Linux Kernel  3.7.1
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
tc35815.c
Go to the documentation of this file.
1 /*
2  * tc35815.c: A TOSHIBA TC35815CF PCI 10/100Mbps ethernet driver for linux.
3  *
4  * Based on skelton.c by Donald Becker.
5  *
6  * This driver is a replacement of older and less maintained version.
7  * This is a header of the older version:
8  * -----<snip>-----
9  * Copyright 2001 MontaVista Software Inc.
10  * Author: MontaVista Software, Inc.
11  * ahennessy@mvista.com
12  * Copyright (C) 2000-2001 Toshiba Corporation
13  * static const char *version =
14  * "tc35815.c:v0.00 26/07/2000 by Toshiba Corporation\n";
15  * -----<snip>-----
16  *
17  * This file is subject to the terms and conditions of the GNU General Public
18  * License. See the file "COPYING" in the main directory of this archive
19  * for more details.
20  *
21  * (C) Copyright TOSHIBA CORPORATION 2004-2005
22  * All Rights Reserved.
23  */
24 
25 #define DRV_VERSION "1.39"
26 static const char *version = "tc35815.c:v" DRV_VERSION "\n";
27 #define MODNAME "tc35815"
28 
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/types.h>
32 #include <linux/fcntl.h>
33 #include <linux/interrupt.h>
34 #include <linux/ioport.h>
35 #include <linux/in.h>
36 #include <linux/if_vlan.h>
37 #include <linux/slab.h>
38 #include <linux/string.h>
39 #include <linux/spinlock.h>
40 #include <linux/errno.h>
41 #include <linux/init.h>
42 #include <linux/netdevice.h>
43 #include <linux/etherdevice.h>
44 #include <linux/skbuff.h>
45 #include <linux/delay.h>
46 #include <linux/pci.h>
47 #include <linux/phy.h>
48 #include <linux/workqueue.h>
49 #include <linux/platform_device.h>
50 #include <linux/prefetch.h>
51 #include <asm/io.h>
52 #include <asm/byteorder.h>
53 
55  TC35815CF = 0,
58 };
59 
60 /* indexed by tc35815_chiptype, above */
61 static const struct {
62  const char *name;
63 } chip_info[] __devinitdata = {
64  { "TOSHIBA TC35815CF 10/100BaseTX" },
65  { "TOSHIBA TC35815 with Wake on LAN" },
66  { "TOSHIBA TC35815/TX4939" },
67 };
68 
69 static DEFINE_PCI_DEVICE_TABLE(tc35815_pci_tbl) = {
73  {0,}
74 };
75 MODULE_DEVICE_TABLE(pci, tc35815_pci_tbl);
76 
77 /* see MODULE_PARM_DESC */
78 static struct tc35815_options {
79  int speed;
80  int duplex;
81 } options;
82 
83 /*
84  * Registers
85  */
86 struct tc35815_regs {
87  __u32 DMA_Ctl; /* 0x00 */
95  __u32 FDA_Lim; /* 0x20 */
102  __u32 MAC_Ctl; /* 0x40 */
110  __u32 CAM_Adr; /* 0x60 */
118 };
119 
120 /*
121  * Bit assignments
122  */
123 /* DMA_Ctl bit assign ------------------------------------------------------- */
124 #define DMA_RxAlign 0x00c00000 /* 1:Reception Alignment */
125 #define DMA_RxAlign_1 0x00400000
126 #define DMA_RxAlign_2 0x00800000
127 #define DMA_RxAlign_3 0x00c00000
128 #define DMA_M66EnStat 0x00080000 /* 1:66MHz Enable State */
129 #define DMA_IntMask 0x00040000 /* 1:Interrupt mask */
130 #define DMA_SWIntReq 0x00020000 /* 1:Software Interrupt request */
131 #define DMA_TxWakeUp 0x00010000 /* 1:Transmit Wake Up */
132 #define DMA_RxBigE 0x00008000 /* 1:Receive Big Endian */
133 #define DMA_TxBigE 0x00004000 /* 1:Transmit Big Endian */
134 #define DMA_TestMode 0x00002000 /* 1:Test Mode */
135 #define DMA_PowrMgmnt 0x00001000 /* 1:Power Management */
136 #define DMA_DmBurst_Mask 0x000001fc /* DMA Burst size */
137 
138 /* RxFragSize bit assign ---------------------------------------------------- */
139 #define RxFrag_EnPack 0x00008000 /* 1:Enable Packing */
140 #define RxFrag_MinFragMask 0x00000ffc /* Minimum Fragment */
141 
142 /* MAC_Ctl bit assign ------------------------------------------------------- */
143 #define MAC_Link10 0x00008000 /* 1:Link Status 10Mbits */
144 #define MAC_EnMissRoll 0x00002000 /* 1:Enable Missed Roll */
145 #define MAC_MissRoll 0x00000400 /* 1:Missed Roll */
146 #define MAC_Loop10 0x00000080 /* 1:Loop 10 Mbps */
147 #define MAC_Conn_Auto 0x00000000 /*00:Connection mode (Automatic) */
148 #define MAC_Conn_10M 0x00000020 /*01: (10Mbps endec)*/
149 #define MAC_Conn_Mll 0x00000040 /*10: (Mll clock) */
150 #define MAC_MacLoop 0x00000010 /* 1:MAC Loopback */
151 #define MAC_FullDup 0x00000008 /* 1:Full Duplex 0:Half Duplex */
152 #define MAC_Reset 0x00000004 /* 1:Software Reset */
153 #define MAC_HaltImm 0x00000002 /* 1:Halt Immediate */
154 #define MAC_HaltReq 0x00000001 /* 1:Halt request */
155 
156 /* PROM_Ctl bit assign ------------------------------------------------------ */
157 #define PROM_Busy 0x00008000 /* 1:Busy (Start Operation) */
158 #define PROM_Read 0x00004000 /*10:Read operation */
159 #define PROM_Write 0x00002000 /*01:Write operation */
160 #define PROM_Erase 0x00006000 /*11:Erase operation */
161  /*00:Enable or Disable Writting, */
162  /* as specified in PROM_Addr. */
163 #define PROM_Addr_Ena 0x00000030 /*11xxxx:PROM Write enable */
164  /*00xxxx: disable */
165 
166 /* CAM_Ctl bit assign ------------------------------------------------------- */
167 #define CAM_CompEn 0x00000010 /* 1:CAM Compare Enable */
168 #define CAM_NegCAM 0x00000008 /* 1:Reject packets CAM recognizes,*/
169  /* accept other */
170 #define CAM_BroadAcc 0x00000004 /* 1:Broadcast assept */
171 #define CAM_GroupAcc 0x00000002 /* 1:Multicast assept */
172 #define CAM_StationAcc 0x00000001 /* 1:unicast accept */
173 
174 /* CAM_Ena bit assign ------------------------------------------------------- */
175 #define CAM_ENTRY_MAX 21 /* CAM Data entry max count */
176 #define CAM_Ena_Mask ((1<<CAM_ENTRY_MAX)-1) /* CAM Enable bits (Max 21bits) */
177 #define CAM_Ena_Bit(index) (1 << (index))
178 #define CAM_ENTRY_DESTINATION 0
179 #define CAM_ENTRY_SOURCE 1
180 #define CAM_ENTRY_MACCTL 20
181 
182 /* Tx_Ctl bit assign -------------------------------------------------------- */
183 #define Tx_En 0x00000001 /* 1:Transmit enable */
184 #define Tx_TxHalt 0x00000002 /* 1:Transmit Halt Request */
185 #define Tx_NoPad 0x00000004 /* 1:Suppress Padding */
186 #define Tx_NoCRC 0x00000008 /* 1:Suppress Padding */
187 #define Tx_FBack 0x00000010 /* 1:Fast Back-off */
188 #define Tx_EnUnder 0x00000100 /* 1:Enable Underrun */
189 #define Tx_EnExDefer 0x00000200 /* 1:Enable Excessive Deferral */
190 #define Tx_EnLCarr 0x00000400 /* 1:Enable Lost Carrier */
191 #define Tx_EnExColl 0x00000800 /* 1:Enable Excessive Collision */
192 #define Tx_EnLateColl 0x00001000 /* 1:Enable Late Collision */
193 #define Tx_EnTxPar 0x00002000 /* 1:Enable Transmit Parity */
194 #define Tx_EnComp 0x00004000 /* 1:Enable Completion */
195 
196 /* Tx_Stat bit assign ------------------------------------------------------- */
197 #define Tx_TxColl_MASK 0x0000000F /* Tx Collision Count */
198 #define Tx_ExColl 0x00000010 /* Excessive Collision */
199 #define Tx_TXDefer 0x00000020 /* Transmit Defered */
200 #define Tx_Paused 0x00000040 /* Transmit Paused */
201 #define Tx_IntTx 0x00000080 /* Interrupt on Tx */
202 #define Tx_Under 0x00000100 /* Underrun */
203 #define Tx_Defer 0x00000200 /* Deferral */
204 #define Tx_NCarr 0x00000400 /* No Carrier */
205 #define Tx_10Stat 0x00000800 /* 10Mbps Status */
206 #define Tx_LateColl 0x00001000 /* Late Collision */
207 #define Tx_TxPar 0x00002000 /* Tx Parity Error */
208 #define Tx_Comp 0x00004000 /* Completion */
209 #define Tx_Halted 0x00008000 /* Tx Halted */
210 #define Tx_SQErr 0x00010000 /* Signal Quality Error(SQE) */
211 
212 /* Rx_Ctl bit assign -------------------------------------------------------- */
213 #define Rx_EnGood 0x00004000 /* 1:Enable Good */
214 #define Rx_EnRxPar 0x00002000 /* 1:Enable Receive Parity */
215 #define Rx_EnLongErr 0x00000800 /* 1:Enable Long Error */
216 #define Rx_EnOver 0x00000400 /* 1:Enable OverFlow */
217 #define Rx_EnCRCErr 0x00000200 /* 1:Enable CRC Error */
218 #define Rx_EnAlign 0x00000100 /* 1:Enable Alignment */
219 #define Rx_IgnoreCRC 0x00000040 /* 1:Ignore CRC Value */
