Linux Kernel  3.7.1
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
pl330.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
3  * http://www.samsung.com
4  *
5  * Copyright (C) 2010 Samsung Electronics Co. Ltd.
6  * Jaswinder Singh <jassi.brar@samsung.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/io.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/string.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/amba/bus.h>
25 #include <linux/amba/pl330.h>
26 #include <linux/scatterlist.h>
27 #include <linux/of.h>
28 
29 #include "dmaengine.h"
30 #define PL330_MAX_CHAN 8
31 #define PL330_MAX_IRQS 32
32 #define PL330_MAX_PERI 32
33 
35  SCCTRL0, /* Noncacheable and nonbufferable */
36  SCCTRL1, /* Bufferable only */
37  SCCTRL2, /* Cacheable, but do not allocate */
38  SCCTRL3, /* Cacheable and bufferable, but do not allocate */
41  SCCTRL6, /* Cacheable write-through, allocate on reads only */
42  SCCTRL7, /* Cacheable write-back, allocate on reads only */
43 };
44 
46  DCCTRL0, /* Noncacheable and nonbufferable */
47  DCCTRL1, /* Bufferable only */
48  DCCTRL2, /* Cacheable, but do not allocate */
49  DCCTRL3, /* Cacheable and bufferable, but do not allocate */
50  DINVALID1, /* AWCACHE = 0x1000 */
52  DCCTRL6, /* Cacheable write-through, allocate on writes only */
53  DCCTRL7, /* Cacheable write-back, allocate on writes only */
54 };
55 
62 };
63 
69 };
70 
71 /* Register and Bit field Definitions */
72 #define DS 0x0
73 #define DS_ST_STOP 0x0
74 #define DS_ST_EXEC 0x1
75 #define DS_ST_CMISS 0x2
76 #define DS_ST_UPDTPC 0x3
77 #define DS_ST_WFE 0x4
78 #define DS_ST_ATBRR 0x5
79 #define DS_ST_QBUSY 0x6
80 #define DS_ST_WFP 0x7
81 #define DS_ST_KILL 0x8
82 #define DS_ST_CMPLT 0x9
83 #define DS_ST_FLTCMP 0xe
84 #define DS_ST_FAULT 0xf
85 
86 #define DPC 0x4
87 #define INTEN 0x20
88 #define ES 0x24
89 #define INTSTATUS 0x28
90 #define INTCLR 0x2c
91 #define FSM 0x30
92 #define FSC 0x34
93 #define FTM 0x38
94 
95 #define _FTC 0x40
96 #define FTC(n) (_FTC + (n)*0x4)
97 
98 #define _CS 0x100
99 #define CS(n) (_CS + (n)*0x8)
100 #define CS_CNS (1 << 21)
101 
102 #define _CPC 0x104
103 #define CPC(n) (_CPC + (n)*0x8)
104 
105 #define _SA 0x400
106 #define SA(n) (_SA + (n)*0x20)
107 
108 #define _DA 0x404
109 #define DA(n) (_DA + (n)*0x20)
110 
111 #define _CC 0x408
112 #define CC(n) (_CC + (n)*0x20)
113 
114 #define CC_SRCINC (1 << 0)
115 #define CC_DSTINC (1 << 14)
116 #define CC_SRCPRI (1 << 8)
117 #define CC_DSTPRI (1 << 22)
118 #define CC_SRCNS (1 << 9)
119 #define CC_DSTNS (1 << 23)
120 #define CC_SRCIA (1 << 10)
121 #define CC_DSTIA (1 << 24)
122 #define CC_SRCBRSTLEN_SHFT 4
123 #define CC_DSTBRSTLEN_SHFT 18
124 #define CC_SRCBRSTSIZE_SHFT 1
125 #define CC_DSTBRSTSIZE_SHFT 15
126 #define CC_SRCCCTRL_SHFT 11
127 #define CC_SRCCCTRL_MASK 0x7
128 #define CC_DSTCCTRL_SHFT 25
129 #define CC_DRCCCTRL_MASK 0x7
130 #define CC_SWAP_SHFT 28
131 
132 #define _LC0 0x40c
133 #define LC0(n) (_LC0 + (n)*0x20)
134 
135 #define _LC1 0x410
136 #define LC1(n) (_LC1 + (n)*0x20)
137 
138 #define DBGSTATUS 0xd00
139 #define DBG_BUSY (1 << 0)
140 
141 #define DBGCMD 0xd04
142 #define DBGINST0 0xd08
143 #define DBGINST1 0xd0c
144 
145 #define CR0 0xe00
146 #define CR1 0xe04
147 #define CR2 0xe08
148 #define CR3 0xe0c
149 #define CR4 0xe10
150 #define CRD 0xe14
151 
152 #define PERIPH_ID 0xfe0
153 #define PERIPH_REV_SHIFT 20
154 #define PERIPH_REV_MASK 0xf
155 #define PERIPH_REV_R0P0 0
156 #define PERIPH_REV_R1P0 1
157 #define PERIPH_REV_R1P1 2
158 #define PCELL_ID 0xff0
159 
160 #define CR0_PERIPH_REQ_SET (1 << 0)
161 #define CR0_BOOT_EN_SET (1 << 1)
162 #define CR0_BOOT_MAN_NS (1 << 2)
163 #define CR0_NUM_CHANS_SHIFT 4
164 #define CR0_NUM_CHANS_MASK 0x7
165 #define CR0_NUM_PERIPH_SHIFT 12
166 #define CR0_NUM_PERIPH_MASK 0x1f
167 #define CR0_NUM_EVENTS_SHIFT 17
168 #define CR0_NUM_EVENTS_MASK 0x1f
169 
170 #define CR1_ICACHE_LEN_SHIFT 0
171 #define CR1_ICACHE_LEN_MASK 0x7
172 #define CR1_NUM_ICACHELINES_SHIFT 4
173 #define CR1_NUM_ICACHELINES_MASK 0xf
174 
175 #define CRD_DATA_WIDTH_SHIFT 0
176 #define CRD_DATA_WIDTH_MASK 0x7
177 #define CRD_WR_CAP_SHIFT 4
178 #define CRD_WR_CAP_MASK 0x7
179 #define CRD_WR_Q_DEP_SHIFT 8
180 #define CRD_WR_Q_DEP_MASK 0xf
181 #define CRD_RD_CAP_SHIFT 12
182 #define CRD_RD_CAP_MASK 0x7
183 #define CRD_RD_Q_DEP_SHIFT 16
184 #define CRD_RD_Q_DEP_MASK 0xf
185 #define CRD_DATA_BUFF_SHIFT 20
186 #define CRD_DATA_BUFF_MASK 0x3ff
187 
188 #define PART 0x330
189 #define DESIGNER 0x41
190 #define REVISION 0x0
191 #define INTEG_CFG 0x0
192 #define PERIPH_ID_VAL ((PART << 0) | (DESIGNER << 12))
193 
194 #define PCELL_ID_VAL 0xb105f00d
195 
196 #define PL330_STATE_STOPPED (1 << 0)
197 #define PL330_STATE_EXECUTING (1 << 1)
198 #define PL330_STATE_WFE (1 << 2)
199 #define PL330_STATE_FAULTING (1 << 3)
200 #define PL330_STATE_COMPLETING (1 << 4)
201 #define PL330_STATE_WFP (1 << 5)
202 #define PL330_STATE_KILLING (1 << 6)
203 #define PL330_STATE_FAULT_COMPLETING (1 << 7)
204 #define PL330_STATE_CACHEMISS (1 << 8)
205 #define PL330_STATE_UPDTPC (1 << 9)
206 #define PL330_STATE_ATBARRIER (1 << 10)
207 #define PL330_STATE_QUEUEBUSY (1 << 11)
208 #define PL330_STATE_INVALID (1 << 15)
209 
210 #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \
211  | PL330_STATE_WFE | PL330_STATE_FAULTING)
212 
213 #define CMD_DMAADDH 0x54
214 #define CMD_DMAEND 0x00
215 #define CMD_DMAFLUSHP 0x35
216 #define CMD_DMAGO 0xa0
217 #define CMD_DMALD 0x04
218 #define CMD_DMALDP 0x25
219 #define CMD_DMALP 0x20
220 #define CMD_DMALPEND 0x28
221 #define CMD_DMAKILL 0x01
222 #define CMD_DMAMOV 0xbc
223 #define CMD_DMANOP 0x18
224 #define CMD_DMARMB 0x12
225 #define CMD_DMASEV 0x34
226 #define CMD_DMAST 0x08
227 #define CMD_DMASTP 0x29
228 #define CMD_DMASTZ 0x0c
229 #define CMD_DMAWFE 0x36
230 #define CMD_DMAWFP 0x30
231 #define CMD_DMAWMB 0x13
232 
233 #define SZ_DMAADDH 3
234 #define SZ_DMAEND 1
235 #define SZ_DMAFLUSHP 2
236 #define SZ_DMALD 1
237 #define SZ_DMALDP 2
238 #define SZ_DMALP 2
239 #define SZ_DMALPEND 2
240 #define SZ_DMAKILL 1
241 #define SZ_DMAMOV 6
242 #define SZ_DMANOP 1
243 #define SZ_DMARMB 1
244 #define SZ_DMASEV 2
245 #define SZ_DMAST 1
246 #define SZ_DMASTP 2
247 #define SZ_DMASTZ 1
248 #define SZ_DMAWFE 2
249 #define SZ_DMAWFP 2
250 #define SZ_DMAWMB 1
251 #define SZ_DMAGO 6
252 
253 #define BRST_LEN(ccr) ((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1)
254 #define BRST_SIZE(ccr) (1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7))
255 
256 #define BYTE_TO_BURST(b, ccr) ((b) / BRST_SIZE(ccr) / BRST_LEN(ccr))
257 #define BURST_TO_BYTE(c, ccr) ((c) * BRST_SIZE(ccr) * BRST_LEN(ccr))
258 
259 /*
260  * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req
261  * at 1byte/burst for P<->M and M<->M respectively.
262  * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req
263  * should be enough for P<->M and M<->M respectively.
264  */
265 #define MCODE_BUFF_PER_REQ 256
266 
267 /* If the _pl330_req is available to the client */
268 #define IS_FREE(req) (*((u8 *)((req)->mc_cpu)) == CMD_DMAEND)
269 
270 /* Use this _only_ to wait on transient states */
271 #define UNTIL(t, s) while (!(_state(t) & (s))) cpu_relax();
272 
273 #ifdef PL330_DEBUG_MCGEN
274 static unsigned cmd_line;
275 #define PL330_DBGCMD_DUMP(off, x...) do { \
276  printk("%x:", cmd_line); \
277  printk(x); \
278  cmd_line += off; \
279  } while (0)
280 #define PL330_DBGMC_START(addr) (cmd_line = addr)
281 #else
282 #define PL330_DBGCMD_DUMP(off, x...) do {} while (0)
283 #define PL330_DBGMC_START(addr) do {} while (0)
284 #endif
285 
286 /* The number of default descriptors */
287 
288 #define NR_DEFAULT_DESC 16
289 
290 /* Populated by the PL330 core driver for DMA API driver's info */
291 struct pl330_config {
294 #define DMAC_MODE_NS (1 << 0)
295  unsigned int mode;
296  unsigned int data_bus_width:10; /* In number of bits */
297  unsigned int data_buf_dep:10;
298  unsigned int num_chan:4;
299  unsigned int num_peri:6;
301  unsigned int num_events:6;
303 };
304 
305 /* Handle to the DMAC provided to the PL330 core */
306 struct pl330_info {
307  /* Owning device */
308  struct device *dev;
309  /* Size of MicroCode buffers for each channel. */
310  unsigned mcbufsz;
311  /* ioremap'ed address of PL330 registers. */
312  void __iomem *base;
313  /* Client can freely use it. */
314  void *client_data;
315  /* PL330 core data, Client must not touch it. */
316  void *pl330_data;
317  /* Populated by the PL330 core driver during pl330_add */
319  /*
320  * If the DMAC has some reset mechanism, then the
321  * client may want to provide pointer to the method.
322  */
323  void (*dmac_reset)(struct pl330_info *pi);
324 };
325 
334 struct pl330_reqcfg {
335  /* Address Incrementing */
336  unsigned dst_inc:1;
337  unsigned src_inc:1;
338 
339  /*
340  * For now, the SRC & DST protection levels
341  * and burst size/length are assumed same.
342  */
343  bool nonsecure;
346  unsigned brst_len:5;
347  unsigned brst_size:3; /* in power of 2 */
348 
353 };
354 
355 /*
356  * One cycle of DMAC operation.
