.
1287  */
1288 
1289  tcode = (packet->header[0] >> 4) & 0x0f;
1290  header = (__le32 *) &d[1];
1291  switch (tcode) {
1294  case TCODE_WRITE_RESPONSE:
1299  case TCODE_LOCK_REQUEST:
1300  case TCODE_LOCK_RESPONSE:
1301  header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1302  (packet->speed << 16));
1303  header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1304  (packet->header[0] & 0xffff0000));
1305  header[2] = cpu_to_le32(packet->header[2]);
1306 
1307  if (TCODE_IS_BLOCK_PACKET(tcode))
1308  header[3] = cpu_to_le32(packet->header[3]);
1309  else
1310  header[3] = (__force __le32) packet->header[3];
1311 
1312  d[0].req_count = cpu_to_le16(packet->header_length);
1313  break;
1314 
1315  case TCODE_LINK_INTERNAL:
1316  header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1317  (packet->speed << 16));
1318  header[1] = cpu_to_le32(packet->header[1]);
1319  header[2] = cpu_to_le32(packet->header[2]);
1320  d[0].req_count = cpu_to_le16(12);
1321 
1322  if (is_ping_packet(&packet->header[1]))
1324  break;
1325 
1326  case TCODE_STREAM_DATA:
1327  header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1328  (packet->speed << 16));
1329  header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1330  d[0].req_count = cpu_to_le16(8);
1331  break;
1332 
1333  default:
1334  /* BUG(); */
1335  packet->ack = RCODE_SEND_ERROR;
1336  return -1;
1337  }
1338 
1339  BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1340  driver_data = (struct driver_data *) &d[3];
1341  driver_data->packet = packet;
1342  packet->driver_data = driver_data;
1343 
1344  if (packet->payload_length > 0) {
1345  if (packet->payload_length > sizeof(driver_data->inline_data)) {
1346  payload_bus = dma_map_single(ohci->card.device,
1347  packet->payload,
1348  packet->payload_length,
1349  DMA_TO_DEVICE);
1350  if (dma_mapping_error(ohci->card.device, payload_bus)) {
1351  packet->ack = RCODE_SEND_ERROR;
1352  return -1;
1353  }
1354  packet->payload_bus = payload_bus;
1355  packet->payload_mapped = true;
1356  } else {
1357  memcpy(driver_data->inline_data, packet->payload,
1358  packet->payload_length);
1359  payload_bus = d_bus + 3 * sizeof(*d);
1360  }
1361 
1362  d[2].req_count = cpu_to_le16(packet->payload_length);
1363  d[2].data_address = cpu_to_le32(payload_bus);
1364  last = &d[2];
1365  z = 3;
1366  } else {
1367  last = &d[0];
1368  z = 2;
1369  }
1370 
1374 
1375  /* FIXME: Document how the locking works. */
1376  if (ohci->generation != packet->generation) {
1377  if (packet->payload_mapped)
1378  dma_unmap_single(ohci->card.device, payload_bus,
1379  packet->payload_length, DMA_TO_DEVICE);
1380  packet->ack = RCODE_GENERATION;
1381  return -1;
1382  }
1383 
1384  context_append(ctx, d, z, 4 - z);
1385 
1386  if (ctx->running)
1387  reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1388  else
1389  context_run(ctx, 0);
1390 
1391  return 0;
1392 }
1393 
1394 static void at_context_flush(struct context *ctx)
1395 {
1396  tasklet_disable(&ctx->tasklet);
1397 
1398  ctx->flushing = true;
1399  context_tasklet((unsigned long)ctx);
1400  ctx->flushing = false;
1401 
1402  tasklet_enable(&ctx->tasklet);
1403 }
1404 
1405 static int handle_at_packet(struct context *context,
1406  struct descriptor *d,
1407  struct descriptor *last)
1408 {
1409  struct driver_data *driver_data;
1410  struct fw_packet *packet;
1411  struct fw_ohci *ohci = context->ohci;
1412  int evt;
1413 
1414  if (last->transfer_status == 0 && !context->flushing)
1415  /* This descriptor isn't done yet, stop iteration. */
1416  return 0;
1417 
1418  driver_data = (struct driver_data *) &d[3];
1419  packet = driver_data->packet;
1420  if (packet == NULL)
1421  /* This packet was cancelled, just continue. */
1422  return 1;
1423 
1424  if (packet->payload_mapped)
1425  dma_unmap_single(ohci->card.device, packet->payload_bus,
1426  packet->payload_length, DMA_TO_DEVICE);
1427 
1428  evt = le16_to_cpu(last->transfer_status) & 0x1f;
1429  packet->timestamp = le16_to_cpu(last->res_count);
1430 
1431  log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1432 
1433  switch (evt) {
1434  case OHCI1394_evt_timeout:
1435  /* Async response transmit timed out. */
1436  packet->ack = RCODE_CANCELLED;
1437  break;
1438 
1439  case OHCI1394_evt_flushed:
1440  /*
1441  * The packet was flushed should give same error as
1442  * when we try to use a stale generation count.
1443  */
1444  packet->ack = RCODE_GENERATION;
1445  break;
1446 
1448  if (context->flushing)
1449  packet->ack = RCODE_GENERATION;
1450  else {
1451  /*
1452  * Using a valid (current) generation count, but the
1453  * node is not on the bus or not sending acks.
1454  */
1455  packet->ack = RCODE_NO_ACK;
1456  }
1457  break;
1458 
1459  case ACK_COMPLETE + 0x10:
1460  case ACK_PENDING + 0x10:
1461  case ACK_BUSY_X + 0x10:
1462  case ACK_BUSY_A + 0x10:
1463  case ACK_BUSY_B + 0x10:
1464  case ACK_DATA_ERROR + 0x10:
1465  case ACK_TYPE_ERROR + 0x10:
1466  packet->ack = evt - 0x10;
1467  break;
1468 
1470  if (context->flushing) {
1471  packet->ack = RCODE_GENERATION;
1472  break;
1473  }
1474  /* fall through */
1475 
1476  default:
1477  packet->ack = RCODE_SEND_ERROR;
1478  break;
1479  }
1480 
1481  packet->callback(packet, &ohci->card, packet->ack);
1482 
1483  return 1;
1484 }
1485 
1486 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1487 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1488 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1489 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1490 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1491 
1492 static void handle_local_rom(struct fw_ohci *ohci,
1493  struct fw_packet *packet, u32 csr)
1494 {
1495  struct fw_packet response;
1496  int tcode, length, i;
1497 
1498  tcode = HEADER_GET_TCODE(packet->header[0]);
1499  if (TCODE_IS_BLOCK_PACKET(tcode))
1500  length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1501  else
1502  length = 4;
1503 
1504  i = csr - CSR_CONFIG_ROM;
1505  if (i + length > CONFIG_ROM_SIZE) {
1506  fw_fill_response(&response, packet->header,
1508  } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1509  fw_fill_response(&response, packet->header,
1510  RCODE_TYPE_ERROR, NULL, 0);
1511  } else {
1512  fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1513  (void *) ohci->config_rom + i, length);
1514  }
1515 
1516  fw_core_handle_response(&ohci->card, &response);
1517 }
1518 
1519 static void handle_local_lock(struct fw_ohci *ohci,
1520  struct fw_packet *packet, u32 csr)
1521 {
1522  struct fw_packet response;
1523  int tcode, length, ext_tcode, sel, try;
1524  __be32 *payload, lock_old;
1525  u32 lock_arg, lock_data;
1526 
1527  tcode = HEADER_GET_TCODE(packet->header[0]);
1528  length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1529  payload = packet->payload;
1530  ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1531 
1532  if (tcode == TCODE_LOCK_REQUEST &&
1533  ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1534  lock_arg = be32_to_cpu(payload[0]);
1535  lock_data = be32_to_cpu(payload[1]);
1536  } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1537  lock_arg = 0;
1538  lock_data = 0;
1539  } else {
1540  fw_fill_response(&response, packet->header,
1541  RCODE_TYPE_ERROR, NULL, 0);
1542  goto out;
1543  }
1544 
1545  sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1546  reg_write(ohci, OHCI1394_CSRData, lock_data);
1547  reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1548  reg_write(ohci, OHCI1394_CSRControl, sel);
1549 
1550  for (try = 0; try < 20; try++)
1551  if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1552  lock_old = cpu_to_be32(reg_read(ohci,
1553  OHCI1394_CSRData));
1554  fw_fill_response(&response, packet->header,
1556  &lock_old, sizeof(lock_old));
1557  goto out;
1558  }
1559 
1560  dev_err(ohci->card.device, "swap not done (CSR lock timeout)\n");
1562 
1563  out:
1565 }
1566 
1567 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1568 {
1569  u64 offset, csr;
1570 
1571  if (ctx == &ctx->ohci->at_request_ctx) {
1572  packet->ack = ACK_PENDING;
1573  packet->callback(packet, &ctx->ohci->card, packet->ack);
1574  }
1575 
1576  offset =
1577  ((unsigned long long)
1578  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1579  packet->header[2];
1580  csr = offset - CSR_REGISTER_BASE;
1581 
1582  /* Handle config rom reads. */
1583  if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1584  handle_local_rom(ctx->ohci, packet, csr);
1585  else switch (csr) {
1586  case CSR_BUS_MANAGER_ID:
1590  handle_local_lock(ctx->ohci, packet, csr);
1591  break;
1592  default:
1593  if (ctx == &ctx->ohci->at_request_ctx)
1594  fw_core_handle_request(&ctx->ohci->card, packet);
1595  else
1596  fw_core_handle_response(&ctx->ohci->card, packet);
1597  break;
1598  }
1599 
1600  if (ctx == &ctx->ohci->at_response_ctx) {
1601  packet->ack = ACK_COMPLETE;
1602  packet->callback(packet, &ctx->ohci->card, packet->ack);
1603  }
1604 }
1605 
1606 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1607 {
1608  unsigned long flags;
1609  int ret;
1610 
1611  spin_lock_irqsave(&ctx->ohci->lock, flags);
1612 
1613  if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1614  ctx->ohci->generation == packet->generation) {
1615  spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1616  handle_local_request(ctx, packet);
1617  return;
1618  }
1619 
1620  ret = at_context_queue_packet(ctx, packet);
1621  spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1622 
1623  if (ret < 0)
1624  packet->callback(packet, &ctx->ohci->card, packet->ack);
1625 
1626 }
1627 
1628 static void detect_dead_context(struct fw_ohci *ohci,
1629  const char *name, unsigned int regs)
1630 {
1631  u32 ctl;
1632 
1633  ctl = reg_read(ohci, CONTROL_SET(regs));
1634  if (ctl & CONTEXT_DEAD)
1635  dev_err(ohci->card.device,
1636  "DMA context %s has stopped, error code: %s\n",
1637  name, evts[ctl & 0x1f]);
1638 }
1639 
1640 static void handle_dead_contexts(struct fw_ohci *ohci)
1641 {
1642  unsigned int i;
1643  char name[8];
1644 
1645  detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1646  detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1647  detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1648  detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1649  for (i = 0; i < 32; ++i) {
1650  if (!(ohci->it_context_support & (1 << i)))
1651  continue;
1652  sprintf(name, "IT%u", i);
1653  detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1654  }
1655  for (i = 0; i < 32; ++i) {
1656  if (!(ohci->ir_context_support & (1 << i)))
1657  continue;
1658  sprintf(name, "IR%u", i);
1659  detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1660  }
1661  /* TODO: maybe try to flush and restart the dead contexts */
1662 }
1663 
1664 static u32 cycle_timer_ticks(u32 cycle_timer)
1665 {
1666  u32 ticks;
1667 
1668  ticks = cycle_timer & 0xfff;
1669  ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1670  ticks += (3072 * 8000) * (cycle_timer >> 25);
1671 
1672  return ticks;
1673 }
1674 
1675 /*
1676  * Some controllers exhibit one or more of the following bugs when updating the
1677  * iso cycle timer register:
1678  * - When the lowest six bits are wrapping around to zero, a read that happens
1679  * at the same time will return garbage in the lowest ten bits.