220 #define Rx_StripCRC 0x00000010 /* 1:Strip CRC Value */
221 #define Rx_ShortEn 0x00000008 /* 1:Short Enable */
222 #define Rx_LongEn 0x00000004 /* 1:Long Enable */
223 #define Rx_RxHalt 0x00000002 /* 1:Receive Halt Request */
224 #define Rx_RxEn 0x00000001 /* 1:Receive Intrrupt Enable */
225 
226 /* Rx_Stat bit assign ------------------------------------------------------- */
227 #define Rx_Halted 0x00008000 /* Rx Halted */
228 #define Rx_Good 0x00004000 /* Rx Good */
229 #define Rx_RxPar 0x00002000 /* Rx Parity Error */
230 #define Rx_TypePkt 0x00001000 /* Rx Type Packet */
231 #define Rx_LongErr 0x00000800 /* Rx Long Error */
232 #define Rx_Over 0x00000400 /* Rx Overflow */
233 #define Rx_CRCErr 0x00000200 /* Rx CRC Error */
234 #define Rx_Align 0x00000100 /* Rx Alignment Error */
235 #define Rx_10Stat 0x00000080 /* Rx 10Mbps Status */
236 #define Rx_IntRx 0x00000040 /* Rx Interrupt */
237 #define Rx_CtlRecd 0x00000020 /* Rx Control Receive */
238 #define Rx_InLenErr 0x00000010 /* Rx In Range Frame Length Error */
239 
240 #define Rx_Stat_Mask 0x0000FFF0 /* Rx All Status Mask */
241 
242 /* Int_En bit assign -------------------------------------------------------- */
243 #define Int_NRAbtEn 0x00000800 /* 1:Non-recoverable Abort Enable */
244 #define Int_TxCtlCmpEn 0x00000400 /* 1:Transmit Ctl Complete Enable */
245 #define Int_DmParErrEn 0x00000200 /* 1:DMA Parity Error Enable */
246 #define Int_DParDEn 0x00000100 /* 1:Data Parity Error Enable */
247 #define Int_EarNotEn 0x00000080 /* 1:Early Notify Enable */
248 #define Int_DParErrEn 0x00000040 /* 1:Detected Parity Error Enable */
249 #define Int_SSysErrEn 0x00000020 /* 1:Signalled System Error Enable */
250 #define Int_RMasAbtEn 0x00000010 /* 1:Received Master Abort Enable */
251 #define Int_RTargAbtEn 0x00000008 /* 1:Received Target Abort Enable */
252 #define Int_STargAbtEn 0x00000004 /* 1:Signalled Target Abort Enable */
253 #define Int_BLExEn 0x00000002 /* 1:Buffer List Exhausted Enable */
254 #define Int_FDAExEn 0x00000001 /* 1:Free Descriptor Area */
255  /* Exhausted Enable */
256 
257 /* Int_Src bit assign ------------------------------------------------------- */
258 #define Int_NRabt 0x00004000 /* 1:Non Recoverable error */
259 #define Int_DmParErrStat 0x00002000 /* 1:DMA Parity Error & Clear */
260 #define Int_BLEx 0x00001000 /* 1:Buffer List Empty & Clear */
261 #define Int_FDAEx 0x00000800 /* 1:FDA Empty & Clear */
262 #define Int_IntNRAbt 0x00000400 /* 1:Non Recoverable Abort */
263 #define Int_IntCmp 0x00000200 /* 1:MAC control packet complete */
264 #define Int_IntExBD 0x00000100 /* 1:Interrupt Extra BD & Clear */
265 #define Int_DmParErr 0x00000080 /* 1:DMA Parity Error & Clear */
266 #define Int_IntEarNot 0x00000040 /* 1:Receive Data write & Clear */
267 #define Int_SWInt 0x00000020 /* 1:Software request & Clear */
268 #define Int_IntBLEx 0x00000010 /* 1:Buffer List Empty & Clear */
269 #define Int_IntFDAEx 0x00000008 /* 1:FDA Empty & Clear */
270 #define Int_IntPCI 0x00000004 /* 1:PCI controller & Clear */
271 #define Int_IntMacRx 0x00000002 /* 1:Rx controller & Clear */
272 #define Int_IntMacTx 0x00000001 /* 1:Tx controller & Clear */
273 
274 /* MD_CA bit assign --------------------------------------------------------- */
275 #define MD_CA_PreSup 0x00001000 /* 1:Preamble Suppress */
276 #define MD_CA_Busy 0x00000800 /* 1:Busy (Start Operation) */
277 #define MD_CA_Wr 0x00000400 /* 1:Write 0:Read */
278 
279 
280 /*
281  * Descriptors
282  */
283 
284 /* Frame descripter */
285 struct FDesc {
286  volatile __u32 FDNext;
287  volatile __u32 FDSystem;
288  volatile __u32 FDStat;
289  volatile __u32 FDCtl;
290 };
291 
292 /* Buffer descripter */
293 struct BDesc {
294  volatile __u32 BuffData;
295  volatile __u32 BDCtl;
296 };
297 
298 #define FD_ALIGN 16
299 
300 /* Frame Descripter bit assign ---------------------------------------------- */
301 #define FD_FDLength_MASK 0x0000FFFF /* Length MASK */
302 #define FD_BDCnt_MASK 0x001F0000 /* BD count MASK in FD */
303 #define FD_FrmOpt_MASK 0x7C000000 /* Frame option MASK */
304 #define FD_FrmOpt_BigEndian 0x40000000 /* Tx/Rx */
305 #define FD_FrmOpt_IntTx 0x20000000 /* Tx only */
306 #define FD_FrmOpt_NoCRC 0x10000000 /* Tx only */
307 #define FD_FrmOpt_NoPadding 0x08000000 /* Tx only */
308 #define FD_FrmOpt_Packing 0x04000000 /* Rx only */
309 #define FD_CownsFD 0x80000000 /* FD Controller owner bit */
310 #define FD_Next_EOL 0x00000001 /* FD EOL indicator */
311 #define FD_BDCnt_SHIFT 16
312 
313 /* Buffer Descripter bit assign --------------------------------------------- */
314 #define BD_BuffLength_MASK 0x0000FFFF /* Receive Data Size */
315 #define BD_RxBDID_MASK 0x00FF0000 /* BD ID Number MASK */
316 #define BD_RxBDSeqN_MASK 0x7F000000 /* Rx BD Sequence Number */
317 #define BD_CownsBD 0x80000000 /* BD Controller owner bit */
318 #define BD_RxBDID_SHIFT 16
319 #define BD_RxBDSeqN_SHIFT 24
320 
321 
322 /* Some useful constants. */
323 
324 #define TX_CTL_CMD (Tx_EnTxPar | Tx_EnLateColl | \
325  Tx_EnExColl | Tx_EnLCarr | Tx_EnExDefer | Tx_EnUnder | \
326  Tx_En) /* maybe 0x7b01 */
327 /* Do not use Rx_StripCRC -- it causes trouble on BLEx/FDAEx condition */
328 #define RX_CTL_CMD (Rx_EnGood | Rx_EnRxPar | Rx_EnLongErr | Rx_EnOver \
329  | Rx_EnCRCErr | Rx_EnAlign | Rx_RxEn) /* maybe 0x6f01 */
330 #define INT_EN_CMD (Int_NRAbtEn | \
331  Int_DmParErrEn | Int_DParDEn | Int_DParErrEn | \
332  Int_SSysErrEn | Int_RMasAbtEn | Int_RTargAbtEn | \
333  Int_STargAbtEn | \
334  Int_BLExEn | Int_FDAExEn) /* maybe 0xb7f*/
335 #define DMA_CTL_CMD DMA_BURST_SIZE
336 #define HAVE_DMA_RXALIGN(lp) likely((lp)->chiptype != TC35815CF)
337 
338 /* Tuning parameters */
339 #define DMA_BURST_SIZE 32
340 #define TX_THRESHOLD 1024
341 /* used threshold with packet max byte for low pci transfer ability.*/
342 #define TX_THRESHOLD_MAX 1536
343 /* setting threshold max value when overrun error occurred this count. */
344 #define TX_THRESHOLD_KEEP_LIMIT 10
345 
346 /* 16 + RX_BUF_NUM * 8 + RX_FD_NUM * 16 + TX_FD_NUM * 32 <= PAGE_SIZE*FD_PAGE_NUM */
347 #define FD_PAGE_NUM 4
348 #define RX_BUF_NUM 128 /* < 256 */
349 #define RX_FD_NUM 256 /* >= 32 */
350 #define TX_FD_NUM 128
351 #if RX_CTL_CMD & Rx_LongEn
352 #define RX_BUF_SIZE PAGE_SIZE
353 #elif RX_CTL_CMD & Rx_StripCRC
354 #define RX_BUF_SIZE \
355  L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + NET_IP_ALIGN)
356 #else
357 #define RX_BUF_SIZE \
358  L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN + NET_IP_ALIGN)
359 #endif
360 #define RX_FD_RESERVE (2 / 2) /* max 2 BD per RxFD */
361 #define NAPI_WEIGHT 16
362 
363 struct TxFD {
364  struct FDesc fd;
365  struct BDesc bd;
366  struct BDesc unused;
367 };
368 
369 struct RxFD {
370  struct FDesc fd;
371  struct BDesc bd[0]; /* variable length */
372 };
373 
374 struct FrFD {
375  struct FDesc fd;
376  struct BDesc bd[RX_BUF_NUM];
377 };
378 
379 
380 #define tc_readl(addr) ioread32(addr)
381 #define tc_writel(d, addr) iowrite32(d, addr)
382 
383 #define TC35815_TX_TIMEOUT msecs_to_jiffies(400)
384 
385 /* Information that need to be kept for each controller. */
387  struct pci_dev *pci_dev;
388 
389  struct net_device *dev;
391 
392  /* statistics */
393  struct {
395  int tx_ints;
396  int rx_ints;
398  } lstats;
399 
400  /* Tx control lock. This protects the transmit buffer ring
401  * state along with the "tx full" state of the driver. This
402  * means all netif_queue flow control actions are protected
403  * by this lock as well.
404  */
407 
408  struct mii_bus *mii_bus;
410  int duplex;
411  int speed;
412  int link;
414 
415  /*
416  * Transmitting: Batch Mode.
417  * 1 BD in 1 TxFD.
418  * Receiving: Non-Packing Mode.
419  * 1 circular FD for Free Buffer List.
420  * RX_BUF_NUM BD in Free Buffer FD.
421  * One Free Buffer BD has ETH_FRAME_LEN data buffer.