357  * There may be more than one xfer in a request.
358  */
359 struct pl330_xfer {
362  /* Size to xfer */
364  /*
365  * Pointer to next xfer in the list.
366  * The last xfer in the req must point to NULL.
367  */
368  struct pl330_xfer *next;
369 };
370 
371 /* The xfer callbacks are made with one of these arguments. */
373  /* The all xfers in the request were success. */
375  /* If req aborted due to global error. */
377  /* If req failed due to problem with Channel. */
379 };
380 
381 /* A request defining Scatter-Gather List ending with NULL xfer. */
382 struct pl330_req {
384  /* Index of peripheral for the xfer. */
385  unsigned peri:5;
386  /* Unique token for this xfer, set by the client. */
387  void *token;
388  /* Callback to be called after xfer. */
389  void (*xfer_cb)(void *token, enum pl330_op_err err);
390  /* If NULL, req will be done at last set parameters. */
391  struct pl330_reqcfg *cfg;
392  /* Pointer to first xfer in the request. */
393  struct pl330_xfer *x;
394  /* Hook to attach to DMAC's list of reqs with due callback */
395  struct list_head rqd;
396 };
397 
398 /*
399  * To know the status of the channel and DMAC, the client
400  * provides a pointer to this structure. The PL330 core
401  * fills it with current information.
402  */
404  /*
405  * If the DMAC engine halted due to some error,
406  * the client should remove-add DMAC.
407  */
409  /*
410  * If channel is halted due to some error,
411  * the client should ABORT/FLUSH and START the channel.
412  */
413  bool faulting;
414  /* Location of last load */
416  /* Location of last store */
418  /*
419  * Pointer to the currently active req, NULL if channel is
420  * inactive, even though the requests may be present.
421  */
423  /* Pointer to req waiting second in the queue if any. */
425 };
426 
428  /* Start the channel */
430  /* Abort the active xfer */
432  /* Stop xfer and flush queue */
434 };
435 
436 struct _xfer_spec {
438  struct pl330_req *r;
439  struct pl330_xfer *x;
440 };
441 
443  SAR = 0,
446 };
447 
448 enum pl330_dst {
449  SRC = 0,
451 };
452 
457 };
458 
459 struct _pl330_req {
461  void *mc_cpu;
462  /* Number of bytes taken to setup MC for the req */
464  struct pl330_req *r;
465 };
466 
467 /* ToBeDone for tasklet */
468 struct _pl330_tbd {
472 };
473 
474 /* A DMAC Thread */
475 struct pl330_thread {
477  int ev;
478  /* If the channel is not yet acquired by any client */
479  bool free;
480  /* Parent DMAC */
481  struct pl330_dmac *dmac;
482  /* Only two at a time */
483  struct _pl330_req req[2];
484  /* Index of the last enqueued request */
485  unsigned lstenq;
486  /* Index of the last submitted request or -1 if the DMA is stopped */
488 };
489 
494 };
495 
496 /* A DMAC */
497 struct pl330_dmac {
499  /* Holds list of reqs with due callbacks */
501  /* Pointer to platform specific stuff */
502  struct pl330_info *pinfo;
503  /* Maximum possible events/irqs */
504  int events[32];
505  /* BUS address of MicroCode buffer */
507  /* CPU address of MicroCode buffer */
508  void *mcode_cpu;
509  /* List of all Channel threads */
511  /* Pointer to the MANAGER thread */
513  /* To handle bad news in interrupt */
516  /* State of DMAC operation */
518 };
519 
521  /* In the DMAC pool */
523  /*
524  * Allocated to some channel during prep_xxx
525  * Also may be sitting on the work_list.
526  */
528  /*
529  * Sitting on the work_list and already submitted
530  * to the PL330 core. Not more than two descriptors
531  * of a channel can be BUSY at any time.
532  */
534  /*
535  * Sitting on the channel work_list but xfer done
536  * by PL330 core
537  */
539 };
540 
542  /* Schedule desc completion */
544 
545  /* DMA-Engine Channel */
546  struct dma_chan chan;
547 
548  /* List of to be xfered descriptors */
550 
551  /* Pointer to the DMAC that manages this channel,
552  * NULL if the channel is available to be acquired.
553  * As the parent, this DMAC also provides descriptors
554  * to the channel.
555  */
557 
558  /* To protect channel manipulation */
560 
561  /* Token of a hardware channel thread of PL330 DMAC
562  * NULL if the channel is available to be acquired.
563  */
564  void *pl330_chid;
565 
566  /* For D-to-M and M-to-D channels */
567  int burst_sz; /* the peripheral fifo width */
568  int burst_len; /* the number of burst */
570 
571  /* for cyclic capability */
572  bool cyclic;
573 };
574 
576  struct pl330_info pif;
577 
578  /* DMA-Engine Device */
579  struct dma_device ddma;
580 
581  /* Pool of descriptors available for the DMAC's channels */
583  /* To protect desc_pool manipulation */
585 
586  /* Peripheral channels connected to this DMAC */
587  struct dma_pl330_chan *peripherals; /* keep at end */
588 };
589 
591  /* To attach to a queue as child */
592  struct list_head node;
593 
594  /* Descriptor for the DMA Engine API */
596 
597  /* Xfer for PL330 core */
598  struct pl330_xfer px;
599 
601  struct pl330_req req;
602 
604 
605  /* The channel which currently holds this desc */
607 };
608 
609 static inline void _callback(struct pl330_req *r, enum pl330_op_err err)
610 {
611  if (r && r->xfer_cb)
612  r->xfer_cb(r->token, err);
613 }
614 
615 static inline bool _queue_empty(struct pl330_thread *thrd)
616 {
617  return (IS_FREE(&thrd->req[0]) && IS_FREE(&thrd->req[1]))
618  ? true : false;
619 }
620 
621 static inline bool _queue_full(struct pl330_thread *thrd)
622 {
623  return (IS_FREE(&thrd->req[0]) || IS_FREE(&thrd->req[1]))
624  ? false : true;
625 }
626 
627 static inline bool is_manager(struct pl330_thread *thrd)
628 {
629  struct pl330_dmac *pl330 = thrd->dmac;
630 
631  /* MANAGER is indexed at the end */
632  if (thrd->id == pl330->pinfo->pcfg.num_chan)
633  return true;
634  else
635  return false;
636 }
637 
638 /* If manager of the thread is in Non-Secure mode */
639 static inline bool _manager_ns(struct pl330_thread *thrd)
640 {
641  struct pl330_dmac *pl330 = thrd->dmac;
642 
643  return (pl330->pinfo->pcfg.mode & DMAC_MODE_NS) ? true : false;
644 }
645 
646 static inline u32 get_id(struct pl330_info *pi, u32 off)
647 {
648  void __iomem *regs = pi->base;
649  u32 id = 0;
650 
651  id |= (readb(regs + off + 0x0) << 0);
652  id |= (readb(regs + off + 0x4) << 8);
653  id |= (readb(regs + off + 0x8) << 16);
654  id |= (readb(regs + off + 0xc) << 24);
655 
656  return id;
657 }
658 
659 static inline u32 get_revision(u32 periph_id)
660 {
661  return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK;
662 }
663 
664 static inline u32 _emit_ADDH(unsigned dry_run, u8 buf[],
665  enum pl330_dst da, u16 val)
666 {
667  if (dry_run)
668  return SZ_DMAADDH;
669 
670  buf[0] = CMD_DMAADDH;
671  buf[0] |= (da << 1);
672  *((u16 *)&buf[1]) = val;
673 
674  PL330_DBGCMD_DUMP(SZ_DMAADDH, "\tDMAADDH %s %u\n",
675  da == 1 ? "DA" : "SA", val);
676 
677  return SZ_DMAADDH;
678 }
679 
680 static inline u32 _emit_END(unsigned dry_run, u8 buf[])
681 {
682  if (dry_run)
683  return SZ_DMAEND;
684 
685  buf[0] = CMD_DMAEND;
686 
687  PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n");
688 
689  return SZ_DMAEND;
690 }
691 
692 static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri)
693 {
694  if (dry_run)
695  return SZ_DMAFLUSHP;
696 
697  buf[0] = CMD_DMAFLUSHP;
698 
699  peri &= 0x1f;
700  peri <<= 3;
701  buf[1] = peri;
702 
703  PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3);
704 
705  return SZ_DMAFLUSHP;
706 }
707 
708 static inline u32 _emit_LD(unsigned dry_run, u8 buf[], enum pl330_cond cond)
709 {
710  if (dry_run)
711  return SZ_DMALD;
712 
713  buf[0] = CMD_DMALD;
714 
715  if (cond == SINGLE)
716  buf[0] |= (0 << 1) | (1 << 0);
717  else if (cond == BURST)
718  buf[0] |= (1 << 1) | (1 << 0);
719 
720  PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n",
721  cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
722 
723  return SZ_DMALD;
724 }
725 
726 static inline u32 _emit_LDP(unsigned dry_run, u8 buf[],
727  enum pl330_cond cond, u8 peri)
728 {
729  if (dry_run)
730  return SZ_DMALDP;
731 
732  buf[0] = CMD_DMALDP;
733 
734  if (cond == BURST)
735  buf[0] |= (1 << 1);
736 
737  peri &= 0x1f;
738  peri <<= 3;
739  buf[1] = peri;
740 
741  PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n",
742  cond == SINGLE ? 'S' : 'B', peri >> 3);
743 
744  return SZ_DMALDP;
745 }
746 
747 static inline u32 _emit_LP(unsigned dry_run, u8 buf[],
748  unsigned loop, u8 cnt)
749 {
750  if (dry_run)
751  return SZ_DMALP;
752 
753  buf[0] = CMD_DMALP;
754 
755  if (loop)
756  buf[0] |= (1 << 1);
757 
758  cnt--; /* DMAC increments by 1 internally */
759  buf[1] = cnt;
760 
761  PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt);
762 
763  return SZ_DMALP;
764 }
765 
766 struct _arg_LPEND {
768  bool forever;
769  unsigned loop;
771 };
772 
773 static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[],
774  const struct _arg_LPEND *arg)
775 {
776  enum pl330_cond cond = arg->cond;
777  bool forever = arg->forever;
778  unsigned loop = arg->loop;
779  u8 bjump = arg->bjump;
780 
781  if (dry_run)
782  return SZ_DMALPEND;
783 
784  buf[0] = CMD_DMALPEND;
785 
786  if (loop)