1680  * - When the cycleOffset field wraps around to zero, the cycleCount field is
1681  * not incremented for about 60 ns.
1682  * - Occasionally, the entire register reads zero.
1683  *
1684  * To catch these, we read the register three times and ensure that the
1685  * difference between each two consecutive reads is approximately the same, i.e.
1686  * less than twice the other. Furthermore, any negative difference indicates an
1687  * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1688  * execute, so we have enough precision to compute the ratio of the differences.)
1689  */
1690 static u32 get_cycle_time(struct fw_ohci *ohci)
1691 {
1692  u32 c0, c1, c2;
1693  u32 t0, t1, t2;
1694  s32 diff01, diff12;
1695  int i;
1696 
1698 
1699  if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1700  i = 0;
1701  c1 = c2;
1703  do {
1704  c0 = c1;
1705  c1 = c2;
1707  t0 = cycle_timer_ticks(c0);
1708  t1 = cycle_timer_ticks(c1);
1709  t2 = cycle_timer_ticks(c2);
1710  diff01 = t1 - t0;
1711  diff12 = t2 - t1;
1712  } while ((diff01 <= 0 || diff12 <= 0 ||
1713  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1714  && i++ < 20);
1715  }
1716 
1717  return c2;
1718 }
1719 
1720 /*
1721  * This function has to be called at least every 64 seconds. The bus_time
1722  * field stores not only the upper 25 bits of the BUS_TIME register but also
1723  * the most significant bit of the cycle timer in bit 6 so that we can detect
1724  * changes in this bit.
1725  */
1726 static u32 update_bus_time(struct fw_ohci *ohci)
1727 {
1728  u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1729 
1730  if (unlikely(!ohci->bus_time_running)) {
1732  ohci->bus_time = (lower_32_bits(get_seconds()) & ~0x7f) |
1733  (cycle_time_seconds & 0x40);
1734  ohci->bus_time_running = true;
1735  }
1736 
1737  if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1738  ohci->bus_time += 0x40;
1739 
1740  return ohci->bus_time | cycle_time_seconds;
1741 }
1742 
1743 static int get_status_for_port(struct fw_ohci *ohci, int port_index)
1744 {
1745  int reg;
1746 
1747  mutex_lock(&ohci->phy_reg_mutex);
1748  reg = write_phy_reg(ohci, 7, port_index);
1749  if (reg >= 0)
1750  reg = read_phy_reg(ohci, 8);
1751  mutex_unlock(&ohci->phy_reg_mutex);
1752  if (reg < 0)
1753  return reg;
1754 
1755  switch (reg & 0x0f) {
1756  case 0x06:
1757  return 2; /* is child node (connected to parent node) */
1758  case 0x0e:
1759  return 3; /* is parent node (connected to child node) */
1760  }
1761  return 1; /* not connected */
1762 }
1763 
1764 static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1765  int self_id_count)
1766 {
1767  int i;
1768  u32 entry;
1769 
1770  for (i = 0; i < self_id_count; i++) {
1771  entry = ohci->self_id_buffer[i];
1772  if ((self_id & 0xff000000) == (entry & 0xff000000))
1773  return -1;
1774  if ((self_id & 0xff000000) < (entry & 0xff000000))
1775  return i;
1776  }
1777  return i;
1778 }
1779 
1780 static int initiated_reset(struct fw_ohci *ohci)
1781 {
1782  int reg;
1783  int ret = 0;
1784 
1785  mutex_lock(&ohci->phy_reg_mutex);
1786  reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */
1787  if (reg >= 0) {
1788  reg = read_phy_reg(ohci, 8);
1789  reg |= 0x40;
1790  reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */
1791  if (reg >= 0) {
1792  reg = read_phy_reg(ohci, 12); /* read register 12 */
1793  if (reg >= 0) {
1794  if ((reg & 0x08) == 0x08) {
1795  /* bit 3 indicates "initiated reset" */
1796  ret = 0x2;
1797  }
1798  }
1799  }
1800  }
1801  mutex_unlock(&ohci->phy_reg_mutex);
1802  return ret;
1803 }
1804 
1805 /*
1806  * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1807  * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1808  * Construct the selfID from phy register contents.
1809  */
1810 static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1811 {
1812  int reg, i, pos, status;
1813  /* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1814  u32 self_id = 0x8040c800;
1815 
1816  reg = reg_read(ohci, OHCI1394_NodeID);
1817  if (!(reg & OHCI1394_NodeID_idValid)) {
1818  dev_notice(ohci->card.device,
1819  "node ID not valid, new bus reset in progress\n");
1820  return -EBUSY;
1821  }
1822  self_id |= ((reg & 0x3f) << 24); /* phy ID */
1823 
1824  reg = ohci_read_phy_reg(&ohci->card, 4);
1825  if (reg < 0)
1826  return reg;
1827  self_id |= ((reg & 0x07) << 8); /* power class */
1828 
1829  reg = ohci_read_phy_reg(&ohci->card, 1);
1830  if (reg < 0)
1831  return reg;
1832  self_id |= ((reg & 0x3f) << 16); /* gap count */
1833 
1834  for (i = 0; i < 3; i++) {
1835  status = get_status_for_port(ohci, i);
1836  if (status < 0)
1837  return status;
1838  self_id |= ((status & 0x3) << (6 - (i * 2)));
1839  }
1840 
1841  self_id |= initiated_reset(ohci);
1842 
1843  pos = get_self_id_pos(ohci, self_id, self_id_count);
1844  if (pos >= 0) {
1845  memmove(&(ohci->self_id_buffer[pos+1]),
1846  &(ohci->self_id_buffer[pos]),
1847  (self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1848  ohci->self_id_buffer[pos] = self_id;
1849  self_id_count++;
1850  }
1851  return self_id_count;
1852 }
1853 
1854 static void bus_reset_work(struct work_struct *work)
1855 {
1856  struct fw_ohci *ohci =
1857  container_of(work, struct fw_ohci, bus_reset_work);
1858  int self_id_count, generation, new_generation, i, j;
1859  u32 reg;
1860  void *free_rom = NULL;
1861  dma_addr_t free_rom_bus = 0;
1862  bool is_new_root;
1863 
1864  reg = reg_read(ohci, OHCI1394_NodeID);
1865  if (!(reg & OHCI1394_NodeID_idValid)) {
1866  dev_notice(ohci->card.device,
1867  "node ID not valid, new bus reset in progress\n");
1868  return;
1869  }
1870  if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1871  dev_notice(ohci->card.device, "malconfigured bus\n");
1872  return;
1873  }
1874  ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1876 
1877  is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1878  if (!(ohci->is_root && is_new_root))
1881  ohci->is_root = is_new_root;
1882 
1883  reg = reg_read(ohci, OHCI1394_SelfIDCount);
1885  dev_notice(ohci->card.device, "inconsistent self IDs\n");
1886  return;
1887  }
1888  /*
1889  * The count in the SelfIDCount register is the number of
1890  * bytes in the self ID receive buffer. Since we also receive
1891  * the inverted quadlets and a header quadlet, we shift one
1892  * bit extra to get the actual number of self IDs.
1893  */
1894  self_id_count = (reg >> 3) & 0xff;
1895 
1896  if (self_id_count > 252) {
1897  dev_notice(ohci->card.device, "inconsistent self IDs\n");
1898  return;
1899  }
1900 
1901  generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1902  rmb();
1903 
1904  for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1905  if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1906  /*
1907  * If the invalid data looks like a cycle start packet,
1908  * it's likely to be the result of the cycle master
1909  * having a wrong gap count. In this case, the self IDs
1910  * so far are valid and should be processed so that the
1911  * bus manager can then correct the gap count.