422  */
423  void *fd_buf; /* for TxFD, RxFD, FrFD */
425  struct TxFD *tfd_base;
426  unsigned int tfd_start;
427  unsigned int tfd_end;
428  struct RxFD *rfd_base;
429  struct RxFD *rfd_limit;
430  struct RxFD *rfd_cur;
431  struct FrFD *fbl_ptr;
432  unsigned int fbl_count;
433  struct {
434  struct sk_buff *skb;
439 };
440 
441 static inline dma_addr_t fd_virt_to_bus(struct tc35815_local *lp, void *virt)
442 {
443  return lp->fd_buf_dma + ((u8 *)virt - (u8 *)lp->fd_buf);
444 }
445 #ifdef DEBUG
446 static inline void *fd_bus_to_virt(struct tc35815_local *lp, dma_addr_t bus)
447 {
448  return (void *)((u8 *)lp->fd_buf + (bus - lp->fd_buf_dma));
449 }
450 #endif
451 static struct sk_buff *alloc_rxbuf_skb(struct net_device *dev,
452  struct pci_dev *hwdev,
454 {
455  struct sk_buff *skb;
456  skb = netdev_alloc_skb(dev, RX_BUF_SIZE);
457  if (!skb)
458  return NULL;
459  *dma_handle = pci_map_single(hwdev, skb->data, RX_BUF_SIZE,
461  if (pci_dma_mapping_error(hwdev, *dma_handle)) {
462  dev_kfree_skb_any(skb);
463  return NULL;
464  }
465  skb_reserve(skb, 2); /* make IP header 4byte aligned */
466  return skb;
467 }
468 
469 static void free_rxbuf_skb(struct pci_dev *hwdev, struct sk_buff *skb, dma_addr_t dma_handle)
470 {
471  pci_unmap_single(hwdev, dma_handle, RX_BUF_SIZE,
473  dev_kfree_skb_any(skb);
474 }
475 
476 /* Index to functions, as function prototypes. */
477 
478 static int tc35815_open(struct net_device *dev);
479 static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev);
480 static irqreturn_t tc35815_interrupt(int irq, void *dev_id);
481 static int tc35815_rx(struct net_device *dev, int limit);
482 static int tc35815_poll(struct napi_struct *napi, int budget);
483 static void tc35815_txdone(struct net_device *dev);
484 static int tc35815_close(struct net_device *dev);
485 static struct net_device_stats *tc35815_get_stats(struct net_device *dev);
486 static void tc35815_set_multicast_list(struct net_device *dev);
487 static void tc35815_tx_timeout(struct net_device *dev);
488 static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
489 #ifdef CONFIG_NET_POLL_CONTROLLER
490 static void tc35815_poll_controller(struct net_device *dev);
491 #endif
492 static const struct ethtool_ops tc35815_ethtool_ops;
493 
494 /* Example routines you must write ;->. */
495 static void tc35815_chip_reset(struct net_device *dev);
496 static void tc35815_chip_init(struct net_device *dev);
497 
498 #ifdef DEBUG
499 static void panic_queues(struct net_device *dev);
500 #endif
501 
502 static void tc35815_restart_work(struct work_struct *work);
503 
504 static int tc_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
505 {
506  struct net_device *dev = bus->priv;
507  struct tc35815_regs __iomem *tr =
508  (struct tc35815_regs __iomem *)dev->base_addr;
509  unsigned long timeout = jiffies + HZ;
510 
511  tc_writel(MD_CA_Busy | (mii_id << 5) | (regnum & 0x1f), &tr->MD_CA);
512  udelay(12); /* it takes 32 x 400ns at least */
513  while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
514  if (time_after(jiffies, timeout))
515  return -EIO;
516  cpu_relax();
517  }
518  return tc_readl(&tr->MD_Data) & 0xffff;
519 }
520 
521 static int tc_mdio_write(struct mii_bus *bus, int mii_id, int regnum, u16 val)
522 {
523  struct net_device *dev = bus->priv;
524  struct tc35815_regs __iomem *tr =
525  (struct tc35815_regs __iomem *)dev->base_addr;
526  unsigned long timeout = jiffies + HZ;
527 
528  tc_writel(val, &tr->MD_Data);
529  tc_writel(MD_CA_Busy | MD_CA_Wr | (mii_id << 5) | (regnum & 0x1f),
530  &tr->MD_CA);
531  udelay(12); /* it takes 32 x 400ns at least */
532  while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
533  if (time_after(jiffies, timeout))
534  return -EIO;
535  cpu_relax();
536  }
537  return 0;
538 }
539 
540 static void tc_handle_link_change(struct net_device *dev)
541 {
542  struct tc35815_local *lp = netdev_priv(dev);
543  struct phy_device *phydev = lp->phy_dev;
544  unsigned long flags;
545  int status_change = 0;
546 
547  spin_lock_irqsave(&lp->lock, flags);
548  if (phydev->link &&
549  (lp->speed != phydev->speed || lp->duplex != phydev->duplex)) {
550  struct tc35815_regs __iomem *tr =
551  (struct tc35815_regs __iomem *)dev->base_addr;
552  u32 reg;
553 
554  reg = tc_readl(&tr->MAC_Ctl);
555  reg |= MAC_HaltReq;
556  tc_writel(reg, &tr->MAC_Ctl);
557  if (phydev->duplex == DUPLEX_FULL)
558  reg |= MAC_FullDup;
559  else
560  reg &= ~MAC_FullDup;
561  tc_writel(reg, &tr->MAC_Ctl);
562  reg &= ~MAC_HaltReq;
563  tc_writel(reg, &tr->MAC_Ctl);
564 
565  /*
566  * TX4939 PCFG.SPEEDn bit will be changed on
567  * NETDEV_CHANGE event.
568  */
569  /*
570  * WORKAROUND: enable LostCrS only if half duplex
571  * operation.
572  * (TX4939 does not have EnLCarr)
573  */
574  if (phydev->duplex == DUPLEX_HALF &&
575  lp->chiptype != TC35815_TX4939)
577  &tr->Tx_Ctl);
578 
579  lp->speed = phydev->speed;
580  lp->duplex = phydev->duplex;
581  status_change = 1;
582  }
583 
584  if (phydev->link != lp->link) {
585  if (phydev->link) {
586  /* delayed promiscuous enabling */
587  if (dev->flags & IFF_PROMISC)
588  tc35815_set_multicast_list(dev);
589  } else {
590  lp->speed = 0;
591  lp->duplex = -1;
592  }
593  lp->link = phydev->link;
594 
595  status_change = 1;
596  }
597  spin_unlock_irqrestore(&lp->lock, flags);
598 
599  if (status_change && netif_msg_link(lp)) {
600  phy_print_status(phydev);
601  pr_debug("%s: MII BMCR %04x BMSR %04x LPA %04x\n",
602  dev->name,
603  phy_read(phydev, MII_BMCR),
604  phy_read(phydev, MII_BMSR),
605  phy_read(phydev, MII_LPA));
606  }
607 }
608 
609 static int tc_mii_probe(struct net_device *dev)
610 {
611  struct tc35815_local *lp = netdev_priv(dev);
612  struct phy_device *phydev = NULL;
613  int phy_addr;
614  u32 dropmask;
615 
616  /* find the first phy */
617  for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
618  if (lp->mii_bus->phy_map[phy_addr]) {
619  if (phydev) {
620  printk(KERN_ERR "%s: multiple PHYs found\n",
621  dev->name);
622  return -EINVAL;
623  }
624  phydev = lp->mii_bus->phy_map[phy_addr];
625  break;
626  }
627  }
628 
629  if (!phydev) {
630  printk(KERN_ERR "%s: no PHY found\n", dev->name);
631  return -ENODEV;
632  }
633 
634  /* attach the mac to the phy */
635  phydev = phy_connect(dev, dev_name(&phydev->dev),
636  &tc_handle_link_change, 0,
637  lp->chiptype == TC35815_TX4939 ?
639  if (IS_ERR(phydev)) {
640  printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
641  return PTR_ERR(phydev);
642  }
643  printk(KERN_INFO "%s: attached PHY driver [%s] "
644  "(mii_bus:phy_addr=%s, id=%x)\n",
645  dev->name, phydev->drv->name, dev_name(&phydev->dev),
646  phydev->phy_id);
647 
648  /* mask with MAC supported features */
649  phydev->supported &= PHY_BASIC_FEATURES;
650  dropmask = 0;
651  if (options.speed == 10)
653  else if (options.speed == 100)
655  if (options.duplex == 1)
657  else if (options.duplex == 2)
659  phydev->supported &= ~dropmask;
660  phydev->advertising = phydev->supported;
661 
662  lp->link = 0;
663  lp->speed = 0;
664  lp->duplex = -1;
665  lp->phy_dev = phydev;
666 
667  return 0;
668 }
669 
670 static int tc_mii_init(struct net_device *dev)
671 {
672  struct tc35815_local *lp = netdev_priv(dev);
673  int err;
674  int i;
675 
676  lp->mii_bus = mdiobus_alloc();
677  if (lp->mii_bus == NULL) {
678  err = -ENOMEM;
679  goto err_out;
680  }
681 
682  lp->mii_bus->name = "tc35815_mii_bus";
683  lp->mii_bus->read = tc_mdio_read;
684  lp->mii_bus->write = tc_mdio_write;
685  snprintf(lp->mii_bus->id, MII_BUS_ID_SIZE, "%x",
686  (lp->pci_dev->bus->number << 8) | lp->pci_dev->devfn);
687  lp->mii_bus->priv = dev;
688  lp->mii_bus->parent = &lp->pci_dev->dev;
689  lp->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
690  if (!lp->mii_bus->irq) {
691  err = -ENOMEM;
692  goto err_out_free_mii_bus;
693  }
694 
695  for (i = 0; i < PHY_MAX_ADDR; i++)
696  lp->mii_bus->irq[i] = PHY_POLL;
697 
698  err = mdiobus_register(lp->mii_bus);
699  if (err)
700  goto err_out_free_mdio_irq;
701  err = tc_mii_probe(dev);
702  if (err)
703  goto err_out_unregister_bus;
704  return 0;
705 
706 err_out_unregister_bus:
708 err_out_free_mdio_irq:
709  kfree(lp->mii_bus->irq);
710 err_out_free_mii_bus:
711  mdiobus_free(lp->mii_bus);
712 err_out:
713  return err;
714 }
715 
716 #ifdef CONFIG_CPU_TX49XX
717 /*
718  * Find a platform_device providing a MAC address. The platform code
719  * should provide a "tc35815-mac" device with a MAC address in its
720  * platform_data.