787  buf[0] |= (1 << 2);
788 
789  if (!forever)
790  buf[0] |= (1 << 4);
791 
792  if (cond == SINGLE)
793  buf[0] |= (0 << 1) | (1 << 0);
794  else if (cond == BURST)
795  buf[0] |= (1 << 1) | (1 << 0);
796 
797  buf[1] = bjump;
798 
799  PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n",
800  forever ? "FE" : "END",
801  cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'),
802  loop ? '1' : '0',
803  bjump);
804 
805  return SZ_DMALPEND;
806 }
807 
808 static inline u32 _emit_KILL(unsigned dry_run, u8 buf[])
809 {
810  if (dry_run)
811  return SZ_DMAKILL;
812 
813  buf[0] = CMD_DMAKILL;
814 
815  return SZ_DMAKILL;
816 }
817 
818 static inline u32 _emit_MOV(unsigned dry_run, u8 buf[],
819  enum dmamov_dst dst, u32 val)
820 {
821  if (dry_run)
822  return SZ_DMAMOV;
823 
824  buf[0] = CMD_DMAMOV;
825  buf[1] = dst;
826  *((u32 *)&buf[2]) = val;
827 
828  PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n",
829  dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val);
830 
831  return SZ_DMAMOV;
832 }
833 
834 static inline u32 _emit_NOP(unsigned dry_run, u8 buf[])
835 {
836  if (dry_run)
837  return SZ_DMANOP;
838 
839  buf[0] = CMD_DMANOP;
840 
841  PL330_DBGCMD_DUMP(SZ_DMANOP, "\tDMANOP\n");
842 
843  return SZ_DMANOP;
844 }
845 
846 static inline u32 _emit_RMB(unsigned dry_run, u8 buf[])
847 {
848  if (dry_run)
849  return SZ_DMARMB;
850 
851  buf[0] = CMD_DMARMB;
852 
853  PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n");
854 
855  return SZ_DMARMB;
856 }
857 
858 static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev)
859 {
860  if (dry_run)
861  return SZ_DMASEV;
862 
863  buf[0] = CMD_DMASEV;
864 
865  ev &= 0x1f;
866  ev <<= 3;
867  buf[1] = ev;
868 
869  PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3);
870 
871  return SZ_DMASEV;
872 }
873 
874 static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond)
875 {
876  if (dry_run)
877  return SZ_DMAST;
878 
879  buf[0] = CMD_DMAST;
880 
881  if (cond == SINGLE)
882  buf[0] |= (0 << 1) | (1 << 0);
883  else if (cond == BURST)
884  buf[0] |= (1 << 1) | (1 << 0);
885 
886  PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n",
887  cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
888 
889  return SZ_DMAST;
890 }
891 
892 static inline u32 _emit_STP(unsigned dry_run, u8 buf[],
893  enum pl330_cond cond, u8 peri)
894 {
895  if (dry_run)
896  return SZ_DMASTP;
897 
898  buf[0] = CMD_DMASTP;
899 
900  if (cond == BURST)
901  buf[0] |= (1 << 1);
902 
903  peri &= 0x1f;
904  peri <<= 3;
905  buf[1] = peri;
906 
907  PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n",
908  cond == SINGLE ? 'S' : 'B', peri >> 3);
909 
910  return SZ_DMASTP;
911 }
912 
913 static inline u32 _emit_STZ(unsigned dry_run, u8 buf[])
914 {
915  if (dry_run)
916  return SZ_DMASTZ;
917 
918  buf[0] = CMD_DMASTZ;
919 
920  PL330_DBGCMD_DUMP(SZ_DMASTZ, "\tDMASTZ\n");
921 
922  return SZ_DMASTZ;
923 }
924 
925 static inline u32 _emit_WFE(unsigned dry_run, u8 buf[], u8 ev,
926  unsigned invalidate)
927 {
928  if (dry_run)
929  return SZ_DMAWFE;
930 
931  buf[0] = CMD_DMAWFE;
932 
933  ev &= 0x1f;
934  ev <<= 3;
935  buf[1] = ev;
936 
937  if (invalidate)
938  buf[1] |= (1 << 1);
939 
940  PL330_DBGCMD_DUMP(SZ_DMAWFE, "\tDMAWFE %u%s\n",
941  ev >> 3, invalidate ? ", I" : "");
942 
943  return SZ_DMAWFE;
944 }
945 
946 static inline u32 _emit_WFP(unsigned dry_run, u8 buf[],
947  enum pl330_cond cond, u8 peri)
948 {
949  if (dry_run)
950  return SZ_DMAWFP;
951 
952  buf[0] = CMD_DMAWFP;
953 
954  if (cond == SINGLE)
955  buf[0] |= (0 << 1) | (0 << 0);
956  else if (cond == BURST)
957  buf[0] |= (1 << 1) | (0 << 0);
958  else
959  buf[0] |= (0 << 1) | (1 << 0);
960 
961  peri &= 0x1f;
962  peri <<= 3;
963  buf[1] = peri;
964 
965  PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n",
966  cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3);
967 
968  return SZ_DMAWFP;
969 }
970 
971 static inline u32 _emit_WMB(unsigned dry_run, u8 buf[])
972 {
973  if (dry_run)
974  return SZ_DMAWMB;
975 
976  buf[0] = CMD_DMAWMB;
977 
978  PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n");
979 
980  return SZ_DMAWMB;
981 }
982 
983 struct _arg_GO {
986  unsigned ns;
987 };
988 
989 static inline u32 _emit_GO(unsigned dry_run, u8 buf[],
990  const struct _arg_GO *arg)
991 {
992  u8 chan = arg->chan;
993  u32 addr = arg->addr;
994  unsigned ns = arg->ns;
995 
996  if (dry_run)
997  return SZ_DMAGO;
998 
999  buf[0] = CMD_DMAGO;
1000  buf[0] |= (ns << 1);
1001 
1002  buf[1] = chan & 0x7;
1003 
1004  *((u32 *)&buf[2]) = addr;
1005 
1006  return SZ_DMAGO;
1007 }
1008 
1009 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
1010 
1011 /* Returns Time-Out */
1012 static bool _until_dmac_idle(struct pl330_thread *thrd)
1013 {
1014  void __iomem *regs = thrd->dmac->pinfo->base;
1015  unsigned long loops = msecs_to_loops(5);
1016 
1017  do {
1018  /* Until Manager is Idle */
1019  if (!(readl(regs + DBGSTATUS) & DBG_BUSY))
1020  break;
1021 
1022  cpu_relax();
1023  } while (--loops);
1024 
1025  if (!loops)
1026  return true;
1027 
1028  return false;
1029 }
1030 
1031 static inline void _execute_DBGINSN(struct pl330_thread *thrd,
1032  u8 insn[], bool as_manager)
1033 {
1034  void __iomem *regs = thrd->dmac->pinfo->base;
1035  u32 val;
1036 
1037  val = (insn[0] << 16) | (insn[1] << 24);
1038  if (!as_manager) {
1039  val |= (1 << 0);
1040  val |= (thrd->id << 8); /* Channel Number */
1041  }
1042  writel(val, regs + DBGINST0);
1043 
1044  val = *((u32 *)&insn[2]);
1045  writel(val, regs + DBGINST1);
1046 
1047  /* If timed out due to halted state-machine */
1048  if (_until_dmac_idle(thrd)) {
1049  dev_err(thrd->dmac->pinfo->dev, "DMAC halted!\n");
1050  return;
1051  }
1052 
1053  /* Get going */
1054  writel(0, regs + DBGCMD);
1055 }
1056 
1057 /*
1058  * Mark a _pl330_req as free.
1059  * We do it by writing DMAEND as the first instruction
1060  * because no valid request is going to have DMAEND as
1061  * its first instruction to execute.
1062  */
1063 static void mark_free(struct pl330_thread *thrd, int idx)
1064 {
1065  struct _pl330_req *req = &thrd->req[idx];
1066 
1067  _emit_END(0, req->mc_cpu);
1068  req->mc_len = 0;
1069 
1070  thrd->req_running = -1;
1071 }
1072 
1073 static inline u32 _state(struct pl330_thread *thrd)
1074 {
1075  void __iomem *regs = thrd->dmac->pinfo->base;
1076  u32 val;
1077 
1078  if (is_manager(thrd))
1079  val = readl(regs + DS) & 0xf;
1080  else
1081  val = readl(regs + CS(thrd->id)) & 0xf;
1082 
1083  switch (val) {
1084  case DS_ST_STOP:
1085  return PL330_STATE_STOPPED;
1086  case DS_ST_EXEC:
1087  return PL330_STATE_EXECUTING;
1088  case DS_ST_CMISS:
1089  return PL330_STATE_CACHEMISS;
1090  case DS_ST_UPDTPC:
1091  return PL330_STATE_UPDTPC;
1092  case DS_ST_WFE:
1093  return PL330_STATE_WFE;
1094  case DS_ST_FAULT:
1095  return PL330_STATE_FAULTING;
1096  case DS_ST_ATBRR:
1097  if (is_manager(thrd))
1098  return PL330_STATE_INVALID;
1099  else
1100  return PL330_STATE_ATBARRIER;
1101  case DS_ST_QBUSY:
1102  if (is_manager(thrd))
1103  return PL330_STATE_INVALID;
1104  else
1105  return PL330_STATE_QUEUEBUSY;
1106  case DS_ST_WFP:
1107  if (is_manager(thrd))
1108  return PL330_STATE_INVALID;
1109  else
1110  return PL330_STATE_WFP;
1111  case DS_ST_KILL:
1112  if (is_manager(thrd))
1113  return PL330_STATE_INVALID;
1114  else
1115  return PL330_STATE_KILLING;
1116  case DS_ST_CMPLT:
1117  if (is_manager(thrd))
1118  return PL330_STATE_INVALID;
1119  else
1120  return PL330_STATE_COMPLETING;
1121  case DS_ST_FLTCMP:
1122  if (is_manager(thrd))
1123  return PL330_STATE_INVALID;
1124  else
1126  default:
1127  return PL330_STATE_INVALID;
1128  }
1129 }
1130 
1131 static void _stop(struct pl330_thread *thrd)
1132 {
1133  void __iomem *regs = thrd->dmac->pinfo->base;
1134  u8 insn[6] = {0, 0, 0, 0, 0, 0};
1135 
1136  if (_state(thrd) == PL330_STATE_FAULT_COMPLETING)
1138 
1139  /* Return if nothing needs to be done */
1140  if (_state(thrd) == PL330_STATE_COMPLETING
1141  || _state(thrd) == PL330_STATE_KILLING
1142  || _state(thrd) == PL330_STATE_STOPPED)
1143  return;
1144 
1145  _emit_KILL(0, insn);
1146 
1147  /* Stop generating interrupts for SEV */
1148  writel(readl(regs + INTEN) & ~(1 << thrd->ev), regs + INTEN);
1149 
1150  _execute_DBGINSN(thrd, insn, is_manager(thrd));
1151 }
1152 
1153 /* Start doing req 'idx' of thread 'thrd' */
1154 static bool _trigger(struct pl330_thread *thrd)
1155 {
1156  void __iomem *regs = thrd->dmac->pinfo->base;
1157  struct _pl330_req *req;
1158  struct pl330_req *r;
1159  struct _arg_GO go;
1160  unsigned ns;
1161  u8 insn[6] = {0, 0, 0, 0, 0, 0};
1162  int idx;
1163 
1164  /* Return if already ACTIVE */
1165  if (_state(thrd) != PL330_STATE_STOPPED)
1166  return true;
1167 
1168  idx = 1 - thrd->lstenq;
1169  if (!IS_FREE(&thrd->req[idx]))
1170  req = &thrd->req[idx];
1171  else {
1172  idx = thrd->lstenq;
1173  if (!IS_FREE(&thrd->req[idx]))
1174  req = &thrd->req[idx];
1175  else
1176  req = NULL;
1177  }
1178 
1179  /* Return if no request */
1180  if (!req || !req->r)
1181  return true;
1182 
1183  r = req->r;