1912  */
1913  if (cond_le32_to_cpu(ohci->self_id_cpu[i])
1914  == 0xffff008f) {
1915  dev_notice(ohci->card.device,
1916  "ignoring spurious self IDs\n");
1917  self_id_count = j;
1918  break;
1919  } else {
1920  dev_notice(ohci->card.device,
1921  "inconsistent self IDs\n");
1922  return;
1923  }
1924  }
1925  ohci->self_id_buffer[j] =
1926  cond_le32_to_cpu(ohci->self_id_cpu[i]);
1927  }
1928 
1929  if (ohci->quirks & QUIRK_TI_SLLZ059) {
1930  self_id_count = find_and_insert_self_id(ohci, self_id_count);
1931  if (self_id_count < 0) {
1932  dev_notice(ohci->card.device,
1933  "could not construct local self ID\n");
1934  return;
1935  }
1936  }
1937 
1938  if (self_id_count == 0) {
1939  dev_notice(ohci->card.device, "inconsistent self IDs\n");
1940  return;
1941  }
1942  rmb();
1943 
1944  /*
1945  * Check the consistency of the self IDs we just read. The
1946  * problem we face is that a new bus reset can start while we
1947  * read out the self IDs from the DMA buffer. If this happens,
1948  * the DMA buffer will be overwritten with new self IDs and we
1949  * will read out inconsistent data. The OHCI specification
1950  * (section 11.2) recommends a technique similar to
1951  * linux/seqlock.h, where we remember the generation of the
1952  * self IDs in the buffer before reading them out and compare
1953  * it to the current generation after reading them out. If
1954  * the two generations match we know we have a consistent set
1955  * of self IDs.
1956  */
1957 
1958  new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1959  if (new_generation != generation) {
1960  dev_notice(ohci->card.device,
1961  "new bus reset, discarding self ids\n");
1962  return;
1963  }
1964 
1965  /* FIXME: Document how the locking works. */
1966  spin_lock_irq(&ohci->lock);
1967 
1968  ohci->generation = -1; /* prevent AT packet queueing */
1969  context_stop(&ohci->at_request_ctx);
1970  context_stop(&ohci->at_response_ctx);
1971 
1972  spin_unlock_irq(&ohci->lock);
1973 
1974  /*
1975  * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
1976  * packets in the AT queues and software needs to drain them.
1977  * Some OHCI 1.1 controllers (JMicron) apparently require this too.
1978  */
1979  at_context_flush(&ohci->at_request_ctx);
1980  at_context_flush(&ohci->at_response_ctx);
1981 
1982  spin_lock_irq(&ohci->lock);
1983 
1984  ohci->generation = generation;
1986 
1987  if (ohci->quirks & QUIRK_RESET_PACKET)
1989 
1990  /*
1991  * This next bit is unrelated to the AT context stuff but we
1992  * have to do it under the spinlock also. If a new config rom
1993  * was set up before this reset, the old one is now no longer
1994  * in use and we can free it. Update the config rom pointers
1995  * to point to the current config rom and clear the
1996  * next_config_rom pointer so a new update can take place.
1997  */
1998 
1999  if (ohci->next_config_rom != NULL) {
2000  if (ohci->next_config_rom != ohci->config_rom) {
2001  free_rom = ohci->config_rom;
2002  free_rom_bus = ohci->config_rom_bus;
2003  }
2004  ohci->config_rom = ohci->next_config_rom;
2005  ohci->config_rom_bus = ohci->next_config_rom_bus;
2006  ohci->next_config_rom = NULL;
2007 
2008  /*
2009  * Restore config_rom image and manually update
2010  * config_rom registers. Writing the header quadlet
2011  * will indicate that the config rom is ready, so we
2012  * do that last.
2013  */
2015  be32_to_cpu(ohci->config_rom[2]));
2016  ohci->config_rom[0] = ohci->next_header;
2018  be32_to_cpu(ohci->next_header));
2019  }
2020 
2021 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2024 #endif
2025 
2026  spin_unlock_irq(&ohci->lock);
2027 
2028  if (free_rom)
2029  dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2030  free_rom, free_rom_bus);
2031 
2032  log_selfids(ohci, generation, self_id_count);
2033 
2034  fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2035  self_id_count, ohci->self_id_buffer,
2037  ohci->csr_state_setclear_abdicate = false;
2038 }
2039 
2040 static irqreturn_t irq_handler(int irq, void *data)
2041 {
2042  struct fw_ohci *ohci = data;
2043  u32 event, iso_event;
2044  int i;
2045 
2046  event = reg_read(ohci, OHCI1394_IntEventClear);
2047 
2048  if (!event || !~event)
2049  return IRQ_NONE;
2050 
2051  /*
2052  * busReset and postedWriteErr must not be cleared yet
2053  * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2054  */
2057  log_irqs(ohci, event);
2058 
2059  if (event & OHCI1394_selfIDComplete)
2061 
2062  if (event & OHCI1394_RQPkt)
2063  tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2064 
2065  if (event & OHCI1394_RSPkt)
2066  tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2067 
2068  if (event & OHCI1394_reqTxComplete)
2069  tasklet_schedule(&ohci->at_request_ctx.tasklet);
2070 
2071  if (event & OHCI1394_respTxComplete)
2072  tasklet_schedule(&ohci->at_response_ctx.tasklet);
2073 
2074  if (event & OHCI1394_isochRx) {
2075  iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2076  reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2077 
2078  while (iso_event) {
2079  i = ffs(iso_event) - 1;
2080  tasklet_schedule(
2081  &ohci->ir_context_list[i].context.tasklet);
2082  iso_event &= ~(1 << i);
2083  }
2084  }
2085 
2086  if (event & OHCI1394_isochTx) {
2087  iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2088  reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2089 
2090  while (iso_event) {
2091  i = ffs(iso_event) - 1;
2092  tasklet_schedule(
2093  &ohci->it_context_list[i].context.tasklet);
2094  iso_event &= ~(1 << i);
2095  }
2096  }
2097 
2098  if (unlikely(event & OHCI1394_regAccessFail))
2099  dev_err(ohci->card.device, "register access failure\n");
2100 
2101  if (unlikely(event & OHCI1394_postedWriteErr)) {
2105  OHCI1394_postedWriteErr);
2106  if (printk_ratelimit())
2107  dev_err(ohci->card.device, "PCI posted write error\n");
2108  }
2109 
2110  if (unlikely(event & OHCI1394_cycleTooLong)) {
2111  if (printk_ratelimit())
2112  dev_notice(ohci->card.device,
2113  "isochronous cycle too long\n");
2116  }
2117 
2118  if (unlikely(event & OHCI1394_cycleInconsistent)) {
2119  /*
2120  * We need to clear this event bit in order to make
2121  * cycleMatch isochronous I/O work. In theory we should
2122  * stop active cycleMatch iso contexts now and restart
2123  * them at least two cycles later. (FIXME?)
2124  */
2125  if (printk_ratelimit())
2126  dev_notice(ohci->card.device,
2127  "isochronous cycle inconsistent\n");
2128  }
2129 
2131  handle_dead_contexts(ohci);
2132 
2133  if (event & OHCI1394_cycle64Seconds) {
2134  spin_lock(&ohci->lock);
2135  update_bus_time(ohci);
2136  spin_unlock(&ohci->lock);
2137  } else
2138  flush_writes(ohci);
2139 
2140  return IRQ_HANDLED;
2141 }
2142 
2143 static int software_reset(struct fw_ohci *ohci)
2144 {
2145  u32 val;
2146  int i;
2147 
2149  for (i = 0; i < 500; i++) {
2150  val = reg_read(ohci, OHCI1394_HCControlSet);
2151  if (!~val)
2152  return -ENODEV; /* Card was ejected. */
2153 
2154  if (!(val & OHCI1394_HCControl_softReset))
2155  return 0;
2156 
2157  msleep(1);
2158  }
2159 
2160  return -EBUSY;
2161 }
2162 
2163 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2164 {
2165  size_t size = length * 4;
2166 
2167  memcpy(dest, src, size);
2168  if (size < CONFIG_ROM_SIZE)
2169  memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2170 }
2171 
2172 static int configure_1394a_enhancements(struct fw_ohci *ohci)
2173 {
2174  bool enable_1394a;
2175  int ret, clear, set, offset;
2176 
2177  /* Check if the driver should configure link and PHY. */
2178  if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2180  return 0;
2181 
2182  /* Paranoia: check whether the PHY supports 1394a, too. */
2183  enable_1394a = false;
2184  ret = read_phy_reg(ohci, 2);
2185  if (ret < 0)
2186  return ret;
2187  if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2188  ret = read_paged_phy_reg(ohci, 1, 8);
2189  if (ret < 0)
2190  return ret;
2191  if (ret >= 1)
2192  enable_1394a = true;
2193  }
2194 
2195  if (ohci->quirks & QUIRK_NO_1394A)
2196  enable_1394a = false;
2197 
2198  /* Configure PHY and link consistently. */
2199  if (enable_1394a) {
2200  clear = 0;
2202  } else {
2204  set = 0;
2205  }
2206  ret = update_phy_reg(ohci, 5, clear, set);
2207  if (ret < 0)
2208  return ret;
2209 
2210  if (enable_1394a)
2211  offset = OHCI1394_HCControlSet;
2212  else
2213  offset = OHCI1394_HCControlClear;
2215 
2216  /* Clean up: configuration has been taken care of. */
2218  OHCI1394_HCControl_programPhyEnable);
2219 
2220  return 0;
2221 }
2222 
2223 static int probe_tsb41ba3d(struct fw_ohci *ohci)
2224 {
2225  /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2226  static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2227  int reg, i;
2228 
2229  reg = read_phy_reg(ohci, 2);
2230  if (reg < 0)
2231  return reg;
2232  if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2233  return 0;
2234 
2235  for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2236  reg = read_paged_phy_reg(ohci, 1, i + 10);
2237  if (reg < 0)
2238  return reg;
2239  if (reg != id[i])
2240  return 0;
2241  }
2242  return 1;
2243 }
2244 
2245 static int ohci_enable(struct fw_card *card,
2246  const __be32 *config_rom, size_t length)
2247 {
2248  struct fw_ohci *ohci = fw_ohci(card);
2249  struct pci_dev *dev = to_pci_dev(card->device);
2250  u32 lps, version, irqs;
2251  int i, ret;
2252 
2253  if (software_reset(ohci)) {
2254  dev_err(card->device, "failed to reset ohci card\n");
2255  return -EBUSY;
2256  }
2257 
2258  /*
2259  * Now enable LPS, which we need in order to start accessing
2260  * most of the registers. In fact, on some cards (ALI M5251),
2261  * accessing registers in the SClk domain without LPS enabled
2262  * will lock up the machine. Wait 50msec to make sure we have
2263  * full link enabled. However, with some cards (well, at least
2264  * a JMicron PCIe card), we have to try again sometimes.