721  */
722 static int __devinit tc35815_mac_match(struct device *dev, void *data)
723 {
724  struct platform_device *plat_dev = to_platform_device(dev);
725  struct pci_dev *pci_dev = data;
726  unsigned int id = pci_dev->irq;
727  return !strcmp(plat_dev->name, "tc35815-mac") && plat_dev->id == id;
728 }
729 
730 static int __devinit tc35815_read_plat_dev_addr(struct net_device *dev)
731 {
732  struct tc35815_local *lp = netdev_priv(dev);
734  lp->pci_dev, tc35815_mac_match);
735  if (pd) {
736  if (pd->platform_data)
738  put_device(pd);
739  return is_valid_ether_addr(dev->dev_addr) ? 0 : -ENODEV;
740  }
741  return -ENODEV;
742 }
743 #else
744 static int __devinit tc35815_read_plat_dev_addr(struct net_device *dev)
745 {
746  return -ENODEV;
747 }
748 #endif
749 
750 static int __devinit tc35815_init_dev_addr(struct net_device *dev)
751 {
752  struct tc35815_regs __iomem *tr =
753  (struct tc35815_regs __iomem *)dev->base_addr;
754  int i;
755 
756  while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
757  ;
758  for (i = 0; i < 6; i += 2) {
759  unsigned short data;
760  tc_writel(PROM_Busy | PROM_Read | (i / 2 + 2), &tr->PROM_Ctl);
761  while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
762  ;
763  data = tc_readl(&tr->PROM_Data);
764  dev->dev_addr[i] = data & 0xff;
765  dev->dev_addr[i+1] = data >> 8;
766  }
767  if (!is_valid_ether_addr(dev->dev_addr))
768  return tc35815_read_plat_dev_addr(dev);
769  return 0;
770 }
771 
772 static const struct net_device_ops tc35815_netdev_ops = {
773  .ndo_open = tc35815_open,
774  .ndo_stop = tc35815_close,
775  .ndo_start_xmit = tc35815_send_packet,
776  .ndo_get_stats = tc35815_get_stats,
777  .ndo_set_rx_mode = tc35815_set_multicast_list,
778  .ndo_tx_timeout = tc35815_tx_timeout,
779  .ndo_do_ioctl = tc35815_ioctl,
780  .ndo_validate_addr = eth_validate_addr,
781  .ndo_change_mtu = eth_change_mtu,
782  .ndo_set_mac_address = eth_mac_addr,
783 #ifdef CONFIG_NET_POLL_CONTROLLER
784  .ndo_poll_controller = tc35815_poll_controller,
785 #endif
786 };
787 
788 static int __devinit tc35815_init_one(struct pci_dev *pdev,
789  const struct pci_device_id *ent)
790 {
791  void __iomem *ioaddr = NULL;
792  struct net_device *dev;
793  struct tc35815_local *lp;
794  int rc;
795 
796  static int printed_version;
797  if (!printed_version++) {
798  printk(version);
799  dev_printk(KERN_DEBUG, &pdev->dev,
800  "speed:%d duplex:%d\n",
801  options.speed, options.duplex);
802  }
803 
804  if (!pdev->irq) {
805  dev_warn(&pdev->dev, "no IRQ assigned.\n");
806  return -ENODEV;
807  }
808 
809  /* dev zeroed in alloc_etherdev */
810  dev = alloc_etherdev(sizeof(*lp));
811  if (dev == NULL)
812  return -ENOMEM;
813 
814  SET_NETDEV_DEV(dev, &pdev->dev);
815  lp = netdev_priv(dev);
816  lp->dev = dev;
817 
818  /* enable device (incl. PCI PM wakeup), and bus-mastering */
819  rc = pcim_enable_device(pdev);
820  if (rc)
821  goto err_out;
822  rc = pcim_iomap_regions(pdev, 1 << 1, MODNAME);
823  if (rc)
824  goto err_out;
825  pci_set_master(pdev);
826  ioaddr = pcim_iomap_table(pdev)[1];
827 
828  /* Initialize the device structure. */
829  dev->netdev_ops = &tc35815_netdev_ops;
830  dev->ethtool_ops = &tc35815_ethtool_ops;
832  netif_napi_add(dev, &lp->napi, tc35815_poll, NAPI_WEIGHT);
833 
834  dev->irq = pdev->irq;
835  dev->base_addr = (unsigned long)ioaddr;
836 
837  INIT_WORK(&lp->restart_work, tc35815_restart_work);
838  spin_lock_init(&lp->lock);
839  spin_lock_init(&lp->rx_lock);
840  lp->pci_dev = pdev;
841  lp->chiptype = ent->driver_data;
842 
844  pci_set_drvdata(pdev, dev);
845 
846  /* Soft reset the chip. */
847  tc35815_chip_reset(dev);
848 
849  /* Retrieve the ethernet address. */
850  if (tc35815_init_dev_addr(dev)) {
851  dev_warn(&pdev->dev, "not valid ether addr\n");
852  eth_hw_addr_random(dev);
853  }
854 
855  rc = register_netdev(dev);
856  if (rc)
857  goto err_out;
858 
859  memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
860  printk(KERN_INFO "%s: %s at 0x%lx, %pM, IRQ %d\n",
861  dev->name,
862  chip_info[ent->driver_data].name,
863  dev->base_addr,
864  dev->dev_addr,
865  dev->irq);
866 
867  rc = tc_mii_init(dev);
868  if (rc)
869  goto err_out_unregister;
870 
871  return 0;
872 
873 err_out_unregister:
874  unregister_netdev(dev);
875 err_out:
876  free_netdev(dev);
877  return rc;
878 }
879 
880 
881 static void __devexit tc35815_remove_one(struct pci_dev *pdev)
882 {
883  struct net_device *dev = pci_get_drvdata(pdev);
884  struct tc35815_local *lp = netdev_priv(dev);
885 
886  phy_disconnect(lp->phy_dev);
888  kfree(lp->mii_bus->irq);
889  mdiobus_free(lp->mii_bus);
890  unregister_netdev(dev);
891  free_netdev(dev);
892  pci_set_drvdata(pdev, NULL);
893 }
894 
895 static int
896 tc35815_init_queues(struct net_device *dev)
897 {
898  struct tc35815_local *lp = netdev_priv(dev);
899  int i;
900  unsigned long fd_addr;
901 
902  if (!lp->fd_buf) {
903  BUG_ON(sizeof(struct FDesc) +
904  sizeof(struct BDesc) * RX_BUF_NUM +
905  sizeof(struct FDesc) * RX_FD_NUM +
906  sizeof(struct TxFD) * TX_FD_NUM >
908 
911  &lp->fd_buf_dma);
912  if (!lp->fd_buf)
913  return -ENOMEM;
914  for (i = 0; i < RX_BUF_NUM; i++) {
915  lp->rx_skbs[i].skb =
916  alloc_rxbuf_skb(dev, lp->pci_dev,
917  &lp->rx_skbs[i].skb_dma);
918  if (!lp->rx_skbs[i].skb) {
919  while (--i >= 0) {
920  free_rxbuf_skb(lp->pci_dev,
921  lp->rx_skbs[i].skb,
922  lp->rx_skbs[i].skb_dma);
923  lp->rx_skbs[i].skb = NULL;
924  }
927  lp->fd_buf,
928  lp->fd_buf_dma);
929  lp->fd_buf = NULL;
930  return -ENOMEM;
931  }
932  }
933  printk(KERN_DEBUG "%s: FD buf %p DataBuf",
934  dev->name, lp->fd_buf);
935  printk("\n");
936  } else {
937  for (i = 0; i < FD_PAGE_NUM; i++)
938  clear_page((void *)((unsigned long)lp->fd_buf +
939  i * PAGE_SIZE));
940  }
941  fd_addr = (unsigned long)lp->fd_buf;
942 
943  /* Free Descriptors (for Receive) */
944  lp->rfd_base = (struct RxFD *)fd_addr;
945  fd_addr += sizeof(struct RxFD) * RX_FD_NUM;
946  for (i = 0; i < RX_FD_NUM; i++)
947  lp->rfd_base[i].fd.FDCtl = cpu_to_le32(FD_CownsFD);
948  lp->rfd_cur = lp->rfd_base;
949  lp->rfd_limit = (struct RxFD *)fd_addr - (RX_FD_RESERVE + 1);
950 
951  /* Transmit Descriptors */
952  lp->tfd_base = (struct TxFD *)fd_addr;
953  fd_addr += sizeof(struct TxFD) * TX_FD_NUM;
954  for (i = 0; i < TX_FD_NUM; i++) {
955  lp->tfd_base[i].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[i+1]));
956  lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
957  lp->tfd_base[i].fd.FDCtl = cpu_to_le32(0);
958  }
959  lp->tfd_base[TX_FD_NUM-1].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[0]));
960  lp->tfd_start = 0;
961  lp->tfd_end = 0;
962 
963  /* Buffer List (for Receive) */
964  lp->fbl_ptr = (struct FrFD *)fd_addr;
965  lp->fbl_ptr->fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, lp->fbl_ptr));
966  lp->fbl_ptr->fd.FDCtl = cpu_to_le32(RX_BUF_NUM | FD_CownsFD);
967  /*
968  * move all allocated skbs to head of rx_skbs[] array.
969  * fbl_count mighe not be RX_BUF_NUM if alloc_rxbuf_skb() in
970  * tc35815_rx() had failed.
971  */
972  lp->fbl_count = 0;
973  for (i = 0; i < RX_BUF_NUM; i++) {
974  if (lp->rx_skbs[i].skb) {
975  if (i != lp->fbl_count) {
976  lp->rx_skbs[lp->fbl_count].skb =
977  lp->rx_skbs[i].skb;
978  lp->rx_skbs[lp->fbl_count].skb_dma =
979  lp->rx_skbs[i].skb_dma;
980  }
981  lp->fbl_count++;
982  }
983  }
984  for (i = 0; i < RX_BUF_NUM; i++) {
985  if (i >= lp->fbl_count) {
986  lp->fbl_ptr->bd[i].BuffData = 0;
987  lp->fbl_ptr->bd[i].BDCtl = 0;
988  continue;
989  }
990  lp->fbl_ptr->bd[i].BuffData =
991  cpu_to_le32(lp->rx_skbs[i].skb_dma);
992  /* BDID is index of FrFD.bd[] */
993  lp->fbl_ptr->bd[i].BDCtl =
995  RX_BUF_SIZE);
996  }
997 
998  printk(KERN_DEBUG "%s: TxFD %p RxFD %p FrFD %p\n",
999  dev->name, lp->tfd_base, lp->rfd_base, lp->fbl_ptr);
1000  return 0;
1001 }
1002 
1003 static void
1004 tc35815_clear_queues(struct net_device *dev)
1005 {
1006  struct tc35815_local *lp = netdev_priv(dev);
1007  int i;
1008 
1009  for (i = 0; i < TX_FD_NUM; i++) {
1010  u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
1011  struct sk_buff *skb =
1012  fdsystem != 0xffffffff ?
1013  lp->tx_skbs[fdsystem].skb : NULL;
1014 #ifdef DEBUG
1015  if (lp->tx_skbs[i].skb != skb) {
1016  printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
1017  panic_queues(dev);
1018  }
1019 #else
1020  BUG_ON(lp->tx_skbs[i].skb != skb);
1021 #endif
1022  if (skb) {
1023  pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
1024  lp->tx_skbs[i].skb = NULL;
1025  lp->tx_skbs[i].skb_dma = 0;
1026  dev_kfree_skb_any(skb);
1027  }
1028  lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
1029  }
1030 
1031  tc35815_init_queues(dev);
1032 }
1033 
1034 static void
1035 tc35815_free_queues(struct net_device *dev)
1036 {
1037  struct tc35815_local *lp = netdev_priv(dev);
1038  int i;
1039 
1040  if (lp->tfd_base) {
1041  for (i = 0; i < TX_FD_NUM; i++) {
1042  u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
1043  struct sk_buff *skb =
1044  fdsystem != 0xffffffff ?