1184 
1185  if (r->cfg)
1186  ns = r->cfg->nonsecure ? 1 : 0;
1187  else if (readl(regs + CS(thrd->id)) & CS_CNS)
1188  ns = 1;
1189  else
1190  ns = 0;
1191 
1192  /* See 'Abort Sources' point-4 at Page 2-25 */
1193  if (_manager_ns(thrd) && !ns)
1194  dev_info(thrd->dmac->pinfo->dev, "%s:%d Recipe for ABORT!\n",
1195  __func__, __LINE__);
1196 
1197  go.chan = thrd->id;
1198  go.addr = req->mc_bus;
1199  go.ns = ns;
1200  _emit_GO(0, insn, &go);
1201 
1202  /* Set to generate interrupts for SEV */
1203  writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN);
1204 
1205  /* Only manager can execute GO */
1206  _execute_DBGINSN(thrd, insn, true);
1207 
1208  thrd->req_running = idx;
1209 
1210  return true;
1211 }
1212 
1213 static bool _start(struct pl330_thread *thrd)
1214 {
1215  switch (_state(thrd)) {
1218 
1219  if (_state(thrd) == PL330_STATE_KILLING)
1220  UNTIL(thrd, PL330_STATE_STOPPED)
1221 
1222  case PL330_STATE_FAULTING:
1223  _stop(thrd);
1224 
1225  case PL330_STATE_KILLING:
1227  UNTIL(thrd, PL330_STATE_STOPPED)
1228 
1229  case PL330_STATE_STOPPED:
1230  return _trigger(thrd);
1231 
1232  case PL330_STATE_WFP:
1233  case PL330_STATE_QUEUEBUSY:
1234  case PL330_STATE_ATBARRIER:
1235  case PL330_STATE_UPDTPC:
1236  case PL330_STATE_CACHEMISS:
1237  case PL330_STATE_EXECUTING:
1238  return true;
1239 
1240  case PL330_STATE_WFE: /* For RESUME, nothing yet */
1241  default:
1242  return false;
1243  }
1244 }
1245 
1246 static inline int _ldst_memtomem(unsigned dry_run, u8 buf[],
1247  const struct _xfer_spec *pxs, int cyc)
1248 {
1249  int off = 0;
1250  struct pl330_config *pcfg = pxs->r->cfg->pcfg;
1251 
1252  /* check lock-up free version */
1253  if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) {
1254  while (cyc--) {
1255  off += _emit_LD(dry_run, &buf[off], ALWAYS);
1256  off += _emit_ST(dry_run, &buf[off], ALWAYS);
1257  }
1258  } else {
1259  while (cyc--) {
1260  off += _emit_LD(dry_run, &buf[off], ALWAYS);
1261  off += _emit_RMB(dry_run, &buf[off]);
1262  off += _emit_ST(dry_run, &buf[off], ALWAYS);
1263  off += _emit_WMB(dry_run, &buf[off]);
1264  }
1265  }
1266 
1267  return off;
1268 }
1269 
1270 static inline int _ldst_devtomem(unsigned dry_run, u8 buf[],
1271  const struct _xfer_spec *pxs, int cyc)
1272 {
1273  int off = 0;
1274 
1275  while (cyc--) {
1276  off += _emit_WFP(dry_run, &buf[off], SINGLE, pxs->r->peri);
1277  off += _emit_LDP(dry_run, &buf[off], SINGLE, pxs->r->peri);
1278  off += _emit_ST(dry_run, &buf[off], ALWAYS);
1279  off += _emit_FLUSHP(dry_run, &buf[off], pxs->r->peri);
1280  }
1281 
1282  return off;
1283 }
1284 
1285 static inline int _ldst_memtodev(unsigned dry_run, u8 buf[],
1286  const struct _xfer_spec *pxs, int cyc)
1287 {
1288  int off = 0;
1289 
1290  while (cyc--) {
1291  off += _emit_WFP(dry_run, &buf[off], SINGLE, pxs->r->peri);
1292  off += _emit_LD(dry_run, &buf[off], ALWAYS);
1293  off += _emit_STP(dry_run, &buf[off], SINGLE, pxs->r->peri);
1294  off += _emit_FLUSHP(dry_run, &buf[off], pxs->r->peri);
1295  }
1296 
1297  return off;
1298 }
1299 
1300 static int _bursts(unsigned dry_run, u8 buf[],
1301  const struct _xfer_spec *pxs, int cyc)
1302 {
1303  int off = 0;
1304 
1305  switch (pxs->r->rqtype) {
1306  case MEMTODEV:
1307  off += _ldst_memtodev(dry_run, &buf[off], pxs, cyc);
1308  break;
1309  case DEVTOMEM:
1310  off += _ldst_devtomem(dry_run, &buf[off], pxs, cyc);
1311  break;
1312  case MEMTOMEM:
1313  off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc);
1314  break;
1315  default:
1316  off += 0x40000000; /* Scare off the Client */
1317  break;
1318  }
1319 
1320  return off;
1321 }
1322 
1323 /* Returns bytes consumed and updates bursts */
1324 static inline int _loop(unsigned dry_run, u8 buf[],
1325  unsigned long *bursts, const struct _xfer_spec *pxs)
1326 {
1327  int cyc, cycmax, szlp, szlpend, szbrst, off;
1328  unsigned lcnt0, lcnt1, ljmp0, ljmp1;
1329  struct _arg_LPEND lpend;
1330 
1331  /* Max iterations possible in DMALP is 256 */
1332  if (*bursts >= 256*256) {
1333  lcnt1 = 256;
1334  lcnt0 = 256;
1335  cyc = *bursts / lcnt1 / lcnt0;
1336  } else if (*bursts > 256) {
1337  lcnt1 = 256;
1338  lcnt0 = *bursts / lcnt1;
1339  cyc = 1;
1340  } else {
1341  lcnt1 = *bursts;
1342  lcnt0 = 0;
1343  cyc = 1;
1344  }
1345 
1346  szlp = _emit_LP(1, buf, 0, 0);
1347  szbrst = _bursts(1, buf, pxs, 1);
1348 
1349  lpend.cond = ALWAYS;
1350  lpend.forever = false;
1351  lpend.loop = 0;
1352  lpend.bjump = 0;
1353  szlpend = _emit_LPEND(1, buf, &lpend);
1354 
1355  if (lcnt0) {
1356  szlp *= 2;
1357  szlpend *= 2;
1358  }
1359 
1360  /*
1361  * Max bursts that we can unroll due to limit on the
1362  * size of backward jump that can be encoded in DMALPEND
1363  * which is 8-bits and hence 255
1364  */
1365  cycmax = (255 - (szlp + szlpend)) / szbrst;
1366 
1367  cyc = (cycmax < cyc) ? cycmax : cyc;
1368 
1369  off = 0;
1370 
1371  if (lcnt0) {
1372  off += _emit_LP(dry_run, &buf[off], 0, lcnt0);
1373  ljmp0 = off;
1374  }
1375 
1376  off += _emit_LP(dry_run, &buf[off], 1, lcnt1);
1377  ljmp1 = off;
1378 
1379  off += _bursts(dry_run, &buf[off], pxs, cyc);
1380 
1381  lpend.cond = ALWAYS;
1382  lpend.forever = false;
1383  lpend.loop = 1;
1384  lpend.bjump = off - ljmp1;
1385  off += _emit_LPEND(dry_run, &buf[off], &lpend);
1386 
1387  if (lcnt0) {
1388  lpend.cond = ALWAYS;
1389  lpend.forever = false;
1390  lpend.loop = 0;
1391  lpend.bjump = off - ljmp0;
1392  off += _emit_LPEND(dry_run, &buf[off], &lpend);
1393  }
1394 
1395  *bursts = lcnt1 * cyc;
1396  if (lcnt0)
1397  *bursts *= lcnt0;
1398 
1399  return off;
1400 }
1401 
1402 static inline int _setup_loops(unsigned dry_run, u8 buf[],
1403  const struct _xfer_spec *pxs)
1404 {
1405  struct pl330_xfer *x = pxs->x;
1406  u32 ccr = pxs->ccr;
1407  unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr);
1408  int off = 0;
1409 
1410  while (bursts) {
1411  c = bursts;
1412  off += _loop(dry_run, &buf[off], &c, pxs);
1413  bursts -= c;
1414  }
1415 
1416  return off;
1417 }
1418 
1419 static inline int _setup_xfer(unsigned dry_run, u8 buf[],
1420  const struct _xfer_spec *pxs)
1421 {
1422  struct pl330_xfer *x = pxs->x;
1423  int off = 0;
1424 
1425  /* DMAMOV SAR, x->src_addr */
1426  off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr);
1427  /* DMAMOV DAR, x->dst_addr */
1428  off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr);
1429 
1430  /* Setup Loop(s) */
1431  off += _setup_loops(dry_run, &buf[off], pxs);
1432 
1433  return off;
1434 }
1435 
1436 /*
1437  * A req is a sequence of one or more xfer units.
1438  * Returns the number of bytes taken to setup the MC for the req.
1439  */
1440 static int _setup_req(unsigned dry_run, struct pl330_thread *thrd,
1441  unsigned index, struct _xfer_spec *pxs)
1442 {
1443  struct _pl330_req *req = &thrd->req[index];
1444  struct pl330_xfer *x;
1445  u8 *buf = req->mc_cpu;
1446  int off = 0;
1447 
1448  PL330_DBGMC_START(req->mc_bus);
1449 
1450  /* DMAMOV CCR, ccr */
1451  off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr);
1452 
1453  x = pxs->r->x;
1454  do {
1455  /* Error if xfer length is not aligned at burst size */
1456  if (x->bytes % (BRST_SIZE(pxs->ccr) * BRST_LEN(pxs->ccr)))
1457  return -EINVAL;
1458 
1459  pxs->x = x;
1460  off += _setup_xfer(dry_run, &buf[off], pxs);
1461 
1462  x = x->next;
1463  } while (x);
1464 
1465  /* DMASEV peripheral/event */
1466  off += _emit_SEV(dry_run, &buf[off], thrd->ev);
1467  /* DMAEND */
1468  off += _emit_END(dry_run, &buf[off]);
1469 
1470  return off;
1471 }
1472 
1473 static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc)
1474 {
1475  u32 ccr = 0;
1476 
1477  if (rqc->src_inc)
1478  ccr |= CC_SRCINC;
1479 
1480  if (rqc->dst_inc)
1481  ccr |= CC_DSTINC;
1482 
1483  /* We set same protection levels for Src and DST for now */
1484  if (rqc->privileged)
1485  ccr |= CC_SRCPRI | CC_DSTPRI;
1486  if (rqc->nonsecure)
1487  ccr |= CC_SRCNS | CC_DSTNS;
1488  if (rqc->insnaccess)
1489  ccr |= CC_SRCIA | CC_DSTIA;
1490 
1491  ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT);
1492  ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT);
1493 
1494  ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT);
1495  ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT);
1496 
1497  ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT);
1498  ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT);
1499 
1500  ccr |= (rqc->swap << CC_SWAP_SHFT);
1501 
1502  return ccr;
1503 }
1504 
1505 static inline bool _is_valid(u32 ccr)
1506 {
1507  enum pl330_dstcachectrl dcctl;
1508  enum pl330_srccachectrl scctl;
1509 
1510  dcctl = (ccr >> CC_DSTCCTRL_SHFT) & CC_DRCCCTRL_MASK;
1511  scctl = (ccr >> CC_SRCCCTRL_SHFT) & CC_SRCCCTRL_MASK;
1512 
1513  if (dcctl == DINVALID1 || dcctl == DINVALID2
1514  || scctl == SINVALID1 || scctl == SINVALID2)
1515  return false;
1516  else
1517  return true;
1518 }
1519 
1520 /*
1521  * Submit a list of xfers after which the client wants notification.
1522  * Client is not notified after each xfer unit, just once after all
1523  * xfer units are done or some error occurs.