2265  */
2269  flush_writes(ohci);
2270 
2271  for (lps = 0, i = 0; !lps && i < 3; i++) {
2272  msleep(50);
2273  lps = reg_read(ohci, OHCI1394_HCControlSet) &
2275  }
2276 
2277  if (!lps) {
2278  dev_err(card->device, "failed to set Link Power Status\n");
2279  return -EIO;
2280  }
2281 
2282  if (ohci->quirks & QUIRK_TI_SLLZ059) {
2283  ret = probe_tsb41ba3d(ohci);
2284  if (ret < 0)
2285  return ret;
2286  if (ret)
2287  dev_notice(card->device, "local TSB41BA3D phy\n");
2288  else
2289  ohci->quirks &= ~QUIRK_TI_SLLZ059;
2290  }
2291 
2294 
2299 
2304  (200 << 16));
2305 
2306  ohci->bus_time_running = false;
2307 
2308  for (i = 0; i < 32; i++)
2309  if (ohci->ir_context_support & (1 << i))
2312 
2313  version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2314  if (version >= OHCI_VERSION_1_1) {
2316  0xfffffffe);
2317  card->broadcast_channel_auto_allocated = true;
2318  }
2319 
2320  /* Get implemented bits of the priority arbitration request counter. */
2321  reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2322  ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2324  card->priority_budget_implemented = ohci->pri_req_max != 0;
2325 
2326  reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
2327  reg_write(ohci, OHCI1394_IntEventClear, ~0);
2328  reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2329 
2330  ret = configure_1394a_enhancements(ohci);
2331  if (ret < 0)
2332  return ret;
2333 
2334  /* Activate link_on bit and contender bit in our self ID packets.*/
2335  ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2336  if (ret < 0)
2337  return ret;
2338 
2339  /*
2340  * When the link is not yet enabled, the atomic config rom
2341  * update mechanism described below in ohci_set_config_rom()
2342  * is not active. We have to update ConfigRomHeader and
2343  * BusOptions manually, and the write to ConfigROMmap takes
2344  * effect immediately. We tie this to the enabling of the
2345  * link, so we have a valid config rom before enabling - the
2346  * OHCI requires that ConfigROMhdr and BusOptions have valid
2347  * values before enabling.
2348  *
2349  * However, when the ConfigROMmap is written, some controllers
2350  * always read back quadlets 0 and 2 from the config rom to
2351  * the ConfigRomHeader and BusOptions registers on bus reset.
2352  * They shouldn't do that in this initial case where the link
2353  * isn't enabled. This means we have to use the same
2354  * workaround here, setting the bus header to 0 and then write
2355  * the right values in the bus reset tasklet.
2356  */
2357 
2358  if (config_rom) {
2359  ohci->next_config_rom =
2360  dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2361  &ohci->next_config_rom_bus,
2362  GFP_KERNEL);
2363  if (ohci->next_config_rom == NULL)
2364  return -ENOMEM;
2365 
2366  copy_config_rom(ohci->next_config_rom, config_rom, length);
2367  } else {
2368  /*
2369  * In the suspend case, config_rom is NULL, which
2370  * means that we just reuse the old config rom.
2371  */
2372  ohci->next_config_rom = ohci->config_rom;
2373  ohci->next_config_rom_bus = ohci->config_rom_bus;
2374  }
2375 
2376  ohci->next_header = ohci->next_config_rom[0];
2377  ohci->next_config_rom[0] = 0;
2378  reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2380  be32_to_cpu(ohci->next_config_rom[2]));
2382 
2383  reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2384 
2385  if (!(ohci->quirks & QUIRK_NO_MSI))
2386  pci_enable_msi(dev);
2387  if (request_irq(dev->irq, irq_handler,
2388  pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
2389  ohci_driver_name, ohci)) {
2390  dev_err(card->device, "failed to allocate interrupt %d\n",
2391  dev->irq);
2392  pci_disable_msi(dev);
2393 
2394  if (config_rom) {
2395  dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2396  ohci->next_config_rom,
2397  ohci->next_config_rom_bus);
2398  ohci->next_config_rom = NULL;
2399  }
2400  return -EIO;
2401  }
2402 
2403  irqs = OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2404  OHCI1394_RQPkt | OHCI1394_RSPkt |
2405  OHCI1394_isochTx | OHCI1394_isochRx |
2406  OHCI1394_postedWriteErr |
2407  OHCI1394_selfIDComplete |
2408  OHCI1394_regAccessFail |
2409  OHCI1394_cycleInconsistent |
2410  OHCI1394_unrecoverableError |
2411  OHCI1394_cycleTooLong |
2413  if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2414  irqs |= OHCI1394_busReset;
2415  reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2416 
2420 
2424 
2425  ar_context_run(&ohci->ar_request_ctx);
2426  ar_context_run(&ohci->ar_response_ctx);
2427 
2428  flush_writes(ohci);
2429 
2430  /* We are ready to go, reset bus to finish initialization. */
2431  fw_schedule_bus_reset(&ohci->card, false, true);
2432 
2433  return 0;
2434 }
2435 
2436 static int ohci_set_config_rom(struct fw_card *card,
2437  const __be32 *config_rom, size_t length)
2438 {
2439  struct fw_ohci *ohci;
2442 
2443  ohci = fw_ohci(card);
2444 
2445  /*
2446  * When the OHCI controller is enabled, the config rom update
2447  * mechanism is a bit tricky, but easy enough to use. See
2448  * section 5.5.6 in the OHCI specification.
2449  *
2450  * The OHCI controller caches the new config rom address in a
2451  * shadow register (ConfigROMmapNext) and needs a bus reset
2452  * for the changes to take place. When the bus reset is
2453  * detected, the controller loads the new values for the
2454  * ConfigRomHeader and BusOptions registers from the specified
2455  * config rom and loads ConfigROMmap from the ConfigROMmapNext
2456  * shadow register. All automatically and atomically.
2457  *
2458  * Now, there's a twist to this story. The automatic load of
2459  * ConfigRomHeader and BusOptions doesn't honor the
2460  * noByteSwapData bit, so with a be32 config rom, the
2461  * controller will load be32 values in to these registers
2462  * during the atomic update, even on litte endian
2463  * architectures. The workaround we use is to put a 0 in the
2464  * header quadlet; 0 is endian agnostic and means that the
2465  * config rom isn't ready yet. In the bus reset tasklet we
2466  * then set up the real values for the two registers.
2467  *
2468  * We use ohci->lock to avoid racing with the code that sets
2469  * ohci->next_config_rom to NULL (see bus_reset_work).
2470  */
2471 
2472  next_config_rom =
2473  dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2475  if (next_config_rom == NULL)
2476  return -ENOMEM;
2477 
2478  spin_lock_irq(&ohci->lock);
2479 
2480  /*
2481  * If there is not an already pending config_rom update,
2482  * push our new allocation into the ohci->next_config_rom
2483  * and then mark the local variable as null so that we
2484  * won't deallocate the new buffer.
2485  *
2486  * OTOH, if there is a pending config_rom update, just
2487  * use that buffer with the new config_rom data, and
2488  * let this routine free the unused DMA allocation.
2489  */
2490 
2491  if (ohci->next_config_rom == NULL) {
2494  next_config_rom = NULL;
2495  }
2496 
2497  copy_config_rom(ohci->next_config_rom, config_rom, length);
2498 
2499  ohci->next_header = config_rom[0];
2500  ohci->next_config_rom[0] = 0;
2501 
2503 
2504  spin_unlock_irq(&ohci->lock);
2505 
2506  /* If we didn't use the DMA allocation, delete it. */
2507  if (next_config_rom != NULL)
2508  dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2509  next_config_rom, next_config_rom_bus);
2510 
2511  /*
2512  * Now initiate a bus reset to have the changes take
2513  * effect. We clean up the old config rom memory and DMA
2514  * mappings in the bus reset tasklet, since the OHCI
2515  * controller could need to access it before the bus reset
2516  * takes effect.