1045  lp->tx_skbs[fdsystem].skb : NULL;
1046 #ifdef DEBUG
1047  if (lp->tx_skbs[i].skb != skb) {
1048  printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
1049  panic_queues(dev);
1050  }
1051 #else
1052  BUG_ON(lp->tx_skbs[i].skb != skb);
1053 #endif
1054  if (skb) {
1055  dev_kfree_skb(skb);
1056  pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
1057  lp->tx_skbs[i].skb = NULL;
1058  lp->tx_skbs[i].skb_dma = 0;
1059  }
1060  lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
1061  }
1062  }
1063 
1064  lp->rfd_base = NULL;
1065  lp->rfd_limit = NULL;
1066  lp->rfd_cur = NULL;
1067  lp->fbl_ptr = NULL;
1068 
1069  for (i = 0; i < RX_BUF_NUM; i++) {
1070  if (lp->rx_skbs[i].skb) {
1071  free_rxbuf_skb(lp->pci_dev, lp->rx_skbs[i].skb,
1072  lp->rx_skbs[i].skb_dma);
1073  lp->rx_skbs[i].skb = NULL;
1074  }
1075  }
1076  if (lp->fd_buf) {
1077  pci_free_consistent(lp->pci_dev, PAGE_SIZE * FD_PAGE_NUM,
1078  lp->fd_buf, lp->fd_buf_dma);
1079  lp->fd_buf = NULL;
1080  }
1081 }
1082 
1083 static void
1084 dump_txfd(struct TxFD *fd)
1085 {
1086  printk("TxFD(%p): %08x %08x %08x %08x\n", fd,
1087  le32_to_cpu(fd->fd.FDNext),
1088  le32_to_cpu(fd->fd.FDSystem),
1089  le32_to_cpu(fd->fd.FDStat),
1090  le32_to_cpu(fd->fd.FDCtl));
1091  printk("BD: ");
1092  printk(" %08x %08x",
1093  le32_to_cpu(fd->bd.BuffData),
1094  le32_to_cpu(fd->bd.BDCtl));
1095  printk("\n");
1096 }
1097 
1098 static int
1099 dump_rxfd(struct RxFD *fd)
1100 {
1101  int i, bd_count = (le32_to_cpu(fd->fd.FDCtl) & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1102  if (bd_count > 8)
1103  bd_count = 8;
1104  printk("RxFD(%p): %08x %08x %08x %08x\n", fd,
1105  le32_to_cpu(fd->fd.FDNext),
1106  le32_to_cpu(fd->fd.FDSystem),
1107  le32_to_cpu(fd->fd.FDStat),
1108  le32_to_cpu(fd->fd.FDCtl));
1109  if (le32_to_cpu(fd->fd.FDCtl) & FD_CownsFD)
1110  return 0;
1111  printk("BD: ");
1112  for (i = 0; i < bd_count; i++)
1113  printk(" %08x %08x",
1114  le32_to_cpu(fd->bd[i].BuffData),
1115  le32_to_cpu(fd->bd[i].BDCtl));
1116  printk("\n");
1117  return bd_count;
1118 }
1119 
1120 #ifdef DEBUG
1121 static void
1122 dump_frfd(struct FrFD *fd)
1123 {
1124  int i;
1125  printk("FrFD(%p): %08x %08x %08x %08x\n", fd,
1126  le32_to_cpu(fd->fd.FDNext),
1127  le32_to_cpu(fd->fd.FDSystem),
1128  le32_to_cpu(fd->fd.FDStat),
1129  le32_to_cpu(fd->fd.FDCtl));
1130  printk("BD: ");
1131  for (i = 0; i < RX_BUF_NUM; i++)
1132  printk(" %08x %08x",
1133  le32_to_cpu(fd->bd[i].BuffData),
1134  le32_to_cpu(fd->bd[i].BDCtl));
1135  printk("\n");
1136 }
1137 
1138 static void
1139 panic_queues(struct net_device *dev)
1140 {
1141  struct tc35815_local *lp = netdev_priv(dev);
1142  int i;
1143 
1144  printk("TxFD base %p, start %u, end %u\n",
1145  lp->tfd_base, lp->tfd_start, lp->tfd_end);
1146  printk("RxFD base %p limit %p cur %p\n",
1147  lp->rfd_base, lp->rfd_limit, lp->rfd_cur);
1148  printk("FrFD %p\n", lp->fbl_ptr);
1149  for (i = 0; i < TX_FD_NUM; i++)
1150  dump_txfd(&lp->tfd_base[i]);
1151  for (i = 0; i < RX_FD_NUM; i++) {
1152  int bd_count = dump_rxfd(&lp->rfd_base[i]);
1153  i += (bd_count + 1) / 2; /* skip BDs */
1154  }
1155  dump_frfd(lp->fbl_ptr);
1156  panic("%s: Illegal queue state.", dev->name);
1157 }
1158 #endif
1159 
1160 static void print_eth(const u8 *add)
1161 {
1162  printk(KERN_DEBUG "print_eth(%p)\n", add);
1163  printk(KERN_DEBUG " %pM => %pM : %02x%02x\n",
1164  add + 6, add, add[12], add[13]);
1165 }
1166 
1167 static int tc35815_tx_full(struct net_device *dev)
1168 {
1169  struct tc35815_local *lp = netdev_priv(dev);
1170  return (lp->tfd_start + 1) % TX_FD_NUM == lp->tfd_end;
1171 }
1172 
1173 static void tc35815_restart(struct net_device *dev)
1174 {
1175  struct tc35815_local *lp = netdev_priv(dev);
1176 
1177  if (lp->phy_dev) {
1178  int timeout;
1179 
1181  timeout = 100;
1182  while (--timeout) {
1183  if (!(phy_read(lp->phy_dev, MII_BMCR) & BMCR_RESET))
1184  break;
1185  udelay(1);
1186  }
1187  if (!timeout)
1188  printk(KERN_ERR "%s: BMCR reset failed.\n", dev->name);
1189  }
1190 
1191  spin_lock_bh(&lp->rx_lock);
1192  spin_lock_irq(&lp->lock);
1193  tc35815_chip_reset(dev);
1194  tc35815_clear_queues(dev);
1195  tc35815_chip_init(dev);
1196  /* Reconfigure CAM again since tc35815_chip_init() initialize it. */
1197  tc35815_set_multicast_list(dev);
1198  spin_unlock_irq(&lp->lock);
1199  spin_unlock_bh(&lp->rx_lock);
1200 
1201  netif_wake_queue(dev);
1202 }
1203 
1204 static void tc35815_restart_work(struct work_struct *work)
1205 {
1206  struct tc35815_local *lp =
1207  container_of(work, struct tc35815_local, restart_work);
1208  struct net_device *dev = lp->dev;
1209 
1210  tc35815_restart(dev);
1211 }
1212 
1213 static void tc35815_schedule_restart(struct net_device *dev)
1214 {
1215  struct tc35815_local *lp = netdev_priv(dev);
1216  struct tc35815_regs __iomem *tr =
1217  (struct tc35815_regs __iomem *)dev->base_addr;
1218  unsigned long flags;
1219 
1220  /* disable interrupts */
1221  spin_lock_irqsave(&lp->lock, flags);
1222  tc_writel(0, &tr->Int_En);
1223  tc_writel(tc_readl(&tr->DMA_Ctl) | DMA_IntMask, &tr->DMA_Ctl);
1225  spin_unlock_irqrestore(&lp->lock, flags);
1226 }
1227 
1228 static void tc35815_tx_timeout(struct net_device *dev)
1229 {
1230  struct tc35815_regs __iomem *tr =
1231  (struct tc35815_regs __iomem *)dev->base_addr;
1232 
1233  printk(KERN_WARNING "%s: transmit timed out, status %#x\n",
1234  dev->name, tc_readl(&tr->Tx_Stat));
1235 
1236  /* Try to restart the adaptor. */
1237  tc35815_schedule_restart(dev);
1238  dev->stats.tx_errors++;
1239 }
1240 
1241 /*
1242  * Open/initialize the controller. This is called (in the current kernel)
1243  * sometime after booting when the 'ifconfig' program is run.
1244  *
1245  * This routine should set everything up anew at each open, even
1246  * registers that "should" only need to be set once at boot, so that
1247  * there is non-reboot way to recover if something goes wrong.
1248  */
1249 static int
1250 tc35815_open(struct net_device *dev)
1251 {
1252  struct tc35815_local *lp = netdev_priv(dev);
1253 
1254  /*
1255  * This is used if the interrupt line can turned off (shared).
1256  * See 3c503.c for an example of selecting the IRQ at config-time.
1257  */
1258  if (request_irq(dev->irq, tc35815_interrupt, IRQF_SHARED,
1259  dev->name, dev))
1260  return -EAGAIN;
1261 
1262  tc35815_chip_reset(dev);
1263 
1264  if (tc35815_init_queues(dev) != 0) {
1265  free_irq(dev->irq, dev);
1266  return -EAGAIN;
1267  }
1268 
1269  napi_enable(&lp->napi);
1270 
1271  /* Reset the hardware here. Don't forget to set the station address. */
1272  spin_lock_irq(&lp->lock);
1273  tc35815_chip_init(dev);
1274  spin_unlock_irq(&lp->lock);
1275 
1276  netif_carrier_off(dev);
1277  /* schedule a link state check */
1278  phy_start(lp->phy_dev);
1279 
1280  /* We are now ready to accept transmit requeusts from
1281  * the queueing layer of the networking.
1282  */
1283  netif_start_queue(dev);
1284 
1285  return 0;
1286 }
1287 
1288 /* This will only be invoked if your driver is _not_ in XOFF state.
1289  * What this means is that you need not check it, and that this
1290  * invariant will hold if you make sure that the netif_*_queue()
1291  * calls are done at the proper times.
1292  */
1293 static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev)
1294 {
1295  struct tc35815_local *lp = netdev_priv(dev);
1296  struct TxFD *txfd;
1297  unsigned long flags;
1298 
1299  /* If some error occurs while trying to transmit this
1300  * packet, you should return '1' from this function.
1301  * In such a case you _may not_ do anything to the
1302  * SKB, it is still owned by the network queueing
1303  * layer when an error is returned. This means you
1304  * may not modify any SKB fields, you may not free
1305  * the SKB, etc.
1306  */
1307 
1308  /* This is the most common case for modern hardware.
1309  * The spinlock protects this code from the TX complete
1310  * hardware interrupt handler. Queue flow control is
1311  * thus managed under this lock as well.
1312  */
1313  spin_lock_irqsave(&lp->lock, flags);
1314 
1315  /* failsafe... (handle txdone now if half of FDs are used) */
1316  if ((lp->tfd_start + TX_FD_NUM - lp->tfd_end) % TX_FD_NUM >
1317  TX_FD_NUM / 2)
1318  tc35815_txdone(dev);
1319 
1320  if (netif_msg_pktdata(lp))
1321  print_eth(skb->data);
1322 #ifdef DEBUG
1323  if (lp->tx_skbs[lp->tfd_start].skb) {
1324  printk("%s: tx_skbs conflict.\n", dev->name);
1325  panic_queues(dev);
1326  }
1327 #else
1328  BUG_ON(lp->tx_skbs[lp->tfd_start].skb);
1329 #endif
1330  lp->tx_skbs[lp->tfd_start].skb = skb;
1331  lp->tx_skbs[lp->tfd_start].skb_dma = pci_map_single(lp->pci_dev, skb->data, skb->len, PCI_DMA_TODEVICE);
1332 
1333  /*add to ring */
1334  txfd = &lp->tfd_base[lp->tfd_start];
1335  txfd->bd.BuffData = cpu_to_le32(lp->tx_skbs[lp->tfd_start].skb_dma);
1336  txfd->bd.BDCtl = cpu_to_le32(skb->len);
1337  txfd->fd.FDSystem = cpu_to_le32(lp->tfd_start);
1338  txfd->fd.FDCtl = cpu_to_le32(FD_CownsFD | (1 << FD_BDCnt_SHIFT));
1339 
1340  if (lp->tfd_start == lp->tfd_end) {
1341  struct tc35815_regs __iomem *tr =
1342  (struct tc35815_regs __iomem *)dev->base_addr;
1343  /* Start DMA Transmitter. */
1344  txfd->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1345  txfd->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1346  if (netif_msg_tx_queued(lp)) {
1347  printk("%s: starting TxFD.\n", dev->name);
1348  dump_txfd(txfd);
1349  }
1350  tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1351  } else {
1352  txfd->fd.FDNext &= cpu_to_le32(~FD_Next_EOL);
1353  if (netif_msg_tx_queued(lp)) {
1354  printk("%s: queueing TxFD.\n", dev->name);
1355  dump_txfd(txfd);
1356  }
1357  }
1358  lp->tfd_start = (lp->tfd_start + 1) % TX_FD_NUM;
1359 
1360  /* If we just used up the very last entry in the
1361  * TX ring on this device, tell the queueing
1362  * layer to send no more.
1363  */
1364  if (tc35815_tx_full(dev)) {
1365  if (netif_msg_tx_queued(lp))
1366  printk(KERN_WARNING "%s: TxFD Exhausted.\n", dev->name);
1367  netif_stop_queue(dev);
1368  }
1369 
1370  /* When the TX completion hw interrupt arrives, this
1371  * is when the transmit statistics are updated.