1524  */
1525 static int pl330_submit_req(void *ch_id, struct pl330_req *r)
1526 {
1527  struct pl330_thread *thrd = ch_id;
1528  struct pl330_dmac *pl330;
1529  struct pl330_info *pi;
1530  struct _xfer_spec xs;
1531  unsigned long flags;
1532  void __iomem *regs;
1533  unsigned idx;
1534  u32 ccr;
1535  int ret = 0;
1536 
1537  /* No Req or Unacquired Channel or DMAC */
1538  if (!r || !thrd || thrd->free)
1539  return -EINVAL;
1540 
1541  pl330 = thrd->dmac;
1542  pi = pl330->pinfo;
1543  regs = pi->base;
1544 
1545  if (pl330->state == DYING
1546  || pl330->dmac_tbd.reset_chan & (1 << thrd->id)) {
1547  dev_info(thrd->dmac->pinfo->dev, "%s:%d\n",
1548  __func__, __LINE__);
1549  return -EAGAIN;
1550  }
1551 
1552  /* If request for non-existing peripheral */
1553  if (r->rqtype != MEMTOMEM && r->peri >= pi->pcfg.num_peri) {
1554  dev_info(thrd->dmac->pinfo->dev,
1555  "%s:%d Invalid peripheral(%u)!\n",
1556  __func__, __LINE__, r->peri);
1557  return -EINVAL;
1558  }
1559 
1560  spin_lock_irqsave(&pl330->lock, flags);
1561 
1562  if (_queue_full(thrd)) {
1563  ret = -EAGAIN;
1564  goto xfer_exit;
1565  }
1566 
1567 
1568  /* Use last settings, if not provided */
1569  if (r->cfg) {
1570  /* Prefer Secure Channel */
1571  if (!_manager_ns(thrd))
1572  r->cfg->nonsecure = 0;
1573  else
1574  r->cfg->nonsecure = 1;
1575 
1576  ccr = _prepare_ccr(r->cfg);
1577  } else {
1578  ccr = readl(regs + CC(thrd->id));
1579  }
1580 
1581  /* If this req doesn't have valid xfer settings */
1582  if (!_is_valid(ccr)) {
1583  ret = -EINVAL;
1584  dev_info(thrd->dmac->pinfo->dev, "%s:%d Invalid CCR(%x)!\n",
1585  __func__, __LINE__, ccr);
1586  goto xfer_exit;
1587  }
1588 
1589  idx = IS_FREE(&thrd->req[0]) ? 0 : 1;
1590 
1591  xs.ccr = ccr;
1592  xs.r = r;
1593 
1594  /* First dry run to check if req is acceptable */
1595  ret = _setup_req(1, thrd, idx, &xs);
1596  if (ret < 0)
1597  goto xfer_exit;
1598 
1599  if (ret > pi->mcbufsz / 2) {
1600  dev_info(thrd->dmac->pinfo->dev,
1601  "%s:%d Trying increasing mcbufsz\n",
1602  __func__, __LINE__);
1603  ret = -ENOMEM;
1604  goto xfer_exit;
1605  }
1606 
1607  /* Hook the request */
1608  thrd->lstenq = idx;
1609  thrd->req[idx].mc_len = _setup_req(0, thrd, idx, &xs);
1610  thrd->req[idx].r = r;
1611 
1612  ret = 0;
1613 
1614 xfer_exit:
1615  spin_unlock_irqrestore(&pl330->lock, flags);
1616 
1617  return ret;
1618 }
1619 
1620 static void pl330_dotask(unsigned long data)
1621 {
1622  struct pl330_dmac *pl330 = (struct pl330_dmac *) data;
1623  struct pl330_info *pi = pl330->pinfo;
1624  unsigned long flags;
1625  int i;
1626 
1627  spin_lock_irqsave(&pl330->lock, flags);
1628 
1629  /* The DMAC itself gone nuts */
1630  if (pl330->dmac_tbd.reset_dmac) {
1631  pl330->state = DYING;
1632  /* Reset the manager too */
1633  pl330->dmac_tbd.reset_mngr = true;
1634  /* Clear the reset flag */
1635  pl330->dmac_tbd.reset_dmac = false;
1636  }
1637 
1638  if (pl330->dmac_tbd.reset_mngr) {
1639  _stop(pl330->manager);
1640  /* Reset all channels */
1641  pl330->dmac_tbd.reset_chan = (1 << pi->pcfg.num_chan) - 1;
1642  /* Clear the reset flag */
1643  pl330->dmac_tbd.reset_mngr = false;
1644  }
1645 
1646  for (i = 0; i < pi->pcfg.num_chan; i++) {
1647 
1648  if (pl330->dmac_tbd.reset_chan & (1 << i)) {
1649  struct pl330_thread *thrd = &pl330->channels[i];
1650  void __iomem *regs = pi->base;
1651  enum pl330_op_err err;
1652 
1653  _stop(thrd);
1654 
1655  if (readl(regs + FSC) & (1 << thrd->id))
1656  err = PL330_ERR_FAIL;
1657  else
1658  err = PL330_ERR_ABORT;
1659 
1660  spin_unlock_irqrestore(&pl330->lock, flags);
1661 
1662  _callback(thrd->req[1 - thrd->lstenq].r, err);
1663  _callback(thrd->req[thrd->lstenq].r, err);
1664 
1665  spin_lock_irqsave(&pl330->lock, flags);
1666 
1667  thrd->req[0].r = NULL;
1668  thrd->req[1].r = NULL;
1669  mark_free(thrd, 0);
1670  mark_free(thrd, 1);
1671 
1672  /* Clear the reset flag */
1673  pl330->dmac_tbd.reset_chan &= ~(1 << i);
1674  }
1675  }
1676 
1677  spin_unlock_irqrestore(&pl330->lock, flags);
1678 
1679  return;
1680 }
1681 
1682 /* Returns 1 if state was updated, 0 otherwise */
1683 static int pl330_update(const struct pl330_info *pi)
1684 {
1685  struct pl330_req *rqdone, *tmp;
1686  struct pl330_dmac *pl330;
1687  unsigned long flags;
1688  void __iomem *regs;
1689  u32 val;
1690  int id, ev, ret = 0;
1691 
1692  if (!pi || !pi->pl330_data)
1693  return 0;
1694 
1695  regs = pi->base;
1696  pl330 = pi->pl330_data;
1697 
1698  spin_lock_irqsave(&pl330->lock, flags);
1699 
1700  val = readl(regs + FSM) & 0x1;
1701  if (val)
1702  pl330->dmac_tbd.reset_mngr = true;
1703  else
1704  pl330->dmac_tbd.reset_mngr = false;
1705 
1706  val = readl(regs + FSC) & ((1 << pi->pcfg.num_chan) - 1);
1707  pl330->dmac_tbd.reset_chan |= val;
1708  if (val) {
1709  int i = 0;
1710  while (i < pi->pcfg.num_chan) {
1711  if (val & (1 << i)) {
1712  dev_info(pi->dev,
1713  "Reset Channel-%d\t CS-%x FTC-%x\n",
1714  i, readl(regs + CS(i)),
1715  readl(regs + FTC(i)));
1716  _stop(&pl330->channels[i]);
1717  }
1718  i++;
1719  }
1720  }
1721 
1722  /* Check which event happened i.e, thread notified */
1723  val = readl(regs + ES);
1724  if (pi->pcfg.num_events < 32
1725  && val & ~((1 << pi->pcfg.num_events) - 1)) {
1726  pl330->dmac_tbd.reset_dmac = true;
1727  dev_err(pi->dev, "%s:%d Unexpected!\n", __func__, __LINE__);
1728  ret = 1;
1729  goto updt_exit;
1730  }
1731 
1732  for (ev = 0; ev < pi->pcfg.num_events; ev++) {
1733  if (val & (1 << ev)) { /* Event occurred */
1734  struct pl330_thread *thrd;
1735  u32 inten = readl(regs + INTEN);
1736  int active;
1737 
1738  /* Clear the event */
1739  if (inten & (1 << ev))
1740  writel(1 << ev, regs + INTCLR);
1741 
1742  ret = 1;
1743 
1744  id = pl330->events[ev];
1745 
1746  thrd = &pl330->channels[id];
1747 
1748  active = thrd->req_running;
1749  if (active == -1) /* Aborted */
1750  continue;
1751 
1752  /* Detach the req */
1753  rqdone = thrd->req[active].r;
1754  thrd->req[active].r = NULL;
1755 
1756  mark_free(thrd, active);
1757 
1758  /* Get going again ASAP */
1759  _start(thrd);
1760 
1761  /* For now, just make a list of callbacks to be done */
1762  list_add_tail(&rqdone->rqd, &pl330->req_done);
1763  }
1764  }
1765 
1766  /* Now that we are in no hurry, do the callbacks */
1767  list_for_each_entry_safe(rqdone, tmp, &pl330->req_done, rqd) {
1768  list_del(&rqdone->rqd);
1769 
1770  spin_unlock_irqrestore(&pl330->lock, flags);
1771  _callback(rqdone, PL330_ERR_NONE);
1772  spin_lock_irqsave(&pl330->lock, flags);
1773  }
1774 
1775 updt_exit:
1776  spin_unlock_irqrestore(&pl330->lock, flags);
1777 
1778  if (pl330->dmac_tbd.reset_dmac
1779  || pl330->dmac_tbd.reset_mngr
1780  || pl330->dmac_tbd.reset_chan) {
1781  ret = 1;
1782  tasklet_schedule(&pl330->tasks);
1783  }
1784 
1785  return ret;
1786 }
1787 
1788 static int pl330_chan_ctrl(void *ch_id, enum pl330_chan_op op)
1789 {
1790  struct pl330_thread *thrd = ch_id;
1791  struct pl330_dmac *pl330;
1792  unsigned long flags;
1793  int ret = 0, active;
1794 
1795  if (!thrd || thrd->free || thrd->dmac->state == DYING)
1796  return -EINVAL;
1797 
1798  pl330 = thrd->dmac;
1799  active = thrd->req_running;
1800 
1801  spin_lock_irqsave(&pl330->lock, flags);
1802 
1803  switch (op) {
1804  case PL330_OP_FLUSH:
1805  /* Make sure the channel is stopped */
1806  _stop(thrd);
1807 
1808  thrd->req[0].r = NULL;
1809  thrd->req[1].r = NULL;
1810  mark_free(thrd, 0);
1811  mark_free(thrd, 1);
1812  break;
1813 
1814  case PL330_OP_ABORT:
1815  /* Make sure the channel is stopped */
1816  _stop(thrd);
1817 
1818  /* ABORT is only for the active req */
1819  if (active == -1)
1820  break;
1821 
1822  thrd->req[active].r = NULL;
1823  mark_free(thrd, active);
1824 
1825  /* Start the next */
1826  case PL330_OP_START:
1827  if ((active == -1) && !_start(thrd))
1828  ret = -EIO;
1829  break;
1830 
1831  default:
1832  ret = -EINVAL;
1833  }
1834 
1835  spin_unlock_irqrestore(&pl330->lock, flags);
1836  return ret;
1837 }
1838 
1839 /* Reserve an event */
1840 static inline int _alloc_event(struct pl330_thread *thrd)
1841 {
1842  struct pl330_dmac *pl330 = thrd->dmac;
1843  struct pl330_info *pi = pl330->pinfo;
1844  int ev;
1845 
1846  for (ev = 0; ev < pi->pcfg.num_events; ev++)
1847  if (pl330->events[ev] == -1) {
1848  pl330->events[ev] = thrd->id;
1849  return ev;
1850  }
1851 
1852  return -1;
1853 }
1854 
1855 static bool _chan_ns(const struct pl330_info *pi, int i)
1856 {
1857  return pi->pcfg.irq_ns & (1 << i);
1858 }
1859 
1860 /* Upon success, returns IdentityToken for the
1861  * allocated channel, NULL otherwise.
1862  */
1863 static void *pl330_request_channel(const struct pl330_info *pi)
1864 {
1865  struct pl330_thread *thrd = NULL;
1866  struct pl330_dmac *pl330;
1867  unsigned long flags;
1868  int chans, i;
1869 
1870  if (!pi || !pi->pl330_data)
1871  return NULL;
1872 
1873  pl330 = pi->pl330_data;
1874 
1875  if (pl330->state == DYING)
1876  return NULL;
1877 
1878  chans = pi->pcfg.num_chan;
1879 
1880  spin_lock_irqsave(&pl330->lock, flags);
1881 
1882  for (i = 0; i < chans; i++) {
1883  thrd = &pl330->channels[i];
1884  if ((thrd->free) && (!_manager_ns(thrd) ||
1885  _chan_ns(pi, i))) {
1886  thrd->ev = _alloc_event(thrd);
1887  if (thrd->ev >= 0) {
1888  thrd->free = false;
1889  thrd->lstenq = 1;
1890  thrd->req[0].r = NULL;
1891  mark_free(thrd, 0);
1892  thrd->req[1].r = NULL;
1893  mark_free(thrd, 1);
1894  break;
1895  }
1896  }
1897  thrd = NULL;
1898  }
1899 
1900  spin_unlock_irqrestore(&pl330->lock, flags);
1901 
1902  return thrd;
1903 }
1904 
1905 /* Release an event */
1906 static inline void _free_event(struct pl330_thread *thrd, int ev)
1907 {
1908  struct pl330_dmac *pl330 = thrd->dmac;
1909  struct pl330_info *pi = pl330->pinfo;
1910 
1911  /* If the event is valid and was held by the thread */
1912  if (ev >= 0 && ev < pi->pcfg.num_events
1913  && pl330->events[ev] == thrd->id)
1914  pl330->events[ev] = -1;
1915 }
1916 
1917 static void pl330_release_channel(void *ch_id)
1918 {
1919  struct pl330_thread *thrd = ch_id;
1920  struct pl330_dmac *pl330;
1921  unsigned long flags;
1922 
1923  if (!thrd || thrd->free)
1924  return;
1925 
1926  _stop(thrd);
1927 
1928  _callback(thrd->req[1 - thrd->lstenq].r, PL330_ERR_ABORT);
1929  _callback(thrd->req[thrd->lstenq].r, PL330_ERR_ABORT);
1930 
1931  pl330 = thrd->dmac;
1932 
1933  spin_lock_irqsave(&pl330->lock, flags);
1934  _free_event(thrd, thrd->ev);
1935  thrd->free = true;
1936  spin_unlock_irqrestore(&pl330->lock, flags);
1937 }
1938 
1939 /* Initialize the structure for PL330 configuration, that can be used
1940  * by the client driver the make best use of the DMAC
1941  */
1942 static void read_dmac_config(struct pl330_info *pi)
1943 {
1944  void __iomem *regs = pi->base;
1945  u32 val;
1946 
1947  val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT;
1948  val &= CRD_DATA_WIDTH_MASK;
1949  pi->pcfg.data_bus_width = 8 * (1 << val);
1950 
1951  val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT;
1952  val &= CRD_DATA_BUFF_MASK;
1953  pi->pcfg.data_buf_dep = val + 1;
1954 
1955  val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT;
1956  val &= CR0_NUM_CHANS_MASK;
1957  val += 1;
1958  pi->pcfg.num_chan = val;
1959 
1960  val = readl(regs + CR0);
1961  if (val & CR0_PERIPH_REQ_SET) {
1962  val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK;
1963  val += 1;
1964  pi->pcfg.num_peri = val;
1965  pi->pcfg.peri_ns = readl(regs + CR4);
1966  } else {
1967  pi->pcfg.num_peri = 0;
1968  }
1969 
1970  val = readl(regs + CR0);
1971  if (val & CR0_BOOT_MAN_NS)
1972  pi->pcfg.mode |= DMAC_MODE_NS;
1973  else
1974  pi->pcfg.mode &= ~DMAC_MODE_NS;
1975 
1976  val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT;
1977  val &= CR0_NUM_EVENTS_MASK;
1978  val += 1;
1979  pi->pcfg.num_events = val;
1980 
1981  pi->pcfg.irq_ns = readl(regs + CR3);
1982 
1983  pi->pcfg.periph_id = get_id(pi, PERIPH_ID);
1984  pi->pcfg.pcell_id = get_id(pi, PCELL_ID);
1985 }
1986 
1987 static inline void _reset_thread(struct pl330_thread *thrd)
1988 {
1989  struct pl330_dmac *pl330 = thrd->dmac;
1990  struct pl330_info *pi = pl330->pinfo;
1991 
1992  thrd->req[0].mc_cpu = pl330->mcode_cpu
1993  + (thrd->id * pi->mcbufsz);
1994  thrd->req[0].mc_bus = pl330->mcode_bus
1995  + (thrd->id * pi->mcbufsz);
1996  thrd->req[0].r = NULL;
1997  mark_free(thrd, 0);
1998 
1999  thrd->req[1].mc_cpu = thrd->req[0].mc_cpu
2000  + pi->mcbufsz / 2;
2001  thrd->req[1].mc_bus = thrd->req[0].mc_bus
2002  + pi->mcbufsz / 2;
2003  thrd->req[1].r = NULL;
2004  mark_free(thrd, 1);
2005 }
2006 
2007 static int dmac_alloc_threads(struct pl330_dmac *pl330)
2008 {
2009  struct pl330_info *pi = pl330->pinfo;
2010  int chans = pi->pcfg.num_chan;
2011  struct pl330_thread *thrd;
2012  int i;
2013 
2014  /* Allocate 1 Manager and 'chans' Channel threads */
2015  pl330->channels = kzalloc((1 + chans) * sizeof(*thrd),
2016  GFP_KERNEL);
2017  if (!pl330->channels)
2018  return -ENOMEM;
2019 
2020  /* Init Channel threads */
2021  for (i = 0; i < chans; i++) {
2022  thrd = &pl330->channels[i];
2023  thrd->id = i;
2024  thrd->dmac = pl330;
2025  _reset_thread(thrd);
2026  thrd->free = true;
2027  }
2028 
2029  /* MANAGER is indexed at the end */
2030  thrd = &pl330->channels[chans];
2031  thrd->id = chans;
2032  thrd->dmac = pl330;
2033  thrd->free = false;
2034  pl330->manager = thrd;
2035 
2036  return 0;
2037 }
2038 
2039 static int dmac_alloc_resources(struct pl330_dmac *pl330)
2040 {
2041  struct pl330_info *pi = pl330->pinfo;
2042  int chans = pi->pcfg.num_chan;
2043  int ret;
2044 
2045  /*
2046  * Alloc MicroCode buffer for 'chans' Channel threads.