2517  */
2518 
2519  fw_schedule_bus_reset(&ohci->card, true, true);
2520 
2521  return 0;
2522 }
2523 
2524 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2525 {
2526  struct fw_ohci *ohci = fw_ohci(card);
2527 
2528  at_context_transmit(&ohci->at_request_ctx, packet);
2529 }
2530 
2531 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2532 {
2533  struct fw_ohci *ohci = fw_ohci(card);
2534 
2535  at_context_transmit(&ohci->at_response_ctx, packet);
2536 }
2537 
2538 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2539 {
2540  struct fw_ohci *ohci = fw_ohci(card);
2541  struct context *ctx = &ohci->at_request_ctx;
2542  struct driver_data *driver_data = packet->driver_data;
2543  int ret = -ENOENT;
2544 
2545  tasklet_disable(&ctx->tasklet);
2546 
2547  if (packet->ack != 0)
2548  goto out;
2549 
2550  if (packet->payload_mapped)
2551  dma_unmap_single(ohci->card.device, packet->payload_bus,
2552  packet->payload_length, DMA_TO_DEVICE);
2553 
2554  log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2555  driver_data->packet = NULL;
2556  packet->ack = RCODE_CANCELLED;
2557  packet->callback(packet, &ohci->card, packet->ack);
2558  ret = 0;
2559  out:
2560  tasklet_enable(&ctx->tasklet);
2561 
2562  return ret;
2563 }
2564 
2565 static int ohci_enable_phys_dma(struct fw_card *card,
2566  int node_id, int generation)
2567 {
2568 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2569  return 0;
2570 #else
2571  struct fw_ohci *ohci = fw_ohci(card);
2572  unsigned long flags;
2573  int n, ret = 0;
2574 
2575  /*
2576  * FIXME: Make sure this bitmask is cleared when we clear the busReset
2577  * interrupt bit. Clear physReqResourceAllBuses on bus reset.
2578  */
2579 
2580  spin_lock_irqsave(&ohci->lock, flags);
2581 
2582  if (ohci->generation != generation) {
2583  ret = -ESTALE;
2584  goto out;
2585  }
2586 
2587  /*
2588  * Note, if the node ID contains a non-local bus ID, physical DMA is
2589  * enabled for _all_ nodes on remote buses.
2590  */
2591 
2592  n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2593  if (n < 32)
2594  reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2595  else
2596  reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2597 
2598  flush_writes(ohci);
2599  out:
2600  spin_unlock_irqrestore(&ohci->lock, flags);
2601 
2602  return ret;
2603 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2604 }
2605 
2606 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2607 {
2608  struct fw_ohci *ohci = fw_ohci(card);
2609  unsigned long flags;
2610  u32 value;
2611 
2612  switch (csr_offset) {
2613  case CSR_STATE_CLEAR:
2614  case CSR_STATE_SET:
2615  if (ohci->is_root &&
2618  value = CSR_STATE_BIT_CMSTR;
2619  else
2620  value = 0;
2621  if (ohci->csr_state_setclear_abdicate)
2622  value |= CSR_STATE_BIT_ABDICATE;
2623 
2624  return value;
2625 
2626  case CSR_NODE_IDS:
2627  return reg_read(ohci, OHCI1394_NodeID) << 16;
2628 
2629  case CSR_CYCLE_TIME:
2630  return get_cycle_time(ohci);
2631 
2632  case CSR_BUS_TIME:
2633  /*
2634  * We might be called just after the cycle timer has wrapped
2635  * around but just before the cycle64Seconds handler, so we
2636  * better check here, too, if the bus time needs to be updated.
2637  */
2638  spin_lock_irqsave(&ohci->lock, flags);
2639  value = update_bus_time(ohci);
2640  spin_unlock_irqrestore(&ohci->lock, flags);
2641  return value;
2642 
2643  case CSR_BUSY_TIMEOUT:
2644  value = reg_read(ohci, OHCI1394_ATRetries);
2645  return (value >> 4) & 0x0ffff00f;
2646 
2647  case CSR_PRIORITY_BUDGET:
2648  return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2649  (ohci->pri_req_max << 8);
2650 
2651  default:
2652  WARN_ON(1);
2653  return 0;
2654  }
2655 }
2656 
2657 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2658 {
2659  struct fw_ohci *ohci = fw_ohci(card);
2660  unsigned long flags;
2661 
2662  switch (csr_offset) {
2663  case CSR_STATE_CLEAR:
2664  if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2666  OHCI1394_LinkControl_cycleMaster);
2667  flush_writes(ohci);
2668  }
2669  if (value & CSR_STATE_BIT_ABDICATE)
2670  ohci->csr_state_setclear_abdicate = false;
2671  break;
2672 
2673  case CSR_STATE_SET:
2674  if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2676  OHCI1394_LinkControl_cycleMaster);
2677  flush_writes(ohci);
2678  }
2679  if (value & CSR_STATE_BIT_ABDICATE)
2680  ohci->csr_state_setclear_abdicate = true;
2681  break;
2682 
2683  case CSR_NODE_IDS:
2684  reg_write(ohci, OHCI1394_NodeID, value >> 16);
2685  flush_writes(ohci);
2686  break;
2687 
2688  case CSR_CYCLE_TIME:
2691  OHCI1394_cycleInconsistent);
2692  flush_writes(ohci);
2693  break;
2694 
2695  case CSR_BUS_TIME:
2696  spin_lock_irqsave(&ohci->lock, flags);
2697  ohci->bus_time = (update_bus_time(ohci) & 0x40) |
2698  (value & ~0x7f);
2699  spin_unlock_irqrestore(&ohci->lock, flags);
2700  break;
2701 
2702  case CSR_BUSY_TIMEOUT:
2703  value = (value & 0xf) | ((value & 0xf) << 4) |
2704  ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2705  reg_write(ohci, OHCI1394_ATRetries, value);
2706  flush_writes(ohci);
2707  break;
2708 
2709  case CSR_PRIORITY_BUDGET:
2710  reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2711  flush_writes(ohci);
2712  break;
2713 
2714  default:
2715  WARN_ON(1);
2716  break;
2717  }
2718 }
2719 
2720 static void flush_iso_completions(struct iso_context *ctx)
2721 {
2722  ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2723  ctx->header_length, ctx->header,
2724  ctx->base.callback_data);
2725  ctx->header_length = 0;
2726 }
2727 
2728 static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2729 {
2730  u32 *ctx_hdr;
2731 
2732  if (ctx->header_length + ctx->base.header_size > PAGE_SIZE)
2733  flush_iso_completions(ctx);
2734 
2735  ctx_hdr = ctx->header + ctx->header_length;
2736  ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2737 
2738  /*
2739  * The two iso header quadlets are byteswapped to little
2740  * endian by the controller, but we want to present them
2741  * as big endian for consistency with the bus endianness.
2742  */
2743  if (ctx->base.header_size > 0)
2744  ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2745  if (ctx->base.header_size > 4)
2746  ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2747  if (ctx->base.header_size > 8)
2748  memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2749  ctx->header_length += ctx->base.header_size;
2750 }
2751 
2752 static int handle_ir_packet_per_buffer(struct context *context,
2753  struct descriptor *d,
2754  struct descriptor *last)
2755 {
2756  struct iso_context *ctx =
2757  container_of(context, struct iso_context, context);
2758  struct descriptor *pd;
2759  u32 buffer_dma;
2760 
2761  for (pd = d; pd <= last; pd++)
2762  if (pd->transfer_status)
2763  break;
2764  if (pd > last)
2765  /* Descriptor(s) not done yet, stop iteration */
2766  return 0;
2767 
2768  while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2769  d++;
2770  buffer_dma = le32_to_cpu(d->data_address);
2771  dma_sync_single_range_for_cpu(context->ohci->card.device,
2772  buffer_dma & PAGE_MASK,
2773  buffer_dma & ~PAGE_MASK,
2774  le16_to_cpu(d->req_count),
2775  DMA_FROM_DEVICE);
2776  }
2777 
2778  copy_iso_headers(ctx, (u32 *) (last + 1));
2779 
2781  flush_iso_completions(ctx);
2782 
2783  return 1;
2784 }
2785 
2786 /* d == last because each descriptor block is only a single descriptor. */
2787 static int handle_ir_buffer_fill(struct context *context,
2788  struct descriptor *d,
2789  struct descriptor *last)
2790 {
2791  struct iso_context *ctx =
2792  container_of(context, struct iso_context, context);
2793  unsigned int req_count, res_count, completed;
2794  u32 buffer_dma;
2795 
2796  req_count = le16_to_cpu(last->req_count);
2797  res_count = le16_to_cpu(ACCESS_ONCE(last->res_count));
2798  completed = req_count - res_count;
2799  buffer_dma = le32_to_cpu(last->data_address);
2800 
2801  if (completed > 0) {
2802  ctx->mc_buffer_bus = buffer_dma;
2803  ctx->mc_completed = completed;
2804  }
2805 
2806  if (res_count != 0)
2807  /* Descriptor(s) not done yet, stop iteration */
2808  return 0;
2809 
2810  dma_sync_single_range_for_cpu(context->ohci->card.device,
2811  buffer_dma & PAGE_MASK,
2812  buffer_dma & ~PAGE_MASK,
2813  completed, DMA_FROM_DEVICE);
2814 
2815  if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2816  ctx->base.callback.mc(&ctx->base,
2817  buffer_dma + completed,
2818  ctx->base.callback_data);
2819  ctx->mc_completed = 0;
2820  }
2821 
2822  return 1;
2823 }
2824 
2825 static void flush_ir_buffer_fill(struct iso_context *ctx)
2826 {
2827  dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2828  ctx->mc_buffer_bus & PAGE_MASK,
2829  ctx->mc_buffer_bus & ~PAGE_MASK,
2831 
2832  ctx->base.callback.mc(&ctx->base,
2833  ctx->mc_buffer_bus + ctx->mc_completed,
2834  ctx->base.callback_data);
2835  ctx->mc_completed = 0;
2836 }
2837 
2838 static inline void sync_it_packet_for_cpu(struct context *context,
2839  struct descriptor *pd)
2840 {
2841  __le16 control;
2842  u32 buffer_dma;
2843 
2844  /* only packets beginning with OUTPUT_MORE* have data buffers */
2846  return;
2847 
2848  /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2849  pd += 2;
2850 
2851  /*
2852  * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2853  * data buffer is in the context program's coherent page and must not
2854  * be synced.