1372  */
1373 
1374  spin_unlock_irqrestore(&lp->lock, flags);
1375  return NETDEV_TX_OK;
1376 }
1377 
1378 #define FATAL_ERROR_INT \
1379  (Int_IntPCI | Int_DmParErr | Int_IntNRAbt)
1380 static void tc35815_fatal_error_interrupt(struct net_device *dev, u32 status)
1381 {
1382  static int count;
1383  printk(KERN_WARNING "%s: Fatal Error Intterrupt (%#x):",
1384  dev->name, status);
1385  if (status & Int_IntPCI)
1386  printk(" IntPCI");
1387  if (status & Int_DmParErr)
1388  printk(" DmParErr");
1389  if (status & Int_IntNRAbt)
1390  printk(" IntNRAbt");
1391  printk("\n");
1392  if (count++ > 100)
1393  panic("%s: Too many fatal errors.", dev->name);
1394  printk(KERN_WARNING "%s: Resetting ...\n", dev->name);
1395  /* Try to restart the adaptor. */
1396  tc35815_schedule_restart(dev);
1397 }
1398 
1399 static int tc35815_do_interrupt(struct net_device *dev, u32 status, int limit)
1400 {
1401  struct tc35815_local *lp = netdev_priv(dev);
1402  int ret = -1;
1403 
1404  /* Fatal errors... */
1405  if (status & FATAL_ERROR_INT) {
1406  tc35815_fatal_error_interrupt(dev, status);
1407  return 0;
1408  }
1409  /* recoverable errors */
1410  if (status & Int_IntFDAEx) {
1411  if (netif_msg_rx_err(lp))
1412  dev_warn(&dev->dev,
1413  "Free Descriptor Area Exhausted (%#x).\n",
1414  status);
1415  dev->stats.rx_dropped++;
1416  ret = 0;
1417  }
1418  if (status & Int_IntBLEx) {
1419  if (netif_msg_rx_err(lp))
1420  dev_warn(&dev->dev,
1421  "Buffer List Exhausted (%#x).\n",
1422  status);
1423  dev->stats.rx_dropped++;
1424  ret = 0;
1425  }
1426  if (status & Int_IntExBD) {
1427  if (netif_msg_rx_err(lp))
1428  dev_warn(&dev->dev,
1429  "Excessive Buffer Descriptiors (%#x).\n",
1430  status);
1431  dev->stats.rx_length_errors++;
1432  ret = 0;
1433  }
1434 
1435  /* normal notification */
1436  if (status & Int_IntMacRx) {
1437  /* Got a packet(s). */
1438  ret = tc35815_rx(dev, limit);
1439  lp->lstats.rx_ints++;
1440  }
1441  if (status & Int_IntMacTx) {
1442  /* Transmit complete. */
1443  lp->lstats.tx_ints++;
1444  spin_lock_irq(&lp->lock);
1445  tc35815_txdone(dev);
1446  spin_unlock_irq(&lp->lock);
1447  if (ret < 0)
1448  ret = 0;
1449  }
1450  return ret;
1451 }
1452 
1453 /*
1454  * The typical workload of the driver:
1455  * Handle the network interface interrupts.
1456  */
1457 static irqreturn_t tc35815_interrupt(int irq, void *dev_id)
1458 {
1459  struct net_device *dev = dev_id;
1460  struct tc35815_local *lp = netdev_priv(dev);
1461  struct tc35815_regs __iomem *tr =
1462  (struct tc35815_regs __iomem *)dev->base_addr;
1463  u32 dmactl = tc_readl(&tr->DMA_Ctl);
1464 
1465  if (!(dmactl & DMA_IntMask)) {
1466  /* disable interrupts */
1467  tc_writel(dmactl | DMA_IntMask, &tr->DMA_Ctl);
1468  if (napi_schedule_prep(&lp->napi))
1469  __napi_schedule(&lp->napi);
1470  else {
1471  printk(KERN_ERR "%s: interrupt taken in poll\n",
1472  dev->name);
1473  BUG();
1474  }
1475  (void)tc_readl(&tr->Int_Src); /* flush */
1476  return IRQ_HANDLED;
1477  }
1478  return IRQ_NONE;
1479 }
1480 
1481 #ifdef CONFIG_NET_POLL_CONTROLLER
1482 static void tc35815_poll_controller(struct net_device *dev)
1483 {
1484  disable_irq(dev->irq);
1485  tc35815_interrupt(dev->irq, dev);
1486  enable_irq(dev->irq);
1487 }
1488 #endif
1489 
1490 /* We have a good packet(s), get it/them out of the buffers. */
1491 static int
1492 tc35815_rx(struct net_device *dev, int limit)
1493 {
1494  struct tc35815_local *lp = netdev_priv(dev);
1495  unsigned int fdctl;
1496  int i;
1497  int received = 0;
1498 
1499  while (!((fdctl = le32_to_cpu(lp->rfd_cur->fd.FDCtl)) & FD_CownsFD)) {
1500  int status = le32_to_cpu(lp->rfd_cur->fd.FDStat);
1501  int pkt_len = fdctl & FD_FDLength_MASK;
1502  int bd_count = (fdctl & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1503 #ifdef DEBUG
1504  struct RxFD *next_rfd;
1505 #endif
1506 #if (RX_CTL_CMD & Rx_StripCRC) == 0
1507  pkt_len -= ETH_FCS_LEN;
1508 #endif
1509 
1510  if (netif_msg_rx_status(lp))
1511  dump_rxfd(lp->rfd_cur);
1512  if (status & Rx_Good) {
1513  struct sk_buff *skb;
1514  unsigned char *data;
1515  int cur_bd;
1516 
1517  if (--limit < 0)
1518  break;
1519  BUG_ON(bd_count > 1);
1520  cur_bd = (le32_to_cpu(lp->rfd_cur->bd[0].BDCtl)
1522 #ifdef DEBUG
1523  if (cur_bd >= RX_BUF_NUM) {
1524  printk("%s: invalid BDID.\n", dev->name);
1525  panic_queues(dev);
1526  }
1527  BUG_ON(lp->rx_skbs[cur_bd].skb_dma !=
1528  (le32_to_cpu(lp->rfd_cur->bd[0].BuffData) & ~3));
1529  if (!lp->rx_skbs[cur_bd].skb) {
1530  printk("%s: NULL skb.\n", dev->name);
1531  panic_queues(dev);
1532  }
1533 #else
1534  BUG_ON(cur_bd >= RX_BUF_NUM);
1535 #endif
1536  skb = lp->rx_skbs[cur_bd].skb;
1537  prefetch(skb->data);
1538  lp->rx_skbs[cur_bd].skb = NULL;
1539  pci_unmap_single(lp->pci_dev,
1540  lp->rx_skbs[cur_bd].skb_dma,
1542  if (!HAVE_DMA_RXALIGN(lp) && NET_IP_ALIGN)
1543  memmove(skb->data, skb->data - NET_IP_ALIGN,
1544  pkt_len);
1545  data = skb_put(skb, pkt_len);
1546  if (netif_msg_pktdata(lp))
1547  print_eth(data);
1548  skb->protocol = eth_type_trans(skb, dev);
1549  netif_receive_skb(skb);
1550  received++;
1551  dev->stats.rx_packets++;
1552  dev->stats.rx_bytes += pkt_len;
1553  } else {
1554  dev->stats.rx_errors++;
1555  if (netif_msg_rx_err(lp))
1556  dev_info(&dev->dev, "Rx error (status %x)\n",
1557  status & Rx_Stat_Mask);
1558  /* WORKAROUND: LongErr and CRCErr means Overflow. */
1559  if ((status & Rx_LongErr) && (status & Rx_CRCErr)) {
1560  status &= ~(Rx_LongErr|Rx_CRCErr);
1561  status |= Rx_Over;
1562  }
1563  if (status & Rx_LongErr)
1564  dev->stats.rx_length_errors++;
1565  if (status & Rx_Over)
1566  dev->stats.rx_fifo_errors++;
1567  if (status & Rx_CRCErr)
1568  dev->stats.rx_crc_errors++;
1569  if (status & Rx_Align)
1570  dev->stats.rx_frame_errors++;
1571  }
1572 
1573  if (bd_count > 0) {
1574  /* put Free Buffer back to controller */
1575  int bdctl = le32_to_cpu(lp->rfd_cur->bd[bd_count - 1].BDCtl);
1576  unsigned char id =
1577  (bdctl & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1578 #ifdef DEBUG
1579  if (id >= RX_BUF_NUM) {
1580  printk("%s: invalid BDID.\n", dev->name);
1581  panic_queues(dev);
1582  }
1583 #else
1584  BUG_ON(id >= RX_BUF_NUM);
1585 #endif
1586  /* free old buffers */
1587  lp->fbl_count--;
1588  while (lp->fbl_count < RX_BUF_NUM)
1589  {
1590  unsigned char curid =
1591  (id + 1 + lp->fbl_count) % RX_BUF_NUM;
1592  struct BDesc *bd = &lp->fbl_ptr->bd[curid];
1593 #ifdef DEBUG
1594  bdctl = le32_to_cpu(bd->BDCtl);
1595  if (bdctl & BD_CownsBD) {
1596  printk("%s: Freeing invalid BD.\n",
1597  dev->name);
1598  panic_queues(dev);
1599  }
1600 #endif
1601  /* pass BD to controller */
1602  if (!lp->rx_skbs[curid].skb) {
1603  lp->rx_skbs[curid].skb =
1604  alloc_rxbuf_skb(dev,
1605  lp->pci_dev,
1606  &lp->rx_skbs[curid].skb_dma);
1607  if (!lp->rx_skbs[curid].skb)
1608  break; /* try on next reception */
1609  bd->BuffData = cpu_to_le32(lp->rx_skbs[curid].skb_dma);
1610  }
1611  /* Note: BDLength was modified by chip. */
1612  bd->BDCtl = cpu_to_le32(BD_CownsBD |
1613  (curid << BD_RxBDID_SHIFT) |
1614  RX_BUF_SIZE);
1615  lp->fbl_count++;
1616  }
1617  }
1618 
1619  /* put RxFD back to controller */
1620 #ifdef DEBUG
1621  next_rfd = fd_bus_to_virt(lp,
1622  le32_to_cpu(lp->rfd_cur->fd.FDNext));
1623  if (next_rfd < lp->rfd_base || next_rfd > lp->rfd_limit) {
1624  printk("%s: RxFD FDNext invalid.\n", dev->name);
1625  panic_queues(dev);
1626  }
1627 #endif
1628  for (i = 0; i < (bd_count + 1) / 2 + 1; i++) {
1629  /* pass FD to controller */
1630 #ifdef DEBUG
1631  lp->rfd_cur->fd.FDNext = cpu_to_le32(0xdeaddead);
1632 #else
1633  lp->rfd_cur->fd.FDNext = cpu_to_le32(FD_Next_EOL);
1634 #endif
1635  lp->rfd_cur->fd.FDCtl = cpu_to_le32(FD_CownsFD);
1636  lp->rfd_cur++;
1637  }
1638  if (lp->rfd_cur > lp->rfd_limit)
1639  lp->rfd_cur = lp->rfd_base;
1640 #ifdef DEBUG
1641  if (lp->rfd_cur != next_rfd)
1642  printk("rfd_cur = %p, next_rfd %p\n",
1643  lp->rfd_cur, next_rfd);
1644 #endif
1645  }
1646 
1647  return received;
1648 }
1649 
1650 static int tc35815_poll(struct napi_struct *napi, int budget)
1651 {
1652  struct tc35815_local *lp = container_of(napi, struct tc35815_local, napi);
1653  struct net_device *dev = lp->dev;
1654  struct tc35815_regs __iomem *tr =
1655  (struct tc35815_regs __iomem *)dev->base_addr;
1656  int received = 0, handled;
1657  u32 status;
1658 
1659  spin_lock(&lp->rx_lock);
1660  status = tc_readl(&tr->Int_Src);
1661  do {
1662  /* BLEx, FDAEx will be cleared later */