2047  * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN)
2048  */
2049  pl330->mcode_cpu = dma_alloc_coherent(pi->dev,
2050  chans * pi->mcbufsz,
2051  &pl330->mcode_bus, GFP_KERNEL);
2052  if (!pl330->mcode_cpu) {
2053  dev_err(pi->dev, "%s:%d Can't allocate memory!\n",
2054  __func__, __LINE__);
2055  return -ENOMEM;
2056  }
2057 
2058  ret = dmac_alloc_threads(pl330);
2059  if (ret) {
2060  dev_err(pi->dev, "%s:%d Can't to create channels for DMAC!\n",
2061  __func__, __LINE__);
2062  dma_free_coherent(pi->dev,
2063  chans * pi->mcbufsz,
2064  pl330->mcode_cpu, pl330->mcode_bus);
2065  return ret;
2066  }
2067 
2068  return 0;
2069 }
2070 
2071 static int pl330_add(struct pl330_info *pi)
2072 {
2073  struct pl330_dmac *pl330;
2074  void __iomem *regs;
2075  int i, ret;
2076 
2077  if (!pi || !pi->dev)
2078  return -EINVAL;
2079 
2080  /* If already added */
2081  if (pi->pl330_data)
2082  return -EINVAL;
2083 
2084  /*
2085  * If the SoC can perform reset on the DMAC, then do it
2086  * before reading its configuration.
2087  */
2088  if (pi->dmac_reset)
2089  pi->dmac_reset(pi);
2090 
2091  regs = pi->base;
2092 
2093  /* Check if we can handle this DMAC */
2094  if ((get_id(pi, PERIPH_ID) & 0xfffff) != PERIPH_ID_VAL
2095  || get_id(pi, PCELL_ID) != PCELL_ID_VAL) {
2096  dev_err(pi->dev, "PERIPH_ID 0x%x, PCELL_ID 0x%x !\n",
2097  get_id(pi, PERIPH_ID), get_id(pi, PCELL_ID));
2098  return -EINVAL;
2099  }
2100 
2101  /* Read the configuration of the DMAC */
2102  read_dmac_config(pi);
2103 
2104  if (pi->pcfg.num_events == 0) {
2105  dev_err(pi->dev, "%s:%d Can't work without events!\n",
2106  __func__, __LINE__);
2107  return -EINVAL;
2108  }
2109 
2110  pl330 = kzalloc(sizeof(*pl330), GFP_KERNEL);
2111  if (!pl330) {
2112  dev_err(pi->dev, "%s:%d Can't allocate memory!\n",
2113  __func__, __LINE__);
2114  return -ENOMEM;
2115  }
2116 
2117  /* Assign the info structure and private data */
2118  pl330->pinfo = pi;
2119  pi->pl330_data = pl330;
2120 
2121  spin_lock_init(&pl330->lock);
2122 
2123  INIT_LIST_HEAD(&pl330->req_done);
2124 
2125  /* Use default MC buffer size if not provided */
2126  if (!pi->mcbufsz)
2127  pi->mcbufsz = MCODE_BUFF_PER_REQ * 2;
2128 
2129  /* Mark all events as free */
2130  for (i = 0; i < pi->pcfg.num_events; i++)
2131  pl330->events[i] = -1;
2132 
2133  /* Allocate resources needed by the DMAC */
2134  ret = dmac_alloc_resources(pl330);
2135  if (ret) {
2136  dev_err(pi->dev, "Unable to create channels for DMAC\n");
2137  kfree(pl330);
2138  return ret;
2139  }
2140 
2141  tasklet_init(&pl330->tasks, pl330_dotask, (unsigned long) pl330);
2142 
2143  pl330->state = INIT;
2144 
2145  return 0;
2146 }
2147 
2148 static int dmac_free_threads(struct pl330_dmac *pl330)
2149 {
2150  struct pl330_info *pi = pl330->pinfo;
2151  int chans = pi->pcfg.num_chan;
2152  struct pl330_thread *thrd;
2153  int i;
2154 
2155  /* Release Channel threads */
2156  for (i = 0; i < chans; i++) {
2157  thrd = &pl330->channels[i];
2158  pl330_release_channel((void *)thrd);
2159  }
2160 
2161  /* Free memory */
2162  kfree(pl330->channels);
2163 
2164  return 0;
2165 }
2166 
2167 static void dmac_free_resources(struct pl330_dmac *pl330)
2168 {
2169  struct pl330_info *pi = pl330->pinfo;
2170  int chans = pi->pcfg.num_chan;
2171 
2172  dmac_free_threads(pl330);
2173 
2174  dma_free_coherent(pi->dev, chans * pi->mcbufsz,
2175  pl330->mcode_cpu, pl330->mcode_bus);
2176 }
2177 
2178 static void pl330_del(struct pl330_info *pi)
2179 {
2180  struct pl330_dmac *pl330;
2181 
2182  if (!pi || !pi->pl330_data)
2183  return;
2184 
2185  pl330 = pi->pl330_data;
2186 
2187  pl330->state = UNINIT;
2188 
2189  tasklet_kill(&pl330->tasks);
2190 
2191  /* Free DMAC resources */
2192  dmac_free_resources(pl330);
2193 
2194  kfree(pl330);
2195  pi->pl330_data = NULL;
2196 }
2197 
2198 /* forward declaration */
2199 static struct amba_driver pl330_driver;
2200 
2201 static inline struct dma_pl330_chan *
2202 to_pchan(struct dma_chan *ch)
2203 {
2204  if (!ch)
2205  return NULL;
2206 
2207  return container_of(ch, struct dma_pl330_chan, chan);
2208 }
2209 
2210 static inline struct dma_pl330_desc *
2211 to_desc(struct dma_async_tx_descriptor *tx)
2212 {
2213  return container_of(tx, struct dma_pl330_desc, txd);
2214 }
2215 
2216 static inline void free_desc_list(struct list_head *list)
2217 {
2218  struct dma_pl330_dmac *pdmac;
2219  struct dma_pl330_desc *desc;
2220  struct dma_pl330_chan *pch = NULL;
2221  unsigned long flags;
2222 
2223  /* Finish off the work list */
2224  list_for_each_entry(desc, list, node) {
2226  void *param;
2227 
2228  /* All desc in a list belong to same channel */
2229  pch = desc->pchan;
2230  callback = desc->txd.callback;
2231  param = desc->txd.callback_param;
2232 
2233  if (callback)
2234  callback(param);
2235 
2236  desc->pchan = NULL;
2237  }
2238 
2239  /* pch will be unset if list was empty */
2240  if (!pch)
2241  return;
2242 
2243  pdmac = pch->dmac;
2244 
2245  spin_lock_irqsave(&pdmac->pool_lock, flags);
2246  list_splice_tail_init(list, &pdmac->desc_pool);
2247  spin_unlock_irqrestore(&pdmac->pool_lock, flags);
2248 }
2249 
2250 static inline void handle_cyclic_desc_list(struct list_head *list)
2251 {
2252  struct dma_pl330_desc *desc;
2253  struct dma_pl330_chan *pch = NULL;
2254  unsigned long flags;
2255 
2256  list_for_each_entry(desc, list, node) {
2258 
2259  /* Change status to reload it */
2260  desc->status = PREP;
2261  pch = desc->pchan;
2262  callback = desc->txd.callback;
2263  if (callback)
2264  callback(desc->txd.callback_param);
2265  }
2266 
2267  /* pch will be unset if list was empty */
2268  if (!pch)
2269  return;
2270 
2271  spin_lock_irqsave(&pch->lock, flags);
2272  list_splice_tail_init(list, &pch->work_list);
2273  spin_unlock_irqrestore(&pch->lock, flags);
2274 }
2275 
2276 static inline void fill_queue(struct dma_pl330_chan *pch)
2277 {
2278  struct dma_pl330_desc *desc;
2279  int ret;
2280 
2281  list_for_each_entry(desc, &pch->work_list, node) {
2282 
2283  /* If already submitted */
2284  if (desc->status == BUSY)
2285  break;
2286 
2287  ret = pl330_submit_req(pch->pl330_chid,
2288  &desc->req);
2289  if (!ret) {
2290  desc->status = BUSY;
2291  break;
2292  } else if (ret == -EAGAIN) {
2293  /* QFull or DMAC Dying */
2294  break;
2295  } else {
2296  /* Unacceptable request */
2297  desc->status = DONE;
2298  dev_err(pch->dmac->pif.dev, "%s:%d Bad Desc(%d)\n",
2299  __func__, __LINE__, desc->txd.cookie);
2300  tasklet_schedule(&pch->task);
2301  }
2302  }
2303 }
2304 
2305 static void pl330_tasklet(unsigned long data)
2306 {
2307  struct dma_pl330_chan *pch = (struct dma_pl330_chan *)data;
2308  struct dma_pl330_desc *desc, *_dt;
2309  unsigned long flags;
2310  LIST_HEAD(list);
2311 
2312  spin_lock_irqsave(&pch->lock, flags);
2313 
2314  /* Pick up ripe tomatoes */
2315  list_for_each_entry_safe(desc, _dt, &pch->work_list, node)
2316  if (desc->status == DONE) {
2317  if (!pch->cyclic)
2318  dma_cookie_complete(&desc->txd);
2319  list_move_tail(&desc->node, &list);
2320  }
2321 
2322  /* Try to submit a req imm. next to the last completed cookie */
2323  fill_queue(pch);
2324 
2325  /* Make sure the PL330 Channel thread is active */
2326  pl330_chan_ctrl(pch->pl330_chid, PL330_OP_START);
2327 
2328  spin_unlock_irqrestore(&pch->lock, flags);
2329 
2330  if (pch->cyclic)
2331  handle_cyclic_desc_list(&list);
2332  else
2333  free_desc_list(&list);
2334 }
2335 
2336 static void dma_pl330_rqcb(void *token, enum pl330_op_err err)
2337 {
2338  struct dma_pl330_desc *desc = token;
2339  struct dma_pl330_chan *pch = desc->pchan;
2340  unsigned long flags;
2341 
2342  /* If desc aborted */
2343  if (!pch)
2344  return;
2345 
2346  spin_lock_irqsave(&pch->lock, flags);
2347 
2348  desc->status = DONE;
2349 
2350  spin_unlock_irqrestore(&pch->lock, flags);
2351 
2352  tasklet_schedule(&pch->task);
2353 }
2354 
2355 bool pl330_filter(struct dma_chan *chan, void *param)
2356 {
2357  u8 *peri_id;
2358 
2359  if (chan->device->dev->driver != &pl330_driver.drv)
2360  return false;
2361 
2362 #ifdef CONFIG_OF
2363  if (chan->device->dev->of_node) {
2364  const __be32 *prop_value;