2855  */
2856  if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2857  (context->current_bus & PAGE_MASK)) {
2859  return;
2860  pd++;
2861  }
2862 
2863  do {
2864  buffer_dma = le32_to_cpu(pd->data_address);
2865  dma_sync_single_range_for_cpu(context->ohci->card.device,
2866  buffer_dma & PAGE_MASK,
2867  buffer_dma & ~PAGE_MASK,
2868  le16_to_cpu(pd->req_count),
2869  DMA_TO_DEVICE);
2870  control = pd->control;
2871  pd++;
2872  } while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2873 }
2874 
2875 static int handle_it_packet(struct context *context,
2876  struct descriptor *d,
2877  struct descriptor *last)
2878 {
2879  struct iso_context *ctx =
2880  container_of(context, struct iso_context, context);
2881  struct descriptor *pd;
2882  __be32 *ctx_hdr;
2883 
2884  for (pd = d; pd <= last; pd++)
2885  if (pd->transfer_status)
2886  break;
2887  if (pd > last)
2888  /* Descriptor(s) not done yet, stop iteration */
2889  return 0;
2890 
2891  sync_it_packet_for_cpu(context, d);
2892 
2893  if (ctx->header_length + 4 > PAGE_SIZE)
2894  flush_iso_completions(ctx);
2895 
2896  ctx_hdr = ctx->header + ctx->header_length;
2897  ctx->last_timestamp = le16_to_cpu(last->res_count);
2898  /* Present this value as big-endian to match the receive code */
2899  *ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2900  le16_to_cpu(pd->res_count));
2901  ctx->header_length += 4;
2902 
2904  flush_iso_completions(ctx);
2905 
2906  return 1;
2907 }
2908 
2909 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2910 {
2911  u32 hi = channels >> 32, lo = channels;
2912 
2917  mmiowb();
2918  ohci->mc_channels = channels;
2919 }
2920 
2921 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2922  int type, int channel, size_t header_size)
2923 {
2924  struct fw_ohci *ohci = fw_ohci(card);
2925  struct iso_context *uninitialized_var(ctx);
2929  int index, ret = -EBUSY;
2930 
2931  spin_lock_irq(&ohci->lock);
2932 
2933  switch (type) {
2935  mask = &ohci->it_context_mask;
2936  callback = handle_it_packet;
2937  index = ffs(*mask) - 1;
2938  if (index >= 0) {
2939  *mask &= ~(1 << index);
2940  regs = OHCI1394_IsoXmitContextBase(index);
2941  ctx = &ohci->it_context_list[index];
2942  }
2943  break;
2944 
2946  channels = &ohci->ir_context_channels;
2947  mask = &ohci->ir_context_mask;
2948  callback = handle_ir_packet_per_buffer;
2949  index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2950  if (index >= 0) {
2951  *channels &= ~(1ULL << channel);
2952  *mask &= ~(1 << index);
2953  regs = OHCI1394_IsoRcvContextBase(index);
2954  ctx = &ohci->ir_context_list[index];
2955  }
2956  break;
2957 
2959  mask = &ohci->ir_context_mask;
2960  callback = handle_ir_buffer_fill;
2961  index = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2962  if (index >= 0) {
2963  ohci->mc_allocated = true;
2964  *mask &= ~(1 << index);
2965  regs = OHCI1394_IsoRcvContextBase(index);
2966  ctx = &ohci->ir_context_list[index];
2967  }
2968  break;
2969 
2970  default:
2971  index = -1;
2972  ret = -ENOSYS;
2973  }
2974 
2975  spin_unlock_irq(&ohci->lock);
2976 
2977  if (index < 0)
2978  return ERR_PTR(ret);
2979 
2980  memset(ctx, 0, sizeof(*ctx));
2981  ctx->header_length = 0;
2982  ctx->header = (void *) __get_free_page(GFP_KERNEL);
2983  if (ctx->header == NULL) {
2984  ret = -ENOMEM;
2985  goto out;
2986  }
2987  ret = context_init(&ctx->context, ohci, regs, callback);
2988  if (ret < 0)
2989  goto out_with_header;
2990 
2992  set_multichannel_mask(ohci, 0);
2993  ctx->mc_completed = 0;
2994  }
2995 
2996  return &ctx->base;
2997 
2998  out_with_header:
2999  free_page((unsigned long)ctx->header);
3000  out:
3001  spin_lock_irq(&ohci->lock);
3002 
3003  switch (type) {
3005  *channels |= 1ULL << channel;
3006  break;
3007 
3009  ohci->mc_allocated = false;
3010  break;
3011  }
3012  *mask |= 1 << index;
3013 
3014  spin_unlock_irq(&ohci->lock);
3015 
3016  return ERR_PTR(ret);
3017 }
3018 
3019 static int ohci_start_iso(struct fw_iso_context *base,
3020  s32 cycle, u32 sync, u32 tags)
3021 {
3022  struct iso_context *ctx = container_of(base, struct iso_context, base);
3023  struct fw_ohci *ohci = ctx->context.ohci;
3024  u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3025  int index;
3026 
3027  /* the controller cannot start without any queued packets */
3028  if (ctx->context.last->branch_address == 0)
3029  return -ENODATA;
3030 
3031  switch (ctx->base.type) {
3033  index = ctx - ohci->it_context_list;
3034  match = 0;
3035  if (cycle >= 0)
3037  (cycle & 0x7fff) << 16;
3038 
3039  reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3040  reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3041  context_run(&ctx->context, match);
3042  break;
3043 
3046  /* fall through */
3048  index = ctx - ohci->ir_context_list;
3049  match = (tags << 28) | (sync << 8) | ctx->base.channel;
3050  if (cycle >= 0) {
3051  match |= (cycle & 0x07fff) << 12;
3052  control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3053  }
3054 
3055  reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3056  reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3057  reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3058  context_run(&ctx->context, control);
3059 
3060  ctx->sync = sync;
3061  ctx->tags = tags;
3062 
3063  break;
3064  }
3065 
3066  return 0;
3067 }
3068 
3069 static int ohci_stop_iso(struct fw_iso_context *base)
3070 {
3071  struct fw_ohci *ohci = fw_ohci(base->card);
3072  struct iso_context *ctx = container_of(base, struct iso_context, base);
3073  int index;
3074 
3075  switch (ctx->base.type) {
3077  index = ctx - ohci->it_context_list;
3078  reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3079  break;
3080 
3083  index = ctx - ohci->ir_context_list;
3084  reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3085  break;
3086  }
3087  flush_writes(ohci);
3088  context_stop(&ctx->context);
3089  tasklet_kill(&ctx->context.tasklet);
3090 
3091  return 0;
3092 }
3093 
3094 static void ohci_free_iso_context(struct fw_iso_context *base)
3095 {
3096  struct fw_ohci *ohci = fw_ohci(base->card);
3097  struct iso_context *ctx = container_of(base, struct iso_context, base);
3098  unsigned long flags;
3099  int index;
3100 
3101  ohci_stop_iso(base);
3102  context_release(&ctx->context);
3103  free_page((unsigned long)ctx->header);
3104 
3105  spin_lock_irqsave(&ohci->lock, flags);
3106 
3107  switch (base->type) {
3109  index = ctx - ohci->it_context_list;
3110  ohci->it_context_mask |= 1 << index;
3111  break;
3112 
3114  index = ctx - ohci->ir_context_list;
3115  ohci->ir_context_mask |= 1 << index;
3116  ohci->ir_context_channels |= 1ULL << base->channel;
3117  break;
3118 
3120  index = ctx - ohci->ir_context_list;
3121  ohci->ir_context_mask |= 1 << index;
3122  ohci->ir_context_channels |= ohci->mc_channels;
3123  ohci->mc_channels = 0;
3124  ohci->mc_allocated = false;
3125  break;
3126  }
3127 
3128  spin_unlock_irqrestore(&ohci->lock, flags);
3129 }
3130 
3131 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3132 {
3133  struct fw_ohci *ohci = fw_ohci(base->card);
3134  unsigned long flags;
3135  int ret;
3136 
3137  switch (base->type) {
3139 
3140  spin_lock_irqsave(&ohci->lock, flags);
3141 
3142  /* Don't allow multichannel to grab other contexts' channels. */
3143  if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3144  *channels = ohci->ir_context_channels;
3145  ret = -EBUSY;
3146  } else {
3147  set_multichannel_mask(ohci, *channels);
3148  ret = 0;
3149  }
3150 
3151  spin_unlock_irqrestore(&ohci->lock, flags);
3152 
3153  break;
3154  default:
3155  ret = -EINVAL;
3156  }
3157 
3158  return ret;
3159 }
3160 
3161 #ifdef CONFIG_PM
3162 static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3163 {
3164  int i;
3165  struct iso_context *ctx;
3166 
3167  for (i = 0 ; i < ohci->n_ir ; i++) {
3168  ctx = &ohci->ir_context_list[i];
3169  if (ctx->context.running)
3170  ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3171  }
3172 
3173  for (i = 0 ; i < ohci->n_it ; i++) {
3174  ctx = &ohci->it_context_list[i];
3175  if (ctx->context.running)
3176  ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3177  }
3178 }
3179 #endif
3180 
3181 static int queue_iso_transmit(struct iso_context *ctx,
3182  struct fw_iso_packet *packet,
3183  struct fw_iso_buffer *buffer,
3184  unsigned long payload)
3185 {
3186  struct descriptor *d, *last, *pd;
3187  struct fw_iso_packet *p;
3188  __le32 *header;
3189  dma_addr_t d_bus, page_bus;
3190  u32 z, header_z, payload_z, irq;
3191  u32 payload_index, payload_end_index, next_page_index;
3192  int page, end_page, i, length, offset;
3193 
3194  p = packet;
3195  payload_index = payload;
3196 
3197  if (p->skip)
3198  z = 1;
3199  else
3200  z = 2;
3201  if (p->header_length > 0)
3202  z++;
3203 
3204  /* Determine the first page the payload isn't contained in. */
3205  end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3206  if (p->payload_length > 0)
3207  payload_z = end_page - (payload_index >> PAGE_SHIFT);
3208  else
3209  payload_z = 0;
3210 
3211  z += payload_z;
3212 
3213  /* Get header size in number of descriptors. */
3214  header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3215 
3216  d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3217  if (d == NULL)
3218  return -ENOMEM;
3219 
3220  if (!p->skip) {
3222  d[0].req_count = cpu_to_le16(8);
3223  /*
3224  * Link the skip address to this descriptor itself. This causes
3225  * a context to skip a cycle whenever lost cycles or FIFO
3226  * overruns occur, without dropping the data. The application
3227  * should then decide whether this is an error condition or not.