1663  tc_writel(status & ~(Int_BLEx | Int_FDAEx),
1664  &tr->Int_Src); /* write to clear */
1665 
1666  handled = tc35815_do_interrupt(dev, status, budget - received);
1667  if (status & (Int_BLEx | Int_FDAEx))
1668  tc_writel(status & (Int_BLEx | Int_FDAEx),
1669  &tr->Int_Src);
1670  if (handled >= 0) {
1671  received += handled;
1672  if (received >= budget)
1673  break;
1674  }
1675  status = tc_readl(&tr->Int_Src);
1676  } while (status);
1677  spin_unlock(&lp->rx_lock);
1678 
1679  if (received < budget) {
1680  napi_complete(napi);
1681  /* enable interrupts */
1682  tc_writel(tc_readl(&tr->DMA_Ctl) & ~DMA_IntMask, &tr->DMA_Ctl);
1683  }
1684  return received;
1685 }
1686 
1687 #define TX_STA_ERR (Tx_ExColl|Tx_Under|Tx_Defer|Tx_NCarr|Tx_LateColl|Tx_TxPar|Tx_SQErr)
1688 
1689 static void
1690 tc35815_check_tx_stat(struct net_device *dev, int status)
1691 {
1692  struct tc35815_local *lp = netdev_priv(dev);
1693  const char *msg = NULL;
1694 
1695  /* count collisions */
1696  if (status & Tx_ExColl)
1697  dev->stats.collisions += 16;
1698  if (status & Tx_TxColl_MASK)
1699  dev->stats.collisions += status & Tx_TxColl_MASK;
1700 
1701  /* TX4939 does not have NCarr */
1702  if (lp->chiptype == TC35815_TX4939)
1703  status &= ~Tx_NCarr;
1704  /* WORKAROUND: ignore LostCrS in full duplex operation */
1705  if (!lp->link || lp->duplex == DUPLEX_FULL)
1706  status &= ~Tx_NCarr;
1707 
1708  if (!(status & TX_STA_ERR)) {
1709  /* no error. */
1710  dev->stats.tx_packets++;
1711  return;
1712  }
1713 
1714  dev->stats.tx_errors++;
1715  if (status & Tx_ExColl) {
1716  dev->stats.tx_aborted_errors++;
1717  msg = "Excessive Collision.";
1718  }
1719  if (status & Tx_Under) {
1720  dev->stats.tx_fifo_errors++;
1721  msg = "Tx FIFO Underrun.";
1722  if (lp->lstats.tx_underrun < TX_THRESHOLD_KEEP_LIMIT) {
1723  lp->lstats.tx_underrun++;
1724  if (lp->lstats.tx_underrun >= TX_THRESHOLD_KEEP_LIMIT) {
1725  struct tc35815_regs __iomem *tr =
1726  (struct tc35815_regs __iomem *)dev->base_addr;
1728  msg = "Tx FIFO Underrun.Change Tx threshold to max.";
1729  }
1730  }
1731  }
1732  if (status & Tx_Defer) {
1733  dev->stats.tx_fifo_errors++;
1734  msg = "Excessive Deferral.";
1735  }
1736  if (status & Tx_NCarr) {
1737  dev->stats.tx_carrier_errors++;
1738  msg = "Lost Carrier Sense.";
1739  }
1740  if (status & Tx_LateColl) {
1741  dev->stats.tx_aborted_errors++;
1742  msg = "Late Collision.";
1743  }
1744  if (status & Tx_TxPar) {
1745  dev->stats.tx_fifo_errors++;
1746  msg = "Transmit Parity Error.";
1747  }
1748  if (status & Tx_SQErr) {
1749  dev->stats.tx_heartbeat_errors++;
1750  msg = "Signal Quality Error.";
1751  }
1752  if (msg && netif_msg_tx_err(lp))
1753  printk(KERN_WARNING "%s: %s (%#x)\n", dev->name, msg, status);
1754 }
1755 
1756 /* This handles TX complete events posted by the device
1757  * via interrupts.
1758  */
1759 static void
1760 tc35815_txdone(struct net_device *dev)
1761 {
1762  struct tc35815_local *lp = netdev_priv(dev);
1763  struct TxFD *txfd;
1764  unsigned int fdctl;
1765 
1766  txfd = &lp->tfd_base[lp->tfd_end];
1767  while (lp->tfd_start != lp->tfd_end &&
1768  !((fdctl = le32_to_cpu(txfd->fd.FDCtl)) & FD_CownsFD)) {
1769  int status = le32_to_cpu(txfd->fd.FDStat);
1770  struct sk_buff *skb;
1771  unsigned long fdnext = le32_to_cpu(txfd->fd.FDNext);
1772  u32 fdsystem = le32_to_cpu(txfd->fd.FDSystem);
1773 
1774  if (netif_msg_tx_done(lp)) {
1775  printk("%s: complete TxFD.\n", dev->name);
1776  dump_txfd(txfd);
1777  }
1778  tc35815_check_tx_stat(dev, status);
1779 
1780  skb = fdsystem != 0xffffffff ?
1781  lp->tx_skbs[fdsystem].skb : NULL;
1782 #ifdef DEBUG
1783  if (lp->tx_skbs[lp->tfd_end].skb != skb) {
1784  printk("%s: tx_skbs mismatch.\n", dev->name);
1785  panic_queues(dev);
1786  }
1787 #else
1788  BUG_ON(lp->tx_skbs[lp->tfd_end].skb != skb);
1789 #endif
1790  if (skb) {
1791  dev->stats.tx_bytes += skb->len;
1792  pci_unmap_single(lp->pci_dev, lp->tx_skbs[lp->tfd_end].skb_dma, skb->len, PCI_DMA_TODEVICE);
1793  lp->tx_skbs[lp->tfd_end].skb = NULL;
1794  lp->tx_skbs[lp->tfd_end].skb_dma = 0;
1795  dev_kfree_skb_any(skb);
1796  }
1797  txfd->fd.FDSystem = cpu_to_le32(0xffffffff);
1798 
1799  lp->tfd_end = (lp->tfd_end + 1) % TX_FD_NUM;
1800  txfd = &lp->tfd_base[lp->tfd_end];
1801 #ifdef DEBUG
1802  if ((fdnext & ~FD_Next_EOL) != fd_virt_to_bus(lp, txfd)) {
1803  printk("%s: TxFD FDNext invalid.\n", dev->name);
1804  panic_queues(dev);
1805  }
1806 #endif
1807  if (fdnext & FD_Next_EOL) {
1808  /* DMA Transmitter has been stopping... */
1809  if (lp->tfd_end != lp->tfd_start) {
1810  struct tc35815_regs __iomem *tr =
1811  (struct tc35815_regs __iomem *)dev->base_addr;
1812  int head = (lp->tfd_start + TX_FD_NUM - 1) % TX_FD_NUM;
1813  struct TxFD *txhead = &lp->tfd_base[head];
1814  int qlen = (lp->tfd_start + TX_FD_NUM
1815  - lp->tfd_end) % TX_FD_NUM;
1816 
1817 #ifdef DEBUG
1818  if (!(le32_to_cpu(txfd->fd.FDCtl) & FD_CownsFD)) {
1819  printk("%s: TxFD FDCtl invalid.\n", dev->name);
1820  panic_queues(dev);
1821  }
1822 #endif
1823  /* log max queue length */
1824  if (lp->lstats.max_tx_qlen < qlen)
1825  lp->lstats.max_tx_qlen = qlen;
1826 
1827 
1828  /* start DMA Transmitter again */
1829  txhead->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1830  txhead->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1831  if (netif_msg_tx_queued(lp)) {
1832  printk("%s: start TxFD on queue.\n",
1833  dev->name);
1834  dump_txfd(txfd);
1835  }
1836  tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1837  }
1838  break;
1839  }
1840  }
1841 
1842  /* If we had stopped the queue due to a "tx full"
1843  * condition, and space has now been made available,
1844  * wake up the queue.
1845  */
1846  if (netif_queue_stopped(dev) && !tc35815_tx_full(dev))
1847  netif_wake_queue(dev);
1848 }
1849 
1850 /* The inverse routine to tc35815_open(). */
1851 static int
1852 tc35815_close(struct net_device *dev)
1853 {
1854  struct tc35815_local *lp = netdev_priv(dev);
1855 
1856  netif_stop_queue(dev);
1857  napi_disable(&lp->napi);
1858  if (lp->phy_dev)
1859  phy_stop(lp->phy_dev);
1861 
1862  /* Flush the Tx and disable Rx here. */
1863  tc35815_chip_reset(dev);
1864  free_irq(dev->irq, dev);
1865 
1866  tc35815_free_queues(dev);
1867 
1868  return 0;
1869 
1870 }
1871 
1872 /*
1873  * Get the current statistics.
1874  * This may be called with the card open or closed.
1875  */
1876 static struct net_device_stats *tc35815_get_stats(struct net_device *dev)
1877 {
1878  struct tc35815_regs __iomem *tr =
1879  (struct tc35815_regs __iomem *)dev->base_addr;
1880  if (netif_running(dev))
1881  /* Update the statistics from the device registers. */
1882  dev->stats.rx_missed_errors += tc_readl(&tr->Miss_Cnt);
1883 
1884  return &dev->stats;
1885 }
1886 
1887 static void tc35815_set_cam_entry(struct net_device *dev, int index, unsigned char *addr)
1888 {
1889  struct tc35815_local *lp = netdev_priv(dev);
1890  struct tc35815_regs __iomem *tr =
1891  (struct tc35815_regs __iomem *)dev->base_addr;
1892  int cam_index = index * 6;
1893  u32 cam_data;
1894  u32 saved_addr;
1895 
1896  saved_addr = tc_readl(&tr->CAM_Adr);
1897 
1898  if (netif_msg_hw(lp))
1899  printk(KERN_DEBUG "%s: CAM %d: %pM\n",
1900  dev->name, index, addr);
1901  if (index & 1) {
1902  /* read modify write */
1903  tc_writel(cam_index - 2, &tr->CAM_Adr);
1904  cam_data = tc_readl(&tr->CAM_Data) & 0xffff0000;
1905  cam_data |= addr[0] << 8 | addr[1];
1906  tc_writel(cam_data, &tr->CAM_Data);
1907  /* write whole word */
1908  tc_writel(cam_index + 2, &tr->CAM_Adr);
1909  cam_data = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5];
1910  tc_writel(cam_data, &tr->CAM_Data);
1911  } else {
1912  /* write whole word */
1913  tc_writel(cam_index, &tr->CAM_Adr);
1914  cam_data = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3];
1915  tc_writel(cam_data, &tr->CAM_Data);
1916  /* read modify write */
1917  tc_writel(cam_index + 4, &tr->CAM_Adr);
1918  cam_data = tc_readl(&tr->CAM_Data) & 0x0000ffff;
1919  cam_data |= addr[4] << 24 | (addr[5] << 16);
1920  tc_writel(cam_data, &tr->CAM_Data);
1921  }
1922 
1923  tc_writel(saved_addr, &tr->CAM_Adr);
1924 }
1925 
1926 
1927 /*
1928  * Set or clear the multicast filter for this adaptor.
1929  * num_addrs == -1 Promiscuous mode, receive all packets
1930  * num_addrs == 0 Normal mode, clear multicast list
1931  * num_addrs > 0 Multicast mode, receive normal and MC packets,
1932  * and do best-effort filtering.