2365  phandle phandle;
2366  struct device_node *node;
2367 
2368  prop_value = ((struct property *)param)->value;
2369  phandle = be32_to_cpup(prop_value++);
2370  node = of_find_node_by_phandle(phandle);
2371  return ((chan->private == node) &&
2372  (chan->chan_id == be32_to_cpup(prop_value)));
2373  }
2374 #endif
2375 
2376  peri_id = chan->private;
2377  return *peri_id == (unsigned)param;
2378 }
2380 
2381 static int pl330_alloc_chan_resources(struct dma_chan *chan)
2382 {
2383  struct dma_pl330_chan *pch = to_pchan(chan);
2384  struct dma_pl330_dmac *pdmac = pch->dmac;
2385  unsigned long flags;
2386 
2387  spin_lock_irqsave(&pch->lock, flags);
2388 
2389  dma_cookie_init(chan);
2390  pch->cyclic = false;
2391 
2392  pch->pl330_chid = pl330_request_channel(&pdmac->pif);
2393  if (!pch->pl330_chid) {
2394  spin_unlock_irqrestore(&pch->lock, flags);
2395  return -ENOMEM;
2396  }
2397 
2398  tasklet_init(&pch->task, pl330_tasklet, (unsigned long) pch);
2399 
2400  spin_unlock_irqrestore(&pch->lock, flags);
2401 
2402  return 1;
2403 }
2404 
2405 static int pl330_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, unsigned long arg)
2406 {
2407  struct dma_pl330_chan *pch = to_pchan(chan);
2408  struct dma_pl330_desc *desc, *_dt;
2409  unsigned long flags;
2410  struct dma_pl330_dmac *pdmac = pch->dmac;
2412  LIST_HEAD(list);
2413 
2414  switch (cmd) {
2415  case DMA_TERMINATE_ALL:
2416  spin_lock_irqsave(&pch->lock, flags);
2417 
2418  /* FLUSH the PL330 Channel thread */
2419  pl330_chan_ctrl(pch->pl330_chid, PL330_OP_FLUSH);
2420 
2421  /* Mark all desc done */
2422  list_for_each_entry_safe(desc, _dt, &pch->work_list , node) {
2423  desc->status = DONE;
2424  list_move_tail(&desc->node, &list);
2425  }
2426 
2427  list_splice_tail_init(&list, &pdmac->desc_pool);
2428  spin_unlock_irqrestore(&pch->lock, flags);
2429  break;
2430  case DMA_SLAVE_CONFIG:
2431  slave_config = (struct dma_slave_config *)arg;
2432 
2433  if (slave_config->direction == DMA_MEM_TO_DEV) {
2434  if (slave_config->dst_addr)
2435  pch->fifo_addr = slave_config->dst_addr;
2436  if (slave_config->dst_addr_width)
2437  pch->burst_sz = __ffs(slave_config->dst_addr_width);
2438  if (slave_config->dst_maxburst)
2439  pch->burst_len = slave_config->dst_maxburst;
2440  } else if (slave_config->direction == DMA_DEV_TO_MEM) {
2441  if (slave_config->src_addr)
2442  pch->fifo_addr = slave_config->src_addr;
2443  if (slave_config->src_addr_width)
2444  pch->burst_sz = __ffs(slave_config->src_addr_width);
2445  if (slave_config->src_maxburst)
2446  pch->burst_len = slave_config->src_maxburst;
2447  }
2448  break;
2449  default:
2450  dev_err(pch->dmac->pif.dev, "Not supported command.\n");
2451  return -ENXIO;
2452  }
2453 
2454  return 0;
2455 }
2456 
2457 static void pl330_free_chan_resources(struct dma_chan *chan)
2458 {
2459  struct dma_pl330_chan *pch = to_pchan(chan);
2460  unsigned long flags;
2461 
2462  spin_lock_irqsave(&pch->lock, flags);
2463 
2464  tasklet_kill(&pch->task);
2465 
2466  pl330_release_channel(pch->pl330_chid);
2467  pch->pl330_chid = NULL;
2468 
2469  if (pch->cyclic)
2470  list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool);
2471 
2472  spin_unlock_irqrestore(&pch->lock, flags);
2473 }
2474 
2475 static enum dma_status
2476 pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
2477  struct dma_tx_state *txstate)
2478 {
2479  return dma_cookie_status(chan, cookie, txstate);
2480 }
2481 
2482 static void pl330_issue_pending(struct dma_chan *chan)
2483 {
2484  pl330_tasklet((unsigned long) to_pchan(chan));
2485 }
2486 
2487 /*
2488  * We returned the last one of the circular list of descriptor(s)
2489  * from prep_xxx, so the argument to submit corresponds to the last
2490  * descriptor of the list.
2491  */
2492 static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx)
2493 {
2494  struct dma_pl330_desc *desc, *last = to_desc(tx);
2495  struct dma_pl330_chan *pch = to_pchan(tx->chan);
2497  unsigned long flags;
2498 
2499  spin_lock_irqsave(&pch->lock, flags);
2500 
2501  /* Assign cookies to all nodes */
2502  while (!list_empty(&last->node)) {
2503  desc = list_entry(last->node.next, struct dma_pl330_desc, node);
2504 
2505  dma_cookie_assign(&desc->txd);
2506 
2507  list_move_tail(&desc->node, &pch->work_list);
2508  }
2509 
2510  cookie = dma_cookie_assign(&last->txd);
2511  list_add_tail(&last->node, &pch->work_list);
2512  spin_unlock_irqrestore(&pch->lock, flags);
2513 
2514  return cookie;
2515 }
2516 
2517 static inline void _init_desc(struct dma_pl330_desc *desc)
2518 {
2519  desc->pchan = NULL;
2520  desc->req.x = &desc->px;
2521  desc->req.token = desc;
2522  desc->rqcfg.swap = SWAP_NO;
2523  desc->rqcfg.privileged = 0;
2524  desc->rqcfg.insnaccess = 0;
2525  desc->rqcfg.scctl = SCCTRL0;
2526  desc->rqcfg.dcctl = DCCTRL0;
2527  desc->req.cfg = &desc->rqcfg;
2528  desc->req.xfer_cb = dma_pl330_rqcb;
2529  desc->txd.tx_submit = pl330_tx_submit;
2530 
2531  INIT_LIST_HEAD(&desc->node);
2532 }
2533 
2534 /* Returns the number of descriptors added to the DMAC pool */
2535 static int add_desc(struct dma_pl330_dmac *pdmac, gfp_t flg, int count)
2536 {
2537  struct dma_pl330_desc *desc;
2538  unsigned long flags;
2539  int i;
2540 
2541  if (!pdmac)
2542  return 0;
2543 
2544  desc = kmalloc(count * sizeof(*desc), flg);
2545  if (!desc)
2546  return 0;
2547 
2548  spin_lock_irqsave(&pdmac->pool_lock, flags);
2549 
2550  for (i = 0; i < count; i++) {
2551  _init_desc(&desc[i]);
2552  list_add_tail(&desc[i].node, &pdmac->desc_pool);
2553  }
2554 
2555  spin_unlock_irqrestore(&pdmac->pool_lock, flags);
2556 
2557  return count;
2558 }
2559 
2560 static struct dma_pl330_desc *
2561 pluck_desc(struct dma_pl330_dmac *pdmac)
2562 {
2563  struct dma_pl330_desc *desc = NULL;
2564  unsigned long flags;
2565 
2566  if (!pdmac)
2567  return NULL;
2568 
2569  spin_lock_irqsave(&pdmac->pool_lock, flags);
2570 
2571  if (!list_empty(&pdmac->desc_pool)) {
2572  desc = list_entry(pdmac->desc_pool.next,
2573  struct dma_pl330_desc, node);
2574 
2575  list_del_init(&desc->node);
2576 
2577  desc->status = PREP;
2578  desc->txd.callback = NULL;
2579  }
2580 
2581  spin_unlock_irqrestore(&pdmac->pool_lock, flags);
2582 
2583  return desc;
2584 }
2585 
2586 static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch)
2587 {
2588  struct dma_pl330_dmac *pdmac = pch->dmac;
2589  u8 *peri_id = pch->chan.private;
2590  struct dma_pl330_desc *desc;
2591 
2592  /* Pluck one desc from the pool of DMAC */
2593  desc = pluck_desc(pdmac);
2594 
2595  /* If the DMAC pool is empty, alloc new */
2596  if (!desc) {
2597  if (!add_desc(pdmac, GFP_ATOMIC, 1))
2598  return NULL;
2599 
2600  /* Try again */
2601  desc = pluck_desc(pdmac);
2602  if (!desc) {
2603  dev_err(pch->dmac->pif.dev,
2604  "%s:%d ALERT!\n", __func__, __LINE__);
2605  return NULL;
2606  }
2607  }
2608 
2609  /* Initialize the descriptor */
2610  desc->pchan = pch;
2611  desc->txd.cookie = 0;
2612  async_tx_ack(&desc->txd);
2613 
2614  desc->req.peri = peri_id ? pch->chan.chan_id : 0;
2615  desc->rqcfg.pcfg = &pch->dmac->pif.pcfg;
2616 
2617  dma_async_tx_descriptor_init(&desc->txd, &pch->chan);
2618 
2619  return desc;
2620 }
2621 
2622 static inline void fill_px(struct pl330_xfer *px,
2623  dma_addr_t dst, dma_addr_t src, size_t len)
2624 {
2625  px->next = NULL;
2626  px->bytes = len;
2627  px->dst_addr = dst;
2628  px->src_addr = src;
2629 }
2630 
2631 static struct dma_pl330_desc *
2632 __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst,
2633  dma_addr_t src, size_t len)
2634 {
2635  struct dma_pl330_desc *desc = pl330_get_desc(pch);
2636 
2637  if (!desc) {
2638  dev_err(pch->dmac->pif.dev, "%s:%d Unable to fetch desc\n",
2639  __func__, __LINE__);
2640  return NULL;
2641  }
2642 
2643  /*
2644  * Ideally we should lookout for reqs bigger than
2645  * those that can be programmed with 256 bytes of
2646  * MC buffer, but considering a req size is seldom
2647  * going to be word-unaligned and more than 200MB,
2648  * we take it easy.
2649  * Also, should the limit is reached we'd rather
2650  * have the platform increase MC buffer size than
2651  * complicating this API driver.