3228  * FIXME: Make the context's cycle-lost behaviour configurable?
3229  */
3230  d[0].branch_address = cpu_to_le32(d_bus | z);
3231 
3232  header = (__le32 *) &d[1];
3233  header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3234  IT_HEADER_TAG(p->tag) |
3236  IT_HEADER_CHANNEL(ctx->base.channel) |
3237  IT_HEADER_SPEED(ctx->base.speed));
3238  header[1] =
3240  p->payload_length));
3241  }
3242 
3243  if (p->header_length > 0) {
3244  d[2].req_count = cpu_to_le16(p->header_length);
3245  d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3246  memcpy(&d[z], p->header, p->header_length);
3247  }
3248 
3249  pd = d + z - payload_z;
3250  payload_end_index = payload_index + p->payload_length;
3251  for (i = 0; i < payload_z; i++) {
3252  page = payload_index >> PAGE_SHIFT;
3253  offset = payload_index & ~PAGE_MASK;
3254  next_page_index = (page + 1) << PAGE_SHIFT;
3255  length =
3256  min(next_page_index, payload_end_index) - payload_index;
3257  pd[i].req_count = cpu_to_le16(length);
3258 
3259  page_bus = page_private(buffer->pages[page]);
3260  pd[i].data_address = cpu_to_le32(page_bus + offset);
3261 
3262  dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3263  page_bus, offset, length,
3264  DMA_TO_DEVICE);
3265 
3266  payload_index += length;
3267  }
3268 
3269  if (p->interrupt)
3270  irq = DESCRIPTOR_IRQ_ALWAYS;
3271  else
3272  irq = DESCRIPTOR_NO_IRQ;
3273 
3274  last = z == 2 ? d : d + z - 1;
3278  irq);
3279 
3280  context_append(&ctx->context, d, z, header_z);
3281 
3282  return 0;
3283 }
3284 
3285 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3286  struct fw_iso_packet *packet,
3287  struct fw_iso_buffer *buffer,
3288  unsigned long payload)
3289 {
3290  struct device *device = ctx->context.ohci->card.device;
3291  struct descriptor *d, *pd;
3292  dma_addr_t d_bus, page_bus;
3293  u32 z, header_z, rest;
3294  int i, j, length;
3295  int page, offset, packet_count, header_size, payload_per_buffer;
3296 
3297  /*
3298  * The OHCI controller puts the isochronous header and trailer in the
3299  * buffer, so we need at least 8 bytes.
3300  */
3301  packet_count = packet->header_length / ctx->base.header_size;
3302  header_size = max(ctx->base.header_size, (size_t)8);
3303 
3304  /* Get header size in number of descriptors. */
3305  header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3306  page = payload >> PAGE_SHIFT;
3307  offset = payload & ~PAGE_MASK;
3308  payload_per_buffer = packet->payload_length / packet_count;
3309 
3310  for (i = 0; i < packet_count; i++) {
3311  /* d points to the header descriptor */
3312  z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3313  d = context_get_descriptors(&ctx->context,
3314  z + header_z, &d_bus);
3315  if (d == NULL)
3316  return -ENOMEM;
3317 
3320  if (packet->skip && i == 0)
3322  d->req_count = cpu_to_le16(header_size);
3323  d->res_count = d->req_count;
3324  d->transfer_status = 0;
3325  d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3326 
3327  rest = payload_per_buffer;
3328  pd = d;
3329  for (j = 1; j < z; j++) {
3330  pd++;
3333 
3334  if (offset + rest < PAGE_SIZE)
3335  length = rest;
3336  else
3337  length = PAGE_SIZE - offset;
3338  pd->req_count = cpu_to_le16(length);
3339  pd->res_count = pd->req_count;
3340  pd->transfer_status = 0;
3341 
3342  page_bus = page_private(buffer->pages[page]);
3343  pd->data_address = cpu_to_le32(page_bus + offset);
3344 
3345  dma_sync_single_range_for_device(device, page_bus,
3346  offset, length,
3347  DMA_FROM_DEVICE);
3348 
3349  offset = (offset + length) & ~PAGE_MASK;
3350  rest -= length;
3351  if (offset == 0)
3352  page++;
3353  }
3357  if (packet->interrupt && i == packet_count - 1)
3359 
3360  context_append(&ctx->context, d, z, header_z);
3361  }
3362 
3363  return 0;
3364 }
3365 
3366 static int queue_iso_buffer_fill(struct iso_context *ctx,
3367  struct fw_iso_packet *packet,
3368  struct fw_iso_buffer *buffer,
3369  unsigned long payload)
3370 {
3371  struct descriptor *d;
3372  dma_addr_t d_bus, page_bus;
3373  int page, offset, rest, z, i, length;
3374 
3375  page = payload >> PAGE_SHIFT;
3376  offset = payload & ~PAGE_MASK;
3377  rest = packet->payload_length;
3378 
3379  /* We need one descriptor for each page in the buffer. */
3380  z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3381 
3382  if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3383  return -EFAULT;
3384 
3385  for (i = 0; i < z; i++) {
3386  d = context_get_descriptors(&ctx->context, 1, &d_bus);
3387  if (d == NULL)
3388  return -ENOMEM;
3389 
3392  if (packet->skip && i == 0)
3394  if (packet->interrupt && i == z - 1)
3396 
3397  if (offset + rest < PAGE_SIZE)
3398  length = rest;
3399  else
3400  length = PAGE_SIZE - offset;
3401  d->req_count = cpu_to_le16(length);
3402  d->res_count = d->req_count;
3403  d->transfer_status = 0;
3404 
3405  page_bus = page_private(buffer->pages[page]);
3406  d->data_address = cpu_to_le32(page_bus + offset);
3407 
3408  dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3409  page_bus, offset, length,
3410  DMA_FROM_DEVICE);
3411 
3412  rest -= length;
3413  offset = 0;
3414  page++;
3415 
3416  context_append(&ctx->context, d, 1, 0);
3417  }
3418 
3419  return 0;
3420 }
3421 
3422 static int ohci_queue_iso(struct fw_iso_context *base,
3423  struct fw_iso_packet *packet,
3424  struct fw_iso_buffer *buffer,
3425  unsigned long payload)
3426 {
3427  struct iso_context *ctx = container_of(base, struct iso_context, base);
3428  unsigned long flags;
3429  int ret = -ENOSYS;
3430 
3431  spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3432  switch (base->type) {
3434  ret = queue_iso_transmit(ctx, packet, buffer, payload);
3435  break;
3437  ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3438  break;
3440  ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3441  break;
3442  }
3443  spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3444 
3445  return ret;
3446 }
3447 
3448 static void ohci_flush_queue_iso(struct fw_iso_context *base)
3449 {
3450  struct context *ctx =
3451  &container_of(base, struct iso_context, base)->context;
3452 
3453  reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3454 }
3455 
3456 static int ohci_flush_iso_completions(struct fw_iso_context *base)
3457 {
3458  struct iso_context *ctx = container_of(base, struct iso_context, base);
3459  int ret = 0;
3460 
3461  tasklet_disable(&ctx->context.tasklet);
3462 
3464  context_tasklet((unsigned long)&ctx->context);
3465 
3466  switch (base->type) {
3469  if (ctx->header_length != 0)
3470  flush_iso_completions(ctx);
3471  break;
3473  if (ctx->mc_completed != 0)
3474  flush_ir_buffer_fill(ctx);
3475  break;
3476  default:
3477  ret = -ENOSYS;
3478  }
3479 
3482  }
3483 
3484  tasklet_enable(&ctx->context.tasklet);
3485 
3486  return ret;
3487 }
3488 
3489 static const struct fw_card_driver ohci_driver = {
3490  .enable = ohci_enable,
3491  .read_phy_reg = ohci_read_phy_reg,
3492  .update_phy_reg = ohci_update_phy_reg,
3493  .set_config_rom = ohci_set_config_rom,
3494  .send_request = ohci_send_request,
3495  .send_response = ohci_send_response,
3496  .cancel_packet = ohci_cancel_packet,
3497  .enable_phys_dma = ohci_enable_phys_dma,
3498  .read_csr = ohci_read_csr,
3499  .write_csr = ohci_write_csr,
3500 
3501  .allocate_iso_context = ohci_allocate_iso_context,
3502  .free_iso_context = ohci_free_iso_context,
3503  .set_iso_channels = ohci_set_iso_channels,
3504  .queue_iso = ohci_queue_iso,
3505  .flush_queue_iso = ohci_flush_queue_iso,
3506  .flush_iso_completions = ohci_flush_iso_completions,
3507  .start_iso = ohci_start_iso,
3508  .stop_iso = ohci_stop_iso,
3509 };
3510 
3511 #ifdef CONFIG_PPC_PMAC
3512 static void pmac_ohci_on(struct pci_dev *dev)
3513 {
3514  if (machine_is(powermac)) {
3515  struct device_node *ofn = pci_device_to_OF_node(dev);
3516 
3517  if (ofn) {
3518  pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3519  pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3520  }
3521  }
3522 }
3523 
3524 static void pmac_ohci_off(struct pci_dev *dev)
3525 {
3526  if (machine_is(powermac)) {
3527  struct device_node *ofn = pci_device_to_OF_node(dev);
3528 
3529  if (ofn) {
3530  pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3531  pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3532  }
3533  }
3534 }
3535 #else
3536 static inline void pmac_ohci_on(struct pci_dev *dev) {}
3537 static inline void pmac_ohci_off(struct pci_dev *dev) {}
3538 #endif /* CONFIG_PPC_PMAC */
3539 
3540 static int __devinit pci_probe(struct pci_dev *dev,
3541  const struct pci_device_id *ent)
3542 {
3543  struct fw_ohci *ohci;
3544  u32 bus_options, max_receive, link_speed, version;
3545  u64 guid;
3546  int i, err;
3547  size_t size;
3548 
3549  if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3550  dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3551  return -ENOSYS;
3552  }
3553 
3554  ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3555  if (ohci == NULL) {
3556  err = -ENOMEM;
3557  goto fail;
3558  }
3559 
3560  fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3561 
3562  pmac_ohci_on(dev);
3563 
3564  err = pci_enable_device(dev);
3565  if (err) {
3566  dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3567  goto fail_free;
3568  }
3569 
3570  pci_set_master(dev);
3571  pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3572  pci_set_drvdata(dev, ohci);
3573 
3574  spin_lock_init(&ohci->lock);
3575  mutex_init(&ohci->phy_reg_mutex);
3576 
3578 
3579  if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3581  dev_err(&dev->dev, "invalid MMIO resource\n");
3582  err = -ENXIO;
3583  goto fail_disable;
3584  }
3585 
3586  err = pci_request_region(dev, 0, ohci_driver_name);
3587  if (err) {
3588  dev_err(&dev->dev, "MMIO resource unavailable\n");
3589  goto fail_disable;
3590  }
3591 
3592  ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3593  if (ohci->registers == NULL) {
3594  dev_err(&dev->dev, "failed to remap registers\n");
3595  err = -ENXIO;
3596  goto fail_iomem;
3597  }
3598 
3599  for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3600  if ((ohci_quirks[i].vendor == dev->vendor) &&
3601  (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3602  ohci_quirks[i].device == dev->device) &&
3603  (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3604  ohci_quirks[i].revision >= dev->revision)) {
3605  ohci->quirks = ohci_quirks[i].flags;
3606  break;
3607  }
3608  if (param_quirks)
3609  ohci->quirks = param_quirks;
3610 
3611  /*
3612  * Because dma_alloc_coherent() allocates at least one page,
3613  * we save space by using a common buffer for the AR request/
3614  * response descriptors and the self IDs buffer.