1933  */
1934 static void
1935 tc35815_set_multicast_list(struct net_device *dev)
1936 {
1937  struct tc35815_regs __iomem *tr =
1938  (struct tc35815_regs __iomem *)dev->base_addr;
1939 
1940  if (dev->flags & IFF_PROMISC) {
1941  /* With some (all?) 100MHalf HUB, controller will hang
1942  * if we enabled promiscuous mode before linkup... */
1943  struct tc35815_local *lp = netdev_priv(dev);
1944 
1945  if (!lp->link)
1946  return;
1947  /* Enable promiscuous mode */
1949  } else if ((dev->flags & IFF_ALLMULTI) ||
1950  netdev_mc_count(dev) > CAM_ENTRY_MAX - 3) {
1951  /* CAM 0, 1, 20 are reserved. */
1952  /* Disable promiscuous mode, use normal mode. */
1954  } else if (!netdev_mc_empty(dev)) {
1955  struct netdev_hw_addr *ha;
1956  int i;
1957  int ena_bits = CAM_Ena_Bit(CAM_ENTRY_SOURCE);
1958 
1959  tc_writel(0, &tr->CAM_Ctl);
1960  /* Walk the address list, and load the filter */
1961  i = 0;
1962  netdev_for_each_mc_addr(ha, dev) {
1963  /* entry 0,1 is reserved. */
1964  tc35815_set_cam_entry(dev, i + 2, ha->addr);
1965  ena_bits |= CAM_Ena_Bit(i + 2);
1966  i++;
1967  }
1968  tc_writel(ena_bits, &tr->CAM_Ena);
1970  } else {
1973  }
1974 }
1975 
1976 static void tc35815_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1977 {
1978  struct tc35815_local *lp = netdev_priv(dev);
1979  strcpy(info->driver, MODNAME);
1980  strcpy(info->version, DRV_VERSION);
1981  strcpy(info->bus_info, pci_name(lp->pci_dev));
1982 }
1983 
1984 static int tc35815_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1985 {
1986  struct tc35815_local *lp = netdev_priv(dev);
1987 
1988  if (!lp->phy_dev)
1989  return -ENODEV;
1990  return phy_ethtool_gset(lp->phy_dev, cmd);
1991 }
1992 
1993 static int tc35815_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1994 {
1995  struct tc35815_local *lp = netdev_priv(dev);
1996 
1997  if (!lp->phy_dev)
1998  return -ENODEV;
1999  return phy_ethtool_sset(lp->phy_dev, cmd);
2000 }
2001 
2002 static u32 tc35815_get_msglevel(struct net_device *dev)
2003 {
2004  struct tc35815_local *lp = netdev_priv(dev);
2005  return lp->msg_enable;
2006 }
2007 
2008 static void tc35815_set_msglevel(struct net_device *dev, u32 datum)
2009 {
2010  struct tc35815_local *lp = netdev_priv(dev);
2011  lp->msg_enable = datum;
2012 }
2013 
2014 static int tc35815_get_sset_count(struct net_device *dev, int sset)
2015 {
2016  struct tc35815_local *lp = netdev_priv(dev);
2017 
2018  switch (sset) {
2019  case ETH_SS_STATS:
2020  return sizeof(lp->lstats) / sizeof(int);
2021  default:
2022  return -EOPNOTSUPP;
2023  }
2024 }
2025 
2026 static void tc35815_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data)
2027 {
2028  struct tc35815_local *lp = netdev_priv(dev);
2029  data[0] = lp->lstats.max_tx_qlen;
2030  data[1] = lp->lstats.tx_ints;
2031  data[2] = lp->lstats.rx_ints;
2032  data[3] = lp->lstats.tx_underrun;
2033 }
2034 
2035 static struct {
2036  const char str[ETH_GSTRING_LEN];
2037 } ethtool_stats_keys[] = {
2038  { "max_tx_qlen" },
2039  { "tx_ints" },
2040  { "rx_ints" },
2041  { "tx_underrun" },
2042 };
2043 
2044 static void tc35815_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2045 {
2046  memcpy(data, ethtool_stats_keys, sizeof(ethtool_stats_keys));
2047 }
2048 
2049 static const struct ethtool_ops tc35815_ethtool_ops = {
2050  .get_drvinfo = tc35815_get_drvinfo,
2051  .get_settings = tc35815_get_settings,
2052  .set_settings = tc35815_set_settings,
2053  .get_link = ethtool_op_get_link,
2054  .get_msglevel = tc35815_get_msglevel,
2055  .set_msglevel = tc35815_set_msglevel,
2056  .get_strings = tc35815_get_strings,
2057  .get_sset_count = tc35815_get_sset_count,
2058  .get_ethtool_stats = tc35815_get_ethtool_stats,
2059 };
2060 
2061 static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2062 {
2063  struct tc35815_local *lp = netdev_priv(dev);
2064 
2065  if (!netif_running(dev))
2066  return -EINVAL;
2067  if (!lp->phy_dev)
2068  return -ENODEV;
2069  return phy_mii_ioctl(lp->phy_dev, rq, cmd);
2070 }
2071 
2072 static void tc35815_chip_reset(struct net_device *dev)
2073 {
2074  struct tc35815_regs __iomem *tr =
2075  (struct tc35815_regs __iomem *)dev->base_addr;
2076  int i;
2077  /* reset the controller */
2078  tc_writel(MAC_Reset, &tr->MAC_Ctl);
2079  udelay(4); /* 3200ns */
2080  i = 0;
2081  while (tc_readl(&tr->MAC_Ctl) & MAC_Reset) {
2082  if (i++ > 100) {
2083  printk(KERN_ERR "%s: MAC reset failed.\n", dev->name);
2084  break;
2085  }
2086  mdelay(1);
2087  }
2088  tc_writel(0, &tr->MAC_Ctl);
2089 
2090  /* initialize registers to default value */
2091  tc_writel(0, &tr->DMA_Ctl);
2092  tc_writel(0, &tr->TxThrsh);
2093  tc_writel(0, &tr->TxPollCtr);
2094  tc_writel(0, &tr->RxFragSize);
2095  tc_writel(0, &tr->Int_En);
2096  tc_writel(0, &tr->FDA_Bas);
2097  tc_writel(0, &tr->FDA_Lim);
2098  tc_writel(0xffffffff, &tr->Int_Src); /* Write 1 to clear */
2099  tc_writel(0, &tr->CAM_Ctl);
2100  tc_writel(0, &tr->Tx_Ctl);
2101  tc_writel(0, &tr->Rx_Ctl);
2102  tc_writel(0, &tr->CAM_Ena);
2103  (void)tc_readl(&tr->Miss_Cnt); /* Read to clear */
2104 
2105  /* initialize internal SRAM */
2107  for (i = 0; i < 0x1000; i += 4) {
2108  tc_writel(i, &tr->CAM_Adr);
2109  tc_writel(0, &tr->CAM_Data);
2110  }
2111  tc_writel(0, &tr->DMA_Ctl);
2112 }
2113 
2114 static void tc35815_chip_init(struct net_device *dev)
2115 {
2116  struct tc35815_local *lp = netdev_priv(dev);
2117  struct tc35815_regs __iomem *tr =
2118  (struct tc35815_regs __iomem *)dev->base_addr;
2119  unsigned long txctl = TX_CTL_CMD;
2120 
2121  /* load station address to CAM */
2122  tc35815_set_cam_entry(dev, CAM_ENTRY_SOURCE, dev->dev_addr);
2123 
2124  /* Enable CAM (broadcast and unicast) */
2127 
2128  /* Use DMA_RxAlign_2 to make IP header 4-byte aligned. */
2129  if (HAVE_DMA_RXALIGN(lp))
2131  else
2133  tc_writel(0, &tr->TxPollCtr); /* Batch mode */
2135  tc_writel(INT_EN_CMD, &tr->Int_En);
2136 
2137  /* set queues */
2138  tc_writel(fd_virt_to_bus(lp, lp->rfd_base), &tr->FDA_Bas);
2139  tc_writel((unsigned long)lp->rfd_limit - (unsigned long)lp->rfd_base,
2140  &tr->FDA_Lim);
2141  /*
2142  * Activation method:
2143  * First, enable the MAC Transmitter and the DMA Receive circuits.
2144  * Then enable the DMA Transmitter and the MAC Receive circuits.
2145  */
2146  tc_writel(fd_virt_to_bus(lp, lp->fbl_ptr), &tr->BLFrmPtr); /* start DMA receiver */
2147  tc_writel(RX_CTL_CMD, &tr->Rx_Ctl); /* start MAC receiver */
2148 
2149  /* start MAC transmitter */
2150  /* TX4939 does not have EnLCarr */
2151  if (lp->chiptype == TC35815_TX4939)
2152  txctl &= ~Tx_EnLCarr;
2153  /* WORKAROUND: ignore LostCrS in full duplex operation */
2154  if (!lp->phy_dev || !lp->link || lp->duplex == DUPLEX_FULL)
2155  txctl &= ~Tx_EnLCarr;
2156  tc_writel(txctl, &tr->Tx_Ctl);
2157 }
2158 
2159 #ifdef CONFIG_PM
2160 static int tc35815_suspend(struct pci_dev *pdev, pm_message_t state)
2161 {
2162  struct net_device *dev = pci_get_drvdata(pdev);
2163  struct tc35815_local *lp = netdev_priv(dev);
2164  unsigned long flags;
2165 
2166  pci_save_state(pdev);
2167  if (!netif_running(dev))
2168  return 0;
2169  netif_device_detach(dev);
2170  if (lp->phy_dev)
2171  phy_stop(lp->phy_dev);
2172  spin_lock_irqsave(&lp->lock, flags);
2173  tc35815_chip_reset(dev);
2174  spin_unlock_irqrestore(&lp->lock, flags);
2176  return 0;
2177 }
2178 
2179 static int tc35815_resume(struct pci_dev *pdev)
2180 {
2181  struct net_device *dev = pci_get_drvdata(pdev);
2182  struct tc35815_local *lp = netdev_priv(dev);
2183 
2184  pci_restore_state(pdev);
2185  if (!netif_running(dev))
2186  return 0;
2187  pci_set_power_state(pdev, PCI_D0);
2188  tc35815_restart(dev);
2189  netif_carrier_off(dev);
2190  if (lp->phy_dev)
2191  phy_start(lp->phy_dev);
2192  netif_device_attach(dev);
2193  return 0;
2194 }
2195 #endif /* CONFIG_PM */
2196 
2197 static struct pci_driver tc35815_pci_driver = {
2198  .name = MODNAME,
2199  .id_table = tc35815_pci_tbl,
2200  .probe = tc35815_init_one,
2201  .remove = __devexit_p(tc35815_remove_one),
2202 #ifdef CONFIG_PM
2203  .suspend = tc35815_suspend,
2204  .resume = tc35815_resume,
2205 #endif
2206 };
2207 
2208 module_param_named(speed, options.speed, int, 0);
2209 MODULE_PARM_DESC(speed, "0:auto, 10:10Mbps, 100:100Mbps");
2210 module_param_named(duplex, options.duplex, int, 0);
2211 MODULE_PARM_DESC(duplex, "0:auto, 1:half, 2:full");
2212 
2213 static int __init tc35815_init_module(void)
2214 {
2215  return pci_register_driver(&tc35815_pci_driver);
2216 }
2217 
2218 static void __exit tc35815_cleanup_module(void)
2219 {
2220  pci_unregister_driver(&tc35815_pci_driver);
2221 }
2222 
2223 module_init(tc35815_init_module);
2224 module_exit(tc35815_cleanup_module);
2225 
2226 MODULE_DESCRIPTION("TOSHIBA TC35815 PCI 10M/100M Ethernet driver");
2227 MODULE_LICENSE("GPL");