2652  */
2653  fill_px(&desc->px, dst, src, len);
2654 
2655  return desc;
2656 }
2657 
2658 /* Call after fixing burst size */
2659 static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len)
2660 {
2661  struct dma_pl330_chan *pch = desc->pchan;
2662  struct pl330_info *pi = &pch->dmac->pif;
2663  int burst_len;
2664 
2665  burst_len = pi->pcfg.data_bus_width / 8;
2666  burst_len *= pi->pcfg.data_buf_dep;
2667  burst_len >>= desc->rqcfg.brst_size;
2668 
2669  /* src/dst_burst_len can't be more than 16 */
2670  if (burst_len > 16)
2671  burst_len = 16;
2672 
2673  while (burst_len > 1) {
2674  if (!(len % (burst_len << desc->rqcfg.brst_size)))
2675  break;
2676  burst_len--;
2677  }
2678 
2679  return burst_len;
2680 }
2681 
2682 static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic(
2683  struct dma_chan *chan, dma_addr_t dma_addr, size_t len,
2684  size_t period_len, enum dma_transfer_direction direction,
2685  unsigned long flags, void *context)
2686 {
2687  struct dma_pl330_desc *desc;
2688  struct dma_pl330_chan *pch = to_pchan(chan);
2689  dma_addr_t dst;
2690  dma_addr_t src;
2691 
2692  desc = pl330_get_desc(pch);
2693  if (!desc) {
2694  dev_err(pch->dmac->pif.dev, "%s:%d Unable to fetch desc\n",
2695  __func__, __LINE__);
2696  return NULL;
2697  }
2698 
2699  switch (direction) {
2700  case DMA_MEM_TO_DEV:
2701  desc->rqcfg.src_inc = 1;
2702  desc->rqcfg.dst_inc = 0;
2703  desc->req.rqtype = MEMTODEV;
2704  src = dma_addr;
2705  dst = pch->fifo_addr;
2706  break;
2707  case DMA_DEV_TO_MEM:
2708  desc->rqcfg.src_inc = 0;
2709  desc->rqcfg.dst_inc = 1;
2710  desc->req.rqtype = DEVTOMEM;
2711  src = pch->fifo_addr;
2712  dst = dma_addr;
2713  break;
2714  default:
2715  dev_err(pch->dmac->pif.dev, "%s:%d Invalid dma direction\n",
2716  __func__, __LINE__);
2717  return NULL;
2718  }
2719 
2720  desc->rqcfg.brst_size = pch->burst_sz;
2721  desc->rqcfg.brst_len = 1;
2722 
2723  pch->cyclic = true;
2724 
2725  fill_px(&desc->px, dst, src, period_len);
2726 
2727  return &desc->txd;
2728 }
2729 
2730 static struct dma_async_tx_descriptor *
2731 pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst,
2732  dma_addr_t src, size_t len, unsigned long flags)
2733 {
2734  struct dma_pl330_desc *desc;
2735  struct dma_pl330_chan *pch = to_pchan(chan);
2736  struct pl330_info *pi;
2737  int burst;
2738 
2739  if (unlikely(!pch || !len))
2740  return NULL;
2741 
2742  pi = &pch->dmac->pif;
2743 
2744  desc = __pl330_prep_dma_memcpy(pch, dst, src, len);
2745  if (!desc)
2746  return NULL;
2747 
2748  desc->rqcfg.src_inc = 1;
2749  desc->rqcfg.dst_inc = 1;
2750  desc->req.rqtype = MEMTOMEM;
2751 
2752  /* Select max possible burst size */
2753  burst = pi->pcfg.data_bus_width / 8;
2754 
2755  while (burst > 1) {
2756  if (!(len % burst))
2757  break;
2758  burst /= 2;
2759  }
2760 
2761  desc->rqcfg.brst_size = 0;
2762  while (burst != (1 << desc->rqcfg.brst_size))
2763  desc->rqcfg.brst_size++;
2764 
2765  desc->rqcfg.brst_len = get_burst_len(desc, len);
2766 
2767  desc->txd.flags = flags;
2768 
2769  return &desc->txd;
2770 }
2771 
2772 static struct dma_async_tx_descriptor *
2773 pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2774  unsigned int sg_len, enum dma_transfer_direction direction,
2775  unsigned long flg, void *context)
2776 {
2777  struct dma_pl330_desc *first, *desc = NULL;
2778  struct dma_pl330_chan *pch = to_pchan(chan);
2779  struct scatterlist *sg;
2780  unsigned long flags;
2781  int i;
2782  dma_addr_t addr;
2783 
2784  if (unlikely(!pch || !sgl || !sg_len))
2785  return NULL;
2786 
2787  addr = pch->fifo_addr;
2788 
2789  first = NULL;
2790 
2791  for_each_sg(sgl, sg, sg_len, i) {
2792 
2793  desc = pl330_get_desc(pch);
2794  if (!desc) {
2795  struct dma_pl330_dmac *pdmac = pch->dmac;
2796 
2797  dev_err(pch->dmac->pif.dev,
2798  "%s:%d Unable to fetch desc\n",
2799  __func__, __LINE__);
2800  if (!first)
2801  return NULL;
2802 
2803  spin_lock_irqsave(&pdmac->pool_lock, flags);
2804 
2805  while (!list_empty(&first->node)) {
2806  desc = list_entry(first->node.next,
2807  struct dma_pl330_desc, node);
2808  list_move_tail(&desc->node, &pdmac->desc_pool);
2809  }
2810 
2811  list_move_tail(&first->node, &pdmac->desc_pool);
2812 
2813  spin_unlock_irqrestore(&pdmac->pool_lock, flags);
2814 
2815  return NULL;
2816  }
2817 
2818  if (!first)
2819  first = desc;
2820  else
2821  list_add_tail(&desc->node, &first->node);
2822 
2823  if (direction == DMA_MEM_TO_DEV) {
2824  desc->rqcfg.src_inc = 1;
2825  desc->rqcfg.dst_inc = 0;
2826  desc->req.rqtype = MEMTODEV;
2827  fill_px(&desc->px,
2828  addr, sg_dma_address(sg), sg_dma_len(sg));
2829  } else {
2830  desc->rqcfg.src_inc = 0;
2831  desc->rqcfg.dst_inc = 1;
2832  desc->req.rqtype = DEVTOMEM;
2833  fill_px(&desc->px,
2834  sg_dma_address(sg), addr, sg_dma_len(sg));
2835  }
2836 
2837  desc->rqcfg.brst_size = pch->burst_sz;
2838  desc->rqcfg.brst_len = 1;
2839  }
2840 
2841  /* Return the last desc in the chain */
2842  desc->txd.flags = flg;
2843  return &desc->txd;
2844 }
2845 
2846 static irqreturn_t pl330_irq_handler(int irq, void *data)
2847 {
2848  if (pl330_update(data))
2849  return IRQ_HANDLED;
2850  else
2851  return IRQ_NONE;
2852 }
2853 
2854 static int __devinit
2855 pl330_probe(struct amba_device *adev, const struct amba_id *id)
2856 {
2857  struct dma_pl330_platdata *pdat;
2858  struct dma_pl330_dmac *pdmac;
2859  struct dma_pl330_chan *pch;
2860  struct pl330_info *pi;
2861  struct dma_device *pd;
2862  struct resource *res;
2863  int i, ret, irq;
2864  int num_chan;
2865 
2866  pdat = adev->dev.platform_data;
2867 
2868  /* Allocate a new DMAC and its Channels */
2869  pdmac = kzalloc(sizeof(*pdmac), GFP_KERNEL);
2870  if (!pdmac) {
2871  dev_err(&adev->dev, "unable to allocate mem\n");
2872  return -ENOMEM;
2873  }
2874 
2875  pi = &pdmac->pif;
2876  pi->dev = &adev->dev;
2877  pi->pl330_data = NULL;
2878  pi->mcbufsz = pdat ? pdat->mcbuf_sz : 0;
2879 
2880  res = &adev->res;
2881  request_mem_region(res->start, resource_size(res), "dma-pl330");
2882 
2883  pi->base = ioremap(res->start, resource_size(res));
2884  if (!pi->base) {
2885  ret = -ENXIO;
2886  goto probe_err1;
2887  }
2888 
2889  amba_set_drvdata(adev, pdmac);
2890 
2891  irq = adev->irq[0];
2892  ret = request_irq(irq, pl330_irq_handler, 0,
2893  dev_name(&adev->dev), pi);
2894  if (ret)
2895  goto probe_err2;
2896 
2897  ret = pl330_add(pi);
2898  if (ret)
2899  goto probe_err3;
2900 
2901  INIT_LIST_HEAD(&pdmac->desc_pool);
2902  spin_lock_init(&pdmac->pool_lock);
2903 
2904  /* Create a descriptor pool of default size */
2905  if (!add_desc(pdmac, GFP_KERNEL, NR_DEFAULT_DESC))
2906  dev_warn(&adev->dev, "unable to allocate desc\n");
2907 
2908  pd = &pdmac->ddma;
2909  INIT_LIST_HEAD(&pd->channels);
2910 
2911  /* Initialize channel parameters */
2912  if (pdat)
2913  num_chan = max_t(int, pdat->nr_valid_peri, pi->pcfg.num_chan);
2914  else
2915  num_chan = max_t(int, pi->pcfg.num_peri, pi->pcfg.num_chan);
2916 
2917  pdmac->peripherals = kzalloc(num_chan * sizeof(*pch), GFP_KERNEL);
2918  if (!pdmac->peripherals) {
2919  ret = -ENOMEM;
2920  dev_err(&adev->dev, "unable to allocate pdmac->peripherals\n");
2921  goto probe_err4;
2922  }
2923 
2924  for (i = 0; i < num_chan; i++) {
2925  pch = &pdmac->peripherals[i];
2926  if (!adev->dev.of_node)
2927  pch->chan.private = pdat ? &pdat->peri_id[i] : NULL;
2928  else
2929  pch->chan.private = adev->dev.of_node;
2930 
2931  INIT_LIST_HEAD(&pch->work_list);
2932  spin_lock_init(&pch->lock);
2933  pch->pl330_chid = NULL;
2934  pch->chan.device = pd;
2935  pch->dmac = pdmac;
2936 
2937  /* Add the channel to the DMAC list */
2938  list_add_tail(&pch->chan.device_node, &pd->channels);
2939  }
2940 
2941  pd->dev = &adev->dev;
2942  if (pdat) {
2943  pd->cap_mask = pdat->cap_mask;
2944  } else {
2946  if (pi->pcfg.num_peri) {
2950  }
2951  }
2952 
2953  pd->device_alloc_chan_resources = pl330_alloc_chan_resources;
2954  pd->device_free_chan_resources = pl330_free_chan_resources;
2955  pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy;
2956  pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic;
2957  pd->device_tx_status = pl330_tx_status;
2958  pd->device_prep_slave_sg = pl330_prep_slave_sg;
2959  pd->device_control = pl330_control;
2960  pd->device_issue_pending = pl330_issue_pending;
2961 
2962  ret = dma_async_device_register(pd);
2963  if (ret) {
2964  dev_err(&adev->dev, "unable to register DMAC\n");
2965  goto probe_err4;
2966  }
2967 
2968  dev_info(&adev->dev,
2969  "Loaded driver for PL330 DMAC-%d\n", adev->periphid);
2970  dev_info(&adev->dev,
2971  "\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n",
2972  pi->pcfg.data_buf_dep,
2973  pi->pcfg.data_bus_width / 8, pi->pcfg.num_chan,
2974  pi->pcfg.num_peri, pi->pcfg.num_events);
2975 
2976  return 0;
2977 
2978 probe_err4:
2979  pl330_del(pi);
2980 probe_err3:
2981  free_irq(irq, pi);
2982 probe_err2:
2983  iounmap(pi->base);
2984 probe_err1:
2985  release_mem_region(res->start, resource_size(res));
2986  kfree(pdmac);
2987 
2988  return ret;
2989 }
2990 
2991 static int __devexit pl330_remove(struct amba_device *adev)
2992 {
2993  struct dma_pl330_dmac *pdmac = amba_get_drvdata(adev);
2994  struct dma_pl330_chan *pch, *_p;
2995  struct pl330_info *pi;
2996  struct resource *res;
2997  int irq;
2998 
2999  if (!pdmac)
3000  return 0;
3001 
3002  amba_set_drvdata(adev, NULL);
3003 
3004  /* Idle the DMAC */
3005  list_for_each_entry_safe(pch, _p, &pdmac->ddma.channels,
3006  chan.device_node) {
3007 
3008  /* Remove the channel */
3009  list_del(&pch->chan.device_node);
3010 
3011  /* Flush the channel */
3012  pl330_control(&pch->chan, DMA_TERMINATE_ALL, 0);
3013  pl330_free_chan_resources(&pch->chan);
3014  }
3015 
3016  pi = &pdmac->pif;
3017 
3018  pl330_del(pi);
3019 
3020  irq = adev->irq[0];
3021  free_irq(irq, pi);
3022 
3023  iounmap(pi->base);
3024 
3025  res = &adev->res;
3026  release_mem_region(res->start, resource_size(res));
3027 
3028  kfree(pdmac);
3029 
3030  return 0;
3031 }
3032 
3033 static struct amba_id pl330_ids[] = {
3034  {
3035  .id = 0x00041330,
3036  .mask = 0x000fffff,
3037  },
3038  { 0, 0 },
3039 };
3040 
3041 MODULE_DEVICE_TABLE(amba, pl330_ids);
3042 
3043 static struct amba_driver pl330_driver = {
3044  .drv = {
3045  .owner = THIS_MODULE,
3046  .name = "dma-pl330",
3047  },
3048  .id_table = pl330_ids,
3049  .probe = pl330_probe,
3050  .remove = pl330_remove,
3051 };
3052 
3053 module_amba_driver(pl330_driver);
3054 
3055 MODULE_AUTHOR("Jaswinder Singh <jassi.brar@samsung.com>");
3056 MODULE_DESCRIPTION("API Driver for PL330 DMAC");
3057 MODULE_LICENSE("GPL");