3615  */
3616  BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3617  BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3618  ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3619  PAGE_SIZE,
3620  &ohci->misc_buffer_bus,
3621  GFP_KERNEL);
3622  if (!ohci->misc_buffer) {
3623  err = -ENOMEM;
3624  goto fail_iounmap;
3625  }
3626 
3627  err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3629  if (err < 0)
3630  goto fail_misc_buf;
3631 
3632  err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3634  if (err < 0)
3635  goto fail_arreq_ctx;
3636 
3637  err = context_init(&ohci->at_request_ctx, ohci,
3638  OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3639  if (err < 0)
3640  goto fail_arrsp_ctx;
3641 
3642  err = context_init(&ohci->at_response_ctx, ohci,
3643  OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3644  if (err < 0)
3645  goto fail_atreq_ctx;
3646 
3648  ohci->ir_context_channels = ~0ULL;
3651  ohci->ir_context_mask = ohci->ir_context_support;
3652  ohci->n_ir = hweight32(ohci->ir_context_mask);
3653  size = sizeof(struct iso_context) * ohci->n_ir;
3654  ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3655 
3659  ohci->it_context_mask = ohci->it_context_support;
3660  ohci->n_it = hweight32(ohci->it_context_mask);
3661  size = sizeof(struct iso_context) * ohci->n_it;
3662  ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3663 
3664  if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3665  err = -ENOMEM;
3666  goto fail_contexts;
3667  }
3668 
3669  ohci->self_id_cpu = ohci->misc_buffer + PAGE_SIZE/2;
3670  ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3671 
3672  bus_options = reg_read(ohci, OHCI1394_BusOptions);
3673  max_receive = (bus_options >> 12) & 0xf;
3674  link_speed = bus_options & 0x7;
3675  guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3676  reg_read(ohci, OHCI1394_GUIDLo);
3677 
3678  err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3679  if (err)
3680  goto fail_contexts;
3681 
3682  version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3683  dev_notice(&dev->dev,
3684  "added OHCI v%x.%x device as card %d, "
3685  "%d IR + %d IT contexts, quirks 0x%x\n",
3686  version >> 16, version & 0xff, ohci->card.index,
3687  ohci->n_ir, ohci->n_it, ohci->quirks);
3688 
3689  return 0;
3690 
3691  fail_contexts:
3692  kfree(ohci->ir_context_list);
3693  kfree(ohci->it_context_list);
3694  context_release(&ohci->at_response_ctx);
3695  fail_atreq_ctx:
3696  context_release(&ohci->at_request_ctx);
3697  fail_arrsp_ctx:
3698  ar_context_release(&ohci->ar_response_ctx);
3699  fail_arreq_ctx:
3700  ar_context_release(&ohci->ar_request_ctx);
3701  fail_misc_buf:
3702  dma_free_coherent(ohci->card.device, PAGE_SIZE,
3703  ohci->misc_buffer, ohci->misc_buffer_bus);
3704  fail_iounmap:
3705  pci_iounmap(dev, ohci->registers);
3706  fail_iomem:
3707  pci_release_region(dev, 0);
3708  fail_disable:
3709  pci_disable_device(dev);
3710  fail_free:
3711  kfree(ohci);
3712  pmac_ohci_off(dev);
3713  fail:
3714  if (err == -ENOMEM)
3715  dev_err(&dev->dev, "out of memory\n");
3716 
3717  return err;
3718 }
3719 
3720 static void pci_remove(struct pci_dev *dev)
3721 {
3722  struct fw_ohci *ohci;
3723 
3724  ohci = pci_get_drvdata(dev);
3725  reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3726  flush_writes(ohci);
3728  fw_core_remove_card(&ohci->card);
3729 
3730  /*
3731  * FIXME: Fail all pending packets here, now that the upper
3732  * layers can't queue any more.
3733  */
3734 
3735  software_reset(ohci);
3736  free_irq(dev->irq, ohci);
3737 
3738  if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3739  dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3740  ohci->next_config_rom, ohci->next_config_rom_bus);
3741  if (ohci->config_rom)
3742  dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3743  ohci->config_rom, ohci->config_rom_bus);
3744  ar_context_release(&ohci->ar_request_ctx);
3745  ar_context_release(&ohci->ar_response_ctx);
3746  dma_free_coherent(ohci->card.device, PAGE_SIZE,
3747  ohci->misc_buffer, ohci->misc_buffer_bus);
3748  context_release(&ohci->at_request_ctx);
3749  context_release(&ohci->at_response_ctx);
3750  kfree(ohci->it_context_list);
3751  kfree(ohci->ir_context_list);
3752  pci_disable_msi(dev);
3753  pci_iounmap(dev, ohci->registers);
3754  pci_release_region(dev, 0);
3755  pci_disable_device(dev);
3756  kfree(ohci);
3757  pmac_ohci_off(dev);
3758 
3759  dev_notice(&dev->dev, "removed fw-ohci device\n");
3760 }
3761 
3762 #ifdef CONFIG_PM
3763 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3764 {
3765  struct fw_ohci *ohci = pci_get_drvdata(dev);
3766  int err;
3767 
3768  software_reset(ohci);
3769  free_irq(dev->irq, ohci);
3770  pci_disable_msi(dev);
3771  err = pci_save_state(dev);
3772  if (err) {
3773  dev_err(&dev->dev, "pci_save_state failed\n");
3774  return err;
3775  }
3776  err = pci_set_power_state(dev, pci_choose_state(dev, state));
3777  if (err)
3778  dev_err(&dev->dev, "pci_set_power_state failed with %d\n", err);
3779  pmac_ohci_off(dev);
3780 
3781  return 0;
3782 }
3783 
3784 static int pci_resume(struct pci_dev *dev)
3785 {
3786  struct fw_ohci *ohci = pci_get_drvdata(dev);
3787  int err;
3788 
3789  pmac_ohci_on(dev);
3791  pci_restore_state(dev);
3792  err = pci_enable_device(dev);
3793  if (err) {
3794  dev_err(&dev->dev, "pci_enable_device failed\n");
3795  return err;
3796  }
3797 
3798  /* Some systems don't setup GUID register on resume from ram */
3799  if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3800  !reg_read(ohci, OHCI1394_GUIDHi)) {
3801  reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3802  reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3803  }
3804 
3805  err = ohci_enable(&ohci->card, NULL, 0);
3806  if (err)
3807  return err;
3808 
3809  ohci_resume_iso_dma(ohci);
3810 
3811  return 0;
3812 }
3813 #endif
3814 
3815 static const struct pci_device_id pci_table[] = {
3817  { }
3818 };
3819 
3820 MODULE_DEVICE_TABLE(pci, pci_table);
3821 
3822 static struct pci_driver fw_ohci_pci_driver = {
3823  .name = ohci_driver_name,
3824  .id_table = pci_table,
3825  .probe = pci_probe,
3826  .remove = pci_remove,
3827 #ifdef CONFIG_PM
3828  .resume = pci_resume,
3829  .suspend = pci_suspend,
3830 #endif
3831 };
3832 
3833 module_pci_driver(fw_ohci_pci_driver);
3834 
3835 MODULE_AUTHOR("Kristian Hoegsberg <[email protected]>");
3836 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3837 MODULE_LICENSE("GPL");
3838 
3839 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3840 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
3841 MODULE_ALIAS("ohci1394");
3842 #